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We present a new method of analysis of measure-preserving dynamical systems, ba-
sed on frequency analysis and ergodic theory, which extends our earlier work [1]. Our
method employs the novel concept of harmonic time average [2], and is realized as a
computational algorithms for visualization of periodic and quasi-periodic sets or arbi-
trary periodicity in the phase space. Besides identifying all periodic sets, our method
is useful in detecting chaotic phase space regions with a good precision. The range of
method’s applicability is illustrated using well-known Chirikov standard map, while its
full potential is presented by studying higher-dimensional measure-preserving systems,
in particular Froeschlé map and extended standard map.
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Lead paragraph Equations modeling most of the real-world systems are usually impossible to
solve. For this reason, a researcher must resort to computational methods approximating the actual
solution, or identifying specific details of interest without solving the system. Using newly proposed
concept of harmonic time average, we designed a novel method of analyzing dynamical systems. Our
method relies on two well established methodologies: frequency analysis, a tool for decomposing
the motion into separate easily tractable components, and ergodic theory, a powerful mathematical
framework for statistical analysis of motion. For illustrating the implementation of our method, we
employ Chirikov standard map, a widely studied and well understood chaotic system. As we show,
our method is able to detect and graphically visualize any periodic set within the dynamical phase
space, that is, a set composed of several disjoint parts that are periodically visited. Our method
is applicable to systems of arbitrary dimensionality and works regardless of their integrability. In
fact, we foresee the main application exactly in the domain of high-dimensional system.

1 Introduction

Many problems in modern science and technology can be formalized via dynamical systems, which
are a powerful framework for mathematical and computational analysis [3, 4]. Yet, for a model
of a given real-world process to be even remotely realistic, it inevitably ends up being formulated
as a high-dimensional system of equations [5]. This calls for the development and improvement
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of computational methods aimed at analyzing dynamical systems, with or without solving them
explicitly. Over the past decades, parallel to the fascinating growth of the computational power,
also grew the number of analytic tools for complex dynamical systems [6], including applications as
diverse as diagnostics of oil spill movement [7].

When choosing from the spectrum of the available methods, except taking into account the
nature of the problem, one also considers the aims that the study is to achieve [8]. The choice of
method is often the decisive factor for the overall efficiency of the conducted analysis. Dynamical
systems are still typically analyzed via direct integration of trajectories, taking into account the
ratio between precision and numerical cost. Some methods are based on statistical analysis of the
dynamics, such as return time plots [9] and exit time plots [10]. Others revolve around looking for
invariant sets and measures [11] or stable and unstable manifolds [12], which can be computed via
fat trajectories [13].

Of particular interest if often to graphically visualize certain aspects of the dynamics, for example
the phase space structure. Visualization methods usually work as algorithms for dividing the
phase space into subsets according to a prescribed property. In our previous publication [1], we
presented a method for visualization of invariant sets, based on the ergodic partition theory [14].
By computing the dynamical time averages of chosen functions, we constructed Mesochronic Plots
(MP) allowing to graphically identify all invariant sets and thus obtain the invariant phase space
partition. Our method relied on applying the ergodic theory [15], whose power in the statistical
modeling of dynamical systems can be seen in both theory [16] and experiment [17]. In this paper,
we extend our earlier work, and present a novel visualization method, able to detect periodic phase
space subsets or any periodicity (or frequency).

In fact, frequency analysis, except being widely used for data analysis [18, 19], is also a powerful
tool for studying motion. It is applied primarily by decomposing the dynamics into harmonic
components, which is elegantly done via spectral decomposition [20]. The earliest implementation
involves estimating the system’s fundamental frequencies [21], which eventually opened new ways of
quantifying chaos. Another approach relying on wavelets allows the detection of resonance trappings
and transitions [22], specifically useful for examination of weakly chaotic orbits. Frequency analysis
is shown to provide insights into the difference between noisy flows and the colored noise [23]. And
of course, this framework has interesting applications other than dynamical systems, notably in
neuroscience [24] and in the study of sound and music [25].

