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Abstract— Understanding actuation needs for re-
conformation processes in high dimensional multi-stable
systems is key to efficient nonlinear control design. Many
solitary systems exhibit multiple equilibria and control
of these systems when networked with others becomes a
challenging task. In this paper we study a networked model
in which each single entity contains multiple equilibria and
a operational objective is to transition the entire coupled
system from one equilibrium to another. We show that after
a series of coordinate transformations, the structure of the
system and mechanisms for internal resonance leading to this
behavior become clear. We also characterize the amount of
energy needed for such conformation change (the activation
energy) both through numerical simulation and perturbation
techniques. We find that unlike traditional Transition State
Theories, the activation energy is a function of the spatial
structure of such energy (it is not a constant number). We
find that a reduced order model which results from averaging
accurately predicts this activation energy in a very concise
way.

I. INTRODUCTION

Directing systems with multistable potential energy land-

scapes to a single desired equilibria is a challenging task in

nonlinear control theory. In addition, there is a clear trend

in the control community towards controlling networked

systems with a high number of entities or agents. If each

of these entities possesses a nonlinear potential with mul-

tiple equilibria, actuation and control design becomes very

complicated. In particular the task of changing the residence

of the entire system from one region of attraction to another

(conformation change) by means of energizing the system so

as to breach a unstable saddle dividing different regions of

attraction (activation) becomes a challenging problem with

respect to both coordination and efficient actuation. The fo-

cus of this paper is to outline and present a tool for studying

the robustness of such systems to external perturbation and

a prediction algorithm for actuation requirements leading to

conformation change.

Many systems contain multiple equilibria and at any

given time only one of these equilibria is often desired.

In biological systems multistability is an essential part of

cellular function [1]. In this situation, macromolecules are

often bound together with individual molecules connected as

appendages off of a backbone-like structure. Different stable

conformations exist dependent on how these appendages

interact with other nearby molecules. In chemical systems,

reaction kinetics follows a similar principle and as described
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in introductory reaction texts, reactants and products ex-

ist on a potential landscape separated by a high energy

saddle. Chemical reaction is realized when the energy of

the species (containing many agents) exceeds the energy

of this saddle allowing it to proceed to the other side of

the potential. Similar behavior occurs in engineered settings

such as control systems (see [2] for example). Autonomous

search vehicles possess local control for avoidance (repul-

sion at close distances) and coordination (attraction at far

distances) which is similar to a molecular potential. On a

higher level, supervisory tasks may schedule the group of

agents to switch between coordinate motion towards a search

location, and a notably different motion upon arrival (chaotic

search for example). Understanding the switching behavior

between these two global equilibria is clearly important for

sensitivity analysis and control authority specification. There

is an abundance of other biological, chemical and physical

systems which have functional concerns similar to these (e.g.

extended power grids, neural systems, superconductor arrays,

etc).

The transition of systems from one metastable state to

another in a single dimension has been studied to great

extent while in higher dimensions, the analysis is much

more complex and the behavior is less understood. Although

we intend this study to be applicable to general physical

systems, we note that much of the ideas relating to the

behavior discussed above has been studied under the premise

of chemical reaction theory.

In chemical kinetics, the quantity of energy needed to

switch a system between between states has been studied

extensively in the past including a significant amount of

work relating to rates of reaction in thermally equilibrated

systems. These rate theories were initiated by Arrhenius

over a century ago and developed further in the early 20th

century using contributions from the work of fluctuation

theory. It was these fluctuation theories and understanding of

Brownian motion that opened a door to further understanding

leading to Kramers rate theory (see a thorough review

in [3]) which describes the mechanism of noise-assisted

activation. It was Eyring in 1935 that solidified the idea of

Transition State Theory (TST) which quantifies properties of

reactive trajectories across a transition state primarily in uni-

molecular reactions. The general concept of these theories

is that transitions in high dimensional systems occur when a

single critical energy is surpassed which is determined from

stochastic analysis of particle interactions.