There are several ways to “marry” the frequency analysis with the ergodic theory [26]. One
of them is based on defining the harmonic time average (HTA), as a generalization of the usual
functional time average known from ergodic theory [2]. It can be shown, that the constancy of
the absolute value of HTA (HTA is complex-valued), is related to the invariance of the underlying
phase space portion, in a way analogous to the usual time average [27, 28]. In this paper we
present a new computational visualization method, constructed by computing HTA over the grid
of initial phase space points. Such 2D plot, computed for a prescribed frequency ω (or periodicity
p = 1

ω
), we call Mesochronic Harmonic Plot (MHP), in analogy with MP from [1]. Periodic set of

periodicity p are revealed as joint level sets of the absolute value of HTA. When multiple linearly
independent functions are considered, one obtains Mesochronic Harmonic Scatter Plot (MHSP), in
analogy with MSP from [1]. This can be used to identify the periodic partition of the phase space
(meaning, the partitioning of the phase space into a union of disjoint periodic sets of prescribed
periodicity). Such partition can then be graphically visualized by coloring the separate subsets
differently. The precision of the obtained partition depends on the number of linearly independent
functions considered. As we also show in what follows, our method is closely related with the spectral
decomposition of Koopman operator, while it is complementary to the analysis via classical Fourier
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transform. Also, note that out method is fully supported for arbitrary measure-preserving system,
regardless of its integrability (which contrasts many of the above mentioned methods).

Upon exposing the mathematical details of our method, we first present a simple implementation
via Chirikov standard map [29], whose dynamical properties have been widely studied and are well
understood. Once the working and the applicability range of our method is clear, we demonstrate
its power by analyzing higher-dimensional dynamical systems, in particular Froeschlé map [31]
and extended standard map [30]. In fact, the full potential of our method lies in the study of
high-dimensional dynamical systems, which can be most easily done by examining MHPs of lower-
dimensional surfaces/planes.

2 The Visualization Method

We begin by presenting the mathematical basis of our method. Since our interest here is exposing
the method’s applicability, we will skip the rigorous proofs and refer the reader to [2, 15].

Consider a measure-preserving map T on a compact metric phase space A evolving in discrete
time t:

xt+1 = Txt, t ∈ Z, xt ∈ A. (1)

An invariant set B ⊂ A for the dynamics T, is a set such that each trajectory that starts in it stays
in it forever [3]:

x ∈ B ⇔ Ttx ∈ B ∀t ∈ Z.

We are here interested in the specific class of invariant sets called periodic sets. A period-p set Bp

is an invariant set composed of p disjoint subsets; Bp = ∪pk=1B
(k)
p , with the following property:

x ∈ B(k)
p ⇒ Tx ∈ B(k+1)

p , T2x ∈ B(k+2)
p , . . . Tpx ∈ B(k+p)

p ≡ B(k)
p . (2)

Therefore, a trajectory starting in B
(k)
p visits the entire cycle B

(k+1)
p , B

(k+2)
p . . . visiting each subset

once, before coming back to B
(k)
p after p iterations. Periodic set can be seen as a generalization of

periodic orbit, while period-1 set is of course the usual invariant set.
In our last paper [1], we proposed a method based on ergodic theory aimed at identifying the

invariant sets. Below we present the extension of our method, originally introduced in [2, 28], for
identifying the periodic sets of predetermined periodicity p within the phase space of any measure-
preserving map Eq.1.

The time average f ∗ of a function f under the map Eq.1 is defined as:

f ∗(x) = lim
t→∞

1

t

t−1∑
k=0

f(Tkx), (3)

for almost every (a.e.) x ∈ A and for every f ∈ L1(A) [15]. The algorithm presented [1] relies on
computation of the time averages and operates by decomposing the phase space into the ergodic
partition, which is identified as partitioning into a union of invariant sets. The extension hereby
presented employs the novel concept of harmonic time average (HTA).

Consider the map Eq.1 and a real-valued function f ∈ L2(A). For a given frequency ω ∈ [0, 1
2
]

and x ∈ A, we define the HTA f ∗ω as:

f ∗ω(x) = lim
t→∞

1

t

t−1∑
k=0

ei2πkωf(Tkx). (4)
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HTA generalizes the concept of time average Eq.3, since for ω = 0 we have f ∗ω = f ∗. By the Ergodic
Theorem, the limit Eq.4 exists a.e. in A for any measure-preserving map T and function f [15]. In
contrast to Eq.3, HTA f ∗ω is complex-valued, and is not an invariant function, since:

f ∗ω(Ttx) = e−i2πωtf ∗ω(x).

However, the absolute value (radius) of f ∗ω is an invariant function:

|f ∗ω(Ttx)| = |f ∗ω(x)|. (5)

This means that, in equivalence with the usual time average Eq.3, constancy of |f ∗ω| over some
subset of the phase space indicates the invariance of that subsets. In the reminded of the this paper
we will be mostly dealing with |f ∗ω|, so we adopt the notation hω = |f ∗ω|.

The key result enabling our visualization method, is that the HTA for a point belonging to
period-p set, can be non-zero only if the HTA is computed for the periodicity p (frequency ω = 1

p
).

In all other cases the HTA eventually averages out to zero. To illustrate this, we note that the
expression averaged in Eq.4 depends on the discrete time k through the radial part f(Tkx) and the
phase part ei2πkω. The latter directly relates to the selected frequency ω. If the selected frequency
(periodicity) coincides with that of a given set Bp, the sampling of complex values will exhibit
a periodic pattern, allowing for HTA to converge to a non-zero (complex) value. Otherwise, the
sampled complex values will be randomized in phase, and regardless of the choice of f will always
average out to zero.

To present this key results more formally, we begin by considering the shift map Θω, defined as
the mapping of the circle S1 ≡ [0, 2π[ onto itself:

Θωθ = θ + 2πω, ω ∈ [0,
1

2
] .

Under the shift map with frequency ω every subset of the circle is periodic with periodicity p = 1
ω

.
Now, consider a map T on phase space A, which admits a periodic set Bp. The shift map Θω is
called the factor map to T on Bp, if there exists a measure-preserving homeomorphism F : A→ S1

such that
(F ◦T)(x) = (Θω ◦ F )(x) ∀x ∈ Bp .

This implies that on Bp, the map T is topologically equivalent to Θω, which means that the set Bp

is a periodic set (or a union of periodic sets) with the period p = 1
ω

. The following two theorems
hold:

Theorem 1 Given a map T and f ∈ L2(A), if hω is non-zero on some set Bp ⊂ A, then there
exists a factor map for T on Bp given by the shift map with the frequency ω = 1

p
.

Theorem 2 If a map T admits a shift map with the frequency ω as a factor map on some Bp ⊂ A,
then there exists an f ∈ L2(A) such that hω is non-zero on Bp.

As we show in the following Sections, our method is implemented by computing the hω for a
selection (grid) of initial phase space points. This computation divides the phase space into two
regions: the region composed of periodic set resonating at the selected frequency (HTA non-zero),
and the remaining non-resonating region (HTA zero). Note that the final value of hω also depends
on the choice of f , and in fact, for some choices of f , hω can average out to zero despite the correct
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frequency. Hence, in order to visualize all periodic sets in their entirety, one needs to consider for
each frequency more linearly independent functions f .

A shift map with the frequency ω is also a shift map with the frequencies that are integer
multiples of ω. Therefore, a HTA of frequency ω = 1

p
reveals all periodic sets with periodicities that

are integer multiples of p. The most meaningful choices for the periodicity are thus mutually prime
values. We call period-n partition the division (partitioning) of phase space into a union of disjoint
period-2 sets.

HTA analysis is related to the eigen-decomposition of the Koopman operator U , defined for the
map Eq.1 via composition:

(Uf)x = (f ◦T)x .

U acts as an evolution operator in the functional space as (Uf)x = f(Tx), enabling an alternative
representation of the dynamics. It follows that the f ∗ω is an eigenfunction of U with the eigenvalue
e−i2πω:

Uf ∗ω = e−i2πωf ∗ω.