Transition State Theory has been studied from a deter-

ministic dynamical systems point of view in low dimensions

while in higher dimensions only probabilistic understanding
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is firmly understood. However, there has been some progress

lately with the tools of Normally Hyperbolic Invariant Man-

ifolds [4] to describe high dimensional energy barriers and

the chaos that ensues (see the work of Stuart Rice, Turgay

Uzer, Tamiki Komatsuxaki, Mikito Toda and others in the

volume [5]). Very few studies have been performed on high

dimensional deterministic systems, [6] investigates a system

similar to ours while describing the behavior as dependent

on transitory solitons which is a different situation than what

we have here. Our research group has reported work that

is similar to what is in this paper ([7] and [8]) while here

we remove ourselves from the biological context and use

a generic model with a cubic potential. We also present

additional analysis that includes the use of averaging.

The essential mechanism for activation in high dimen-

sional systems is internal energy transfer. In oscillatory

systems energy transfer is most effective at resonance. For

example, in a forced linear oscillator, maximal energy trans-

fer will occur when the forcing frequency is tuned to the

natural frequency of the open loop system. If the same sys-

tem is autonomous, internal resonance occurs when internal

frequencies are resonant (or commensurate) and therefore

energy transfer is built into the design of the system. In

nonlinear systems, where frequencies change within the

phase space, the system may fall in and out of resonance

as time proceeds. In this paper we investigate an example

where this is indeed the case and perform parametric study

of the impact of internal resonance on the activated response

of the system.

To gain further insight into the energy transfer within

these systems we study an example system with strong

linear coupling and weak local nonlinearity. By a series of

canonical coordinate transforms, we obtain a presentation of

the system which illuminates its structure with respect to

internal resonance. While accounting for the high dimension

and multiple frequencies in this system we utilize averaging

to obtain a reduced and approximate form. The reduced

order model obtained from averaging highlights the inter-

dependency of internal modes and how high order modes

contribute to conformation change. The rest of the paper is

organized in accordance with these steps and concludes with

a summary of the results.

II. THE MODEL

To investigate the activation behavior of a high dimen-

sional system we use multidimensional coupled oscillator

model which contains local nonlinearity and strong cou-

pling. This model has nonlinearity from a Duffing potential

and linear coupling between nearest neighbors. This strong

neighbor coupling acts like a backbone for the oscillator

system. The dynamics are representative of many biological

systems including coarse motion of macromolecules as well

as other mechanical devices. As in these physical systems,

the backbone has periodic boundary conditions (oscillators

on a ring). Each oscillator possesses two stable equilibria at

a symmetric distance on either side of the backbone which

itself is an unstable equilibrium (at zero). Conformation

change is defined as the movement of all oscillators from

one region of attraction to the other. The model consists of

entirely conservative, deterministic dynamics and the con-

stant Hamiltonian for this system containing N oscillators

is:

H =
N

∑

k=1

p2

k

2
− ε

(

1

2
q2

eqq
2

k −
1

4
q4

k

)

+ (qk−1 − qk)
2
(1)

where (qi, pi) ∈ R × R are position and conjugate momen-

tum, qeq specifies the position of the nonlinear equilibrium

(qeq = 10 for this study), and ε is a small parameter. The

system is conservative and a contour plot of the constant en-

ergy levels for one oscillator is presented in Figure 1. Notice

the two potential wells which map the two stable regions in

the phase space of each bistable oscillator. This bistability is

the key feature of the model that allows global conformation

change. Different equilibria arise from both the nonlinear

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

φ
0

I 0

Phase Space for a Single Oscillator

Fig. 1. Constant energy surface contours for a single oscillator with three
equilibria denoted by black dots

and linear potentials, for the nonlinear potential there are

three equilibria qi = {0,±qeq} the first is unstable while the

last two are linearly stable. The energy associated with each

are {0,−
εq4

eq
N

4
,−

εq4

eq
N

4
}. The equilibria with respect to the

neighbor interactions occurs when all oscillators are aligned

collinearly. In summary, the global linearly stable equilibria

is when all oscillators are are aligned and at one of the two

locations (±qeq).
Numerous numerical experiments have been performed on

Hamilton’s equations (1) which illustrate that with even very

modest initial displacement (in as few as one oscillator) it is

possible that the entire system regresses to a collective behav-

ior and re-conforms. The goal of this study is to illuminate

the sensitivity of this system to external perturbation which

invites this re-conformation behavior. In order to do this we

perform a series of nonlinear (albeit canonical) coordinate

transforms which reveal different aspects of the dynamics.