This is to say that the HTA provide a way to decompose the Koopman operator. Of course, the
usual time average Eq.3 is the eigenfunction of U with the eigenvalue 1.

We also here relate the HTA with the frequency analysis of dynamical systems, by observing the
difference with the Fourier transform. Frequency decomposition of a selected trajectory computed
via Fourier transform reveals all the frequencies that compose that trajectory. In contrast, HTA is
typically computed for a large set of trajectories (initial points), yielding the set of resonating and
non-resonating values, but only for the single chosen frequency.

3 Single Function Plots

In this Section we present the implementation our method relying two-dimensional (2D) Chirikov
standard map [29]. Its dynamical properties are well known and still widely studied [32]. It is a
measure-preserving (symplectic) map, mapping the square [0, 1]× [0, 1] ≡ [0, 1]2 onto itself:

x′ = x+ y + ε sin(2πx) [mod 1]
y′ = y + ε sin(2πx) [mod 1]

(6)

(the usual standard map’s parameter k is k = 2πε). The map possesses a very rich structure of
periodic sets changing with the parameter ε. We set up an orthogonal grid of D × D points on
the square [0, 1]2 using D = 800. We then compute the HTA for each grid point after T iterations.
Thus we obtain a grid of D × D values of hω, which is our Mesochronic Harmonic Plot (MHP),
visualized by assigning a color-value to each grid-point. We employ on the log-scale since the
obtained values range over six decades. The number T is set in accordance with the convergence
properties (we mostly use T = 30000). For simplicity, we mostly employ a single Fourier function
f(x, y) = sin(πx).

In Fig.1 we show four plots for ε = 0.12 and different frequency values. The known periodic
sets of all periodicities are correctly visualized. In the ω = 1

2
(p = 2) plot, the central period-2 set

is clearly pronounced. As expected, all sets of higher even periodicity (4, 6 . . .) are also pronounced
(standard map Eq.6 is on torus). In the plot for ω = 1

3
(p = 3), two largest period-3 sets centered

around period-3 orbits are visible, along with period-6 sets and period-12 sets. Similarly, four
period-5 sets and a single period-10 set can be seen in ω = 1

5
plot. Many periodic sets of higher

periodicities can be also recognized (due to limited resolution) as horizontal curves. These periodic
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Slika 1: Single-function plots of hω for ε = 0.12 and various frequencies ω.

sets resonate with the selected frequency, and have the hω-values in range of O(10−1). In contrast,
non-resonating periodic sets in all three plots have hω-values in range of O(10−5), which clearly
distinguishes them from the resonating periodic sets. Interestingly, the chaotic zone around the
hyperbolic fixed point (0, 0) can be also recognized in these three plots, since its hω-values are
between the resonating and the non-resonating value range, in range of O(10−3). As stated in the
two Theorems in the previous Section, f ∗ω for all non-resonating points converge to zero. However,
the convergence for the non-resonating periodic sets is much faster than for chaotic zone. In fact,
the chaotic zone weakly resonates at all frequencies, which in principle allows its visualization. We
further develop this argument later. The last plot in Fig.1 is done for ω = 0, equivalent to ω = 1.
The entire phase space, and therefore all the periodic sets resonate at this frequency. This is the
only frequency where the period-1 sets resonate (around fixed point at (1

2
, 0)). For ω = 0, HTA

reduces to the time average Eq.3 with values in the range of O(10−1), thus visualizing the usual
invariant sets, including the chaotic zone. While useful in detecting the invariant sets, the time
average Eq.3 cannot reveal their periodicity, since all periods are multiples of 1. All periodic sets
visualized in Fig.1 have internal structure involving smaller periodic sets with diverse periodicities,
which are not visible due to resolution limitations.

As discussed at length in [1], the choice of function used for time averaging determines which
details of the invariant sets will be revealed. The same holds for HTA: in order to capture all periodic
set at given frequency, we need to consider more linearly independent functions. To illustrate this,
in Fig.2 we show MHP for ω = 1

2
at ε = 0.12 using four different functions. Each function identifies

different phase space features belonging to the period-2 phase space partition. Two plots on the
left isolate further period-2 structures within large-scale periodic sets. Two plots on the right fail
to detect the large central period-2 set due to function being even in x. Chaotic zone is equally well
pronounced in all plots.
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Slika 2: Single-function plots of hω for ε = 0.12 and ω = 1
2
, using various function as indicated.

Given that each function identifies a potentially new periodic set within a given periodic parti-
tion, it is necessary to consider the information from multiple linearly independent functions. To
illustrate this, we construct the Mesochronic Harmonic Scatter Plot (MHSP) by plotting the values
of hω for one function against the values for another function. In Fig.3, top and bottom, we show
two scatter plots each done using two functions, with frequencies ω = 1

3
and ω = 1

5
, respectively.

Each point in a scatter plot is defined by its x-coordinate (hω for the first function) and by its
y-coordinate (hω for the second function). For both plots, the same pattern observed earlier are
visible. The points with both coordinates in range of O(10−4), O(10−3) and O(10−1), respectively
correspond to non-resonating periodic set, chaotic zone and resonating periodic sets. Interestingly,
between regions there are almost continuous transitions, which correspond to chaotic phase space
points evolving in the vicinity of periodic sets. Note that now far more details on the resonating
periodic sets are obtained, and could be used to visualize the resonating periodic partition more
accurately.

Next we investigate the visualization of periodic set in relation to various values of ε in the
map Eq.6. In Fig.4 we show four MHPs for ω = 1

3
and different ε-values. In the plot for ε = 0,

the lines y = 1
3

and y = 2
3

entirely consisting of period-3 orbits are clearly visible, in addition to
y = const lines consisting of higher periodicity orbits. The phase space regions near the periodic
sets weakly resonate, since non-resonating trajectories whose structure is close to periodic, converge
to zero more slowly, similarly to the chaotic zone. This effect is also present in plot for ε = 0.06,
where as expected, two main period-3 sets can be observed, in addition to many minor periodic
sets of higher periodicity. Plot for ε = 0.18 exhibits period-3 and period-6 sets of various shapes.
Observe the secondary period-6 sets located around primary period-3 sets and central period-2 set.
At this ε-value the chaotic zone can be clearly seen in a sharp contrast with both resonating and
non-resonating periodic sets. Similar contrast is found for ε = 0.24, where the chaotic zone is even
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Slika 3: Scatter plots of two functions (indicated on axes) for ε = 0.12 and ω = 1
3
, ω = 1

5
.

more uniformly colored.
Selection of rational frequencies up to 1

2
allows identification of periodic sets with integer perio-

dicities (note that choosing e.g. ω = 2
5

still yields period-5 sets). However, standard map possesses
an even richer variety of quasi-periodic orbits with irrational rotation numbers, which are expec-
ted to resonate at irrational frequencies. Chaotic zone is expected to resonate at all frequencies,
including irrational ones. To examine this, we consider the golden mean frequency ωg =

√
5−1
2

. In
Fig.5 we show another four MHPs with increasing values of ε, computed for ω = ωg. The invariant
KAM curve for the corresponding frequency is clearly pronounced in ε = 0.06 plot. In the plot for
ε = 0.12, the curve is still visible, together with the weakly resonating chaotic zone. Break-up of
the golden mean KAM curve marks the chaotic transition in dynamical systems such as standard
map [3]. Our method can in principle be used for examining this transition. In the last two plots
for ε = 0.18 and ε = 0.24 the chaotic zone is the only resonating phase space region, in addition to
the secondary KAM golden mean curve located around elliptic fixed point (1

2
, 0). The resonating

and non-resonating hω-values in all plots are again in the same value range as discussed above. The
irrational frequency allows for easier visualization of the chaotic zone.