Because of the periodic boundary condition and transla-

tional invariance along the backbone, the spatial empirical

eigenfunctions of this model are Fourier Modes [9]. To gain

further insight into the dynamics along these coordinates we

project the nominal model onto this basis using the nor-

malized Discrete Fourier Transform (DFT). The projection
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matrix (M) for this procedure is a N ×N linear orthogonal

matrix which is a symplectic mapping between the origi-

nal variables (q, p) and the modal coordinates (q̂, p̂) (the

same matrix is used in [10]). The transformed coordinates

and transformed Hamilton’s equations take the form (bold

characters refer to vectors):

(q̂, p̂) = (Mq,Mp) →

{

˙̂q = f̂ (q̂, p̂)
˙̂p = ĝ (q̂, p̂)

}

(2)

With this transformation, we have a organized the system

into a single highly nonlinear mode (the zeroth mode, which

is the average of all original oscillator positions) and a series

nearly linear modes each representing a different spatial

wavenumber (coupling still occurs between all modes). The

nonlinear mode has one rank 1 saddle and a phase space

is approximately equivalent to what is presented in Figure

1. This structure becomes more apparent in action-angle

coordinates:

φ̇0 = I0

İ0 = 0 + εg0(I, φ, ε)
,

φ̇i = ωi + εfi(I, φ, ε)

İi = 0 + εgi(I, φ, ε)
(3)

where (Ii, φi) ∈ R × R are the ith action and angle and

ωi ∈ R are the linear natural frequencies. Because of the

nature of these coordinate transforms, high order spatial

modes can be truncated without altering the structure of the

dynamics or adding any dissipation. With this in mind, in the

truncated model the indices follow nonzero wavenumbers

i = {0, 1, 2, . . .M} and M + 1 < N is defined as the

dimension of this lower order model.

The transformed Hamiltonian is of the type which can

be parsed into a zero-order regular Hamiltonian which is

functional to only action and terms of small order (O(ε)).
That is, the angle coordinates for all modes with nonzero

wavelength are predominately linear and the action equations

in linear limit are stationary. We also note at this point that

the independent linear natural frequencies (ωi) for each mode

are not rationally commensurate and contain no spectral

gap (for all realistic parameters). That is to say, the purely

linear portion of the model, contains no resonance terms or

significant time scale separation (however, this does not mean

that the system never goes into resonance).

III. IDENTIFICATION OF INTERNAL RESONANCE

For the remainder of this paper we will discuss the

behavior of the model presented above. In doing this, we will

find that internal resonance is a significant contributor to the

underlying dynamics and this is important because resonance

is the doorway for energy transfer. Here we will briefly

review the concepts and conditions of internal resonance in

high dimensional oscillatory systems. The resonance condi-

tions for a system with multiple frequencies (ω̃) are [11]:

|(κ, ω̃)| <
1

c|κ|v
(4)

where (κ, ω̃) = κ0ω̃0 + κ1ω̃1 + · · · + κM−1ω̃M−1, κi are

integers and c, v are positive constants. The quantity on the

left hand side of the inequality goes to zero when frequencies

are rationally commensurate (exact resonance) and the term

on the right hand side accounts for resonance in small regions

where the frequencies are almost commensurate. In fact

characteristics of the resonance zone both in the size of the

region in phase space and time spent inside this region during

evolution are related to this value. The resonance condition

implies internal resonance when the system is autonomous

(i.e. no external forcing).

Identifying whether resonance occurs becomes challeng-

ing when studying nonlinear systems. In linear fixed fre-

quency systems, the condition (4) is evaluated once and

the possibility of resonance is determined for all time.

However, for nonlinear systems, whose frequencies change

with amplitude of oscillation, this inequality may be satisfied

only at specific times in the evolution. That is, the frequency

for our nonlinear system is ω̃i = ωi + εfi(I, φ, ε) (from

equation 3) which varies with time. In our system, the vector

containing ω′

is is not commensurate, and so resonance only

occurs with nonzero ε. That is, the term ε is a tuning knob

that promotes internal resonance, and thus internal energy

transfer which leads to efficient conformation change. This

concept is important and will be explored with numerical

simulation and averaging below.