We found that periodic and quasi-periodic sets can either resonate or not resonate, depending on
the selected frequency. In contrast, the chaotic zone resonates for all frequencies, although it always
does so weakly. We show this quantitatively via histograms of hω-values, computed for different
frequencies and reported in Fig.6. The parameter ε = 0.24 is chosen so that the chaotic and regular
regions occupy roughly similar portions of the phase space. Histograms for ω = 1

2
and ω = 1

3
each

consist of three well pronounced (groups of) peaks. Each corresponds to one phase space region,
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Slika 4: Single-function plots of hω for ω = 1
3

and various values of ε.

Slika 5: Single-function plots of hω for irrational frequency ωg =
√
5−1
2

and various values of ε.

as indicated in the figure. The peaks are well separated; their distinction in fact grows with final
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Slika 6: Distribution of hω-values for ε = 0.24 and frequencies ω = 1
2
, 1
3
, ωg. Peaks corresponding to

different phase space regions are indicated.

iteration number T (see next section). While all the peaks for periodic sets are very sharp, the
chaotic peak displays a more smeared shape. In the histogram for ω = ωg the resonating peaks
are very faint, while the other two peaks lie in the range of the corresponding peaks for rational
frequencies. Chaotic zone consists of trajectories with a broad Fourier spectrum, which is reflected
in our findings. This indicates, that for any selection of frequency, HTA indeed divides the phase
space into three disjoint regions: periodic sets resonating at the selected frequency ω, periodic sets
not resonating at the frequency ω (i.e., set of periodicity incommensurable with ω), and the chaotic
region (resonating at all frequencies).

We finish this Section by studying the behavior of the complex phase in HTA. Recall that f ∗ω is
not an invariant function, since each iteration rotates it by the factor e−i2πω. In Fig.7 we report the
snapshots (not averages) of f ∗ω-values for all grid-points in the complex plane. Radial coordinate is
in log-scale for consistency with other plots. Along the radial coordinate, we immediately recognize
three peaks considered in Fig.6: dense cluster around |f ∗ω| ∼ O(10−5) (non-resonating periodic sets),
circular ring at |f ∗ω| ∼ O(10−3) (chaotic region), and outer points for |f ∗ω| ∼ O(10−1) (resonating
periodic sets). The phase of f ∗ω in the chaotic zone is uniformly randomized over the circle. In
contrast, resonating periodic sets are consistent in phases; in profile for ω = 1

3
we find six radially

coherent groups of f ∗ω-values symmetrically organized around the center, each group identifying a
separate subset of period-3 and period-6 sets. Similarly, five radially coherent groups of f ∗ω-values
are corresponding to the resonating period-5 sets in profile for ω = 1

5
, along with a rim of scattered

points representing smaller sets of higher periodicity. The complex phase of HTA therefore reflects
the periodicity of the phase space region.

To illustrate the behavior of complex phase in the dynamical space, we show in Fig.8 four
snapshots of phases arg f ∗ω (not MHPs), pictured through the cyclic colorbar. As already observed
in Fig.7, all resonating periodic sets exhibit coherent phase values, symmetrically organized among
the subsets. In ω = 1

3
plot for instance, three subsets of large period-3 sets have respectively

arg f ∗ω ' 0, arg f ∗ω ' π
3

and arg f ∗ω ' −π
3
. Similarly, each subset of period-5 sets in ω = 1

5
plot has a

defined phase value π ± 2πn
5

for n = 0, 1, 2. On the other hand, chaotic zone exhibits a completely
randomized phase values, uniformly distributed in [−π, π), which is another way to discern it from
the regular region. Non-resonating periodic sets are relatively uniform in phase value.
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Slika 7: Snapshots of f ∗ω-values in complex plane for f(x, y) = sin(πx), ε = 0.12 and ω = 1
3
, 1
5

(log-scale in radial coordinate). For better visibility, here we used T = 105.

4 The Convergence Properties

In this Section we examine how hω converge to their limit values. As we show, the convergence
regime directly depends on the dynamical nature of the considered trajectory, and can thus be used
to establish the number of iterations T .