IV. NUMERICAL SIMULATION

In this section we investigate activation behavior in a

high dimensional Duffing system and internal resonance that

enables it. To do this we present numerical simulations of

the dynamics pointing out the structure of the system, cases

of resonance, and the influence of the nonlinear perturbation

term (ε) on its behavior. As described above, the system (3)

is composed of one highly nonlinear mode and many nearly

linear modes. This is confirmed by numerical simulation of

the action-angle system by plotting the phase space of each

individual mode. When doing this in a case where there is

sufficient initial condition, the zeroth mode traverses a phase

space similar to what is presented in Figure 1, and all other

modes map out circles in the respected scaled phase spaces.

We also wish to study the influence of the small parameter

ε on internal resonance in the system. One of the easiest ways

to evaluate the resonance condition of Equation 4 is to simply

probe the difference in frequencies between modes. Since we

are interested in behavior of the zeroth mode, we investigate

differences the frequency of this mode and other modes

(we just look at the first 5 to keep things brief, though the

trend continues through higher order modes). We find that at

certain times, when there is sufficient nonlinear perturbation

(in ε) this difference drops to zero which is indicative of

resonance. Furthermore we see that in this case, the mostly

circular trajectories of the nonzero modes become distorted

which also represents internal energy transfer. This distortion

occurs when the derivative of the difference in angles goes

to zero.

In Figure 2 and 3 and we illustrate these behaviors with

numerical simulation using ε = 10−7 and ε = 0.001
respectively. All numerical simulations discussed in this

paper were performed using a symplectic scheme to preserve
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the Hamiltonian structure and avoid numerical dissipation

[12]. The initial condition for the simulation is the rightmost

equilibrium for the zeroth mode and equivalent action for

all other nonzero modes. The amount of this action was

adjusted such that there was sufficient energy to promote

conformation change. The figures presented plot each phase

space for the first 15 modes with the resonance condition de-

scribed above with relation to time on the lowest subplot.We

−20 0 20
−0.1

0

0.1
Mode 0

−10 0 10
−10

0

10
Mode 1

−10 0 10
−10

0

10
Mode 2

−10 0 10
−10

0

10
Mode 3

−10 0 10
−10

0

10
Mode 4

−10 0 10
−10

0

10
Mode 5

−10 0 10
−10

0

10
Mode 6

−10 0 10
−10

0

10
Mode 7

−10 0 10
−10

0

10
Mode 8

−10 0 10
−10

0

10
Mode 9

−10 0 10
−10

0

10
Mode 10

−10 0 10
−10

0

10
Mode 11

−10 0 10
−10

0

10
Mode 12

−10 0 10
−10

0

10
Mode 13

−10 0 10
−10

0

10
Mode 14

0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

F
re

q
u

e
n

c
y
 D

if
fe

re
n

c
e

s

Time

 

 
f
0
 − f

1

f
0
 − f

2

f
0
 − f

3

f
0
 − f

4

f
0
 − f

5

Fig. 2. Numerical simulation of the action-angle system with ε = 10
−7.

Each upper subplot is a phase space of a mode while the lower subplot
illustrates a resonance condition (fi is equivalent to ω̃i as discussed in the
text).

see that with the smaller value of nonlinear perturbation

(Figure 2) the phase space of each nonzero mode remains

nearly circular and that the frequency difference does not

approach zero indicating very little resonance during the

re-conformation process. On the other hand, with increased

perturbation, we see this resonance condition dive towards

zero frequently. In addition to this we find that the trajectories

of the nonzero modes become distorted in their phase space

which both indicate a high occurrence of internal resonance.

The process of conformation change is leveraged by this

internal resonance which is also evident in these numeri-

cal experiments. That is, the situation where resonance is

negligible takes 24 times as long to re-conform with twice

as much initial perturbation in action as the situation with

stronger resonance.

V. AVERAGING

We now wish to have a deeper understanding of both

the quality and quantity of energy needed for conformation

change. In the numerical simulations above we provided

data for a given initial amount of energy that was sufficient

for conformation change. This energy was placed equally in

all modes and increased in an ad hoc way until activation

is realized. In this section we provide a tool to estimate

the amount of actuation needed for the same behavior to

occur. We do this by temporally averaging the Hamiltonian

dynamics over the nonzero modes.

In our context, temporal averaging refers to approximating

the dynamics by integrating their behavior over a periodic

orbit. However, in our case we have a high dimensional

system with multiple orbits of non commensurate frequency.
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Fig. 3. Numerical simulation of the action-angle system with ε = 0.001.
Each upper subplot is a phase space of a mode while the lower subplot
illustrates a resonance condition.

Although this complicates the approach, systems of this type

have been studied thoroughly in the past (see [11], [13], [14]

or [15]). The basic way to accommodate these systems is to

take the average over all angle variables:

H̄(I) =
1

(2π)M

∫

2π

0

· · ·

∫

2π

0

H(I, φ, 0)dφ1 . . . φi . . . dφM

(5)

where in our case we average over only the oscillatory modes

(i 6= 0). The issue with this approach is that it does not

represent the dynamics through resonance. Although there

exists methods to average on each side of resonance and

splice the two results together ([11], [16] and [17]) we choose

to obtain the solutions only outside of resonance as they

will turn out to be very insightful by themself. With this

in mind, we integrate over all of the higher order oscillatory

dynamics which reveals reduced order action angle equations

that capture the phase space outside of resonance (small ε).

An example of the system when only one higher order mode

(the ith mode) is retained is:

˙̄I0(t) = ε
((

q̂eq − k1Īi

)

φ̄0(t) − k2φ̄0(t)
3
)

(6)

˙̄φ
0
(t) = Ī0(t) (7)

˙̄Ii(t) = 0 (8)

˙̄φi(t) = f
(

Īi(t), φ̄0(t)
)

(9)

Where k1 and k2 are constant coefficients including modal

influences. Here we can see that in the averaged system, the

actions from nonzero modes are stationary, and the phases

from nonzero modes have no effect on the zeroth mode.

That is, the effect of energy in the higher order modes is

to reshape the phase space of the zeroth order mode. In

fact, these values re-shape the phase space in a way that

promotes activation and with this low order model we can

estimate activation energies. As illustrated in Figure 1 the

bistable phase space is separated by areas where the oscillator

experience libration in one or the other potential well, as well

as a foliation of manifolds in which rotation occurs. In the

process of conformation change, the zeroth mode must enter
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this path of rotation in order to proceed to the second well

and this is the key to estimating activation energy.

VI. QUANTIFICATION OF ACTIVATION ENERGIES

With better understanding of the structure of the system

with respect to energy transfer we now investigate required

activation energy depending on the spatial structure in which

energy is injected into the system. Two different quantities

are investigated with respect to activation in the system;

time needed for activation vs amount of energy injected

into the system, and minimum amount of energy needed for

activation. In the first case we perform a series of numerical

experiments using the initial model (1) with N = 30
oscillators. In each simulation we impose initial potential

energy onto one of the nonzero Fourier Modes (the zeroth

mode is set to its equilibrium) and determine when the

system breaches the high energy saddle which results in

the entire oscillator chain moving from towards the second

equilibrium.

The results for this experiment are presented in Figure

4 where we see two distinctive behaviors. First, it is clear

that the amount of activation energy is dependent on spatial

structure (Fourier Mode) of the initial potential energy and

increases with the spatial wavenumber. This is important

finding because most activation theories suggest a constant

activation energy for any particular system. In addition to

this we find that with very low energies, the amount of

time needed for activation increases asymptotically. We call

this asymptote the minimum activation energy and show that

this is a well behaved function of the spatial structure of

initial perturbation below.The minimum activation energy is
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first 14 Fourier Modes (ε = 1e − 7)

a concept that is used in Transition State Theory of chemical

kinetics, and as we have shown above varies with the type of

energy driving the activation. Here we explore this further

and show that this energy can be predicted by using the

reduced order representation developed from averaging. The

condition needed to cross the energy barrier is when the

higher order actions drive the equilibrium of the zeroth mode

across the separatrix between libration and rotation. If we

consider the potential energy of the system Ū = H̄ − Ī0 we

have the condition for activation as:

Ū(q̂0 = q̂eq, Ī1, Ī2, . . . ĪM ) = Ū(q̂0 = 0.0, Ī1, Ī2, . . . ĪM )
(10)

where q̂0 is modal coordinate representing the average of all

angles, and q̂eq is one of the equilibrium positions (again,

the barrier is 0.0). When energy is placed in a single mode,

this condition reveals a single value of needed energy in

this mode for activation. When energy is placed in multiple

modes, this value is extended onto a affine hypersurface on

which describes the needed activation energy depending on

influence from any combination of higher order modes.

In Figure 5, we present and compare the minimum acti-

vation energy for the first five Fourier Modes with varying

nonlinear perturbation (ε). One entry for each mode is from

the averaging approach using the technique of condition (10),

and the other entries are from numerical simulation. Note

that in the condition derived from the averaging approach

there is no effect from the small nonlinear perturbation.

In each of the numerical simulation cases, the asymptotic

value from the activation energy vs. time for activation

curve is noted for each mode was noted for this plot (see

Figure 4, more simulations were performed for other ε’s).
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Fig. 5. Amount of activation energy needed for conformation change, as a
result from long numerical simulation and prediction from a reduced order
model obtained from averaging

From this plot we find that as expected, the results obtained

from averaging agree with the cases of very low ε. As

ε is increased the amount of activation energy predicted

from averaging is greater than what is found in numerical

simulation. This illustrates both the strength and limitations

of using averaging for approximating the activation energy.

A second characteristic which is nonintuitive but evident

in this plot is that the amount of activation energy is a

seemingly well behaved function of the Fourier Mode. In

fact, it has been found that there exists an activation invariant

with respect to the modal amplitudes in the system. Due to

this, the activation energy becomes a nearly linear function

of the temporal frequency of each Fourier Mode in which

energy is imposed. This result is important as it reveals a

very simple relation for predicting the actuation needs for re-

conformation behavior in networked systems. The derivation
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of this result is lengthy and is being prepared for a future

publication.

VII. BIFURCATION BEHAVIOR

As we pointed out above, the influence from energy in

higher order modes effects the zeroth mode by reshaping

its phase space. The secondary effect of this is that a once

stable equilibrium, which is surrounded by libration contours,

eventually breaches the separatrix and ends up in the field

of rotation. In fact, the influence of higher order modes is

parametrically equivalent to inducing a pitchfork bifurcation

on the phase space of the zeroth mode. Figure 6 illustrates the

effect of action in one nonzero mode on the phase space of

the zeroth mode. Notice that the original equilibrium at φ0 =
10 is initially surrounded by libration contours. However,

upon increasing the action in the nonzero mode (Ī5) for this

example, the equilibria are brought together and the location

of this original equilibrium eventually is located in the field

of rotation (for comparison, note that the minimum activation

action for this mode is I5 = 500). Eventually the equilibria

coalesce at zero under a pitchfork bifurcation. The physical

interpretation of this is that if energy is placed in this mode

with a value greater than this bifurcation value, the system

will continuously bounce back and forth between what used

to be the original equilibria positions on either side of the

backbone.
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illustrating with sufficient energy a pitchfork bifurcation occurs

VIII. SUMMARY

In this paper we have studied the activation behavior of

a high dimensional multi-stable system. We have shown

that unlike what is understood in traditional Transition State

Theories, the activation energy is not single valued but rather

a function of the structure of energy imposed on the system.

We have presented results from a model that once analyzed

after a series of canonical transformations supports these

findings. With this model we have shown that the influence

of higher order actions is to reshape the phase space of

the lowest order mode which induces transition between

equilibria. This effect can be captured by a reduced order

model obtained from multi-frequency averaging. In fact, with

this low order model we find that higher order modes induce

a pitchfork bifurcation of the phase space of the zeroth order

mode. All of the work in this paper has been performed

in a nonstatistical setting. The influence of noise and other

environmental perturbation has been studied as well and it is

found that that in the limit of low fluctuation, the results we

present persist. The ability to have this low dimensional tool

for prediction of actuation needs in a very high dimensional

multi-agent system is beneficial to the design process for

nonlinear control of such systems.
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