We take f(x, y) = sin(πx) for ω = 1
3

at ε = 0.12, and consider the evolution of hω as function
of time. In Fig.9 we show the value of hω obtained after t iterations, for three different points
representing different dynamical regions. While the convergence of hω is fast for both resonating
and non-resonating phase space point, it becomes very irregular for the chaotic point. In fact, the
convergence properties are equivalent to those for the usual time averages [1]. For regular trajectories
the convergence rate is given by const.

t
, which refers to both resonating and non-resonating periodic

sets. In chaotic region, the convergence is much less predictable; the error can in general be bounded
from below by 1√

t
. This also depends on the strength of chaotic motion – for very strong chaos

(mixing), the convergence rate approaches 1√
t
. These properties remain the same if the irrational

frequencies are considered: for quasi-periodic orbits, whether resonating or not, the convergence
exhibits const.

t
rate. In contrast, for chaotic zone, the convergence is again at best given by 1√

t
.

We now examine the applicability of our method in detecting the chaotic zone. In Fig.10 we
show three histograms of hω values, obtained for three different values of T . Three groups of peaks,
corresponding to resonating, chaotic, and non-resonating phase space parts can be recognized in all
three histograms (cf. Fig.6). The resonating peaks do not move. In contrast, both chaotic and non-
resonating peaks move towards zero, but with different speeds. The speed of the non-resonating
peaks is roughly double the speed of the chaotic peaks. This proves that the convergence rate
for the chaotic zone is on average 1√

t
, meaning that for a sufficiently long time it can be clearly
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Slika 8: Snapshots of HTA phase values arg f ∗ω taken at T = 30000 iterations (not MHPs), for
ε = 0.12 and various frequencies ω.

Slika 9: The value of hω as function of time, for ε = 0.12 and ω = 1
3
, and for three different initial

points, belonging to different dynamical regions.

distinguished from the non-resonating region. Note also that the shape of peaks does not change
significantly as they move. Fig.10 considers ε = 0.24 where the chaos is strong; while this result
does hold for a general ε-value, the separation of peaks might be slower for smaller ε values, or
might be less clear due to smaller chaotic zone.
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Slika 10: Distribution of hω-values for ε = 0.24 and ω = 1
3

(log-scale on x-coordinate), for three
different final times T .

5 The Froeschlé Map

In the previous Sections we illustrated the applicability of our visualization method relying on well-
known standard map. In the following two Sections, we demonstrate the method’s full potential by
studying more complicated higher-dimensional dynamical systems.

We begin with the Froeschlé map, which is a measure-preserving mapping of 4-dimensional cube
[0, 1]4 onto itself, introduced in the context of celestial dynamics [31]. It is defined as:

x′1 = x1 + y1 + ε1 sin(2πx1) + η sin(2πx1 + 2πx2) [mod 1]
y′1 = y1 + ε1 sin(2πx1) + η sin(2πx1 + 2πx2) [mod 1]
x′2 = x2 + y2 + ε2 sin(2πx2) + η sin(2πx1 + 2πx2) [mod 1]
y′2 = y2 + ε2 sin(2πx2) + η sin(2πx1 + 2πx2) [mod 1]

(7)

and it can be seen as two symplecticly coupled standard maps. For simplicity, we set ε1 = ε2 = ε
and focus on the scenario of two identical standard maps, interacting via coupling parameter η.
Following the ergodic partition analysis of this map from [1], we here extend our study to MHPs.

An elegant way to simplify the parameters in Froeschlé map without losing its dynamical richness
it to fix ε = 2η. This reduces our analysis to variations of a single parameter. First we show MHPs
of 2D slice (2D section in 4D phase space). To that end we construct a grid of 500× 500 points in
(x1, y1)-space on the section given by (x2, y2) = (0, 0). We consider the function f(x1, y1, x2, y2) =
2 cos(2πy1) + cos(2πy1) cos(2πy2) + cos(12πx2) + cos(12πx1) and run the dynamics for 2 × 105

iterations. Three frequencies are considered: rational ω = 1
2

and 1
3
, and irrational ωg. For each

frequency, three values of parameters ε and η are considered. The resulting MHPs are shown in
Fig.11. Parts of periodic sets are visible in each plot as either resonating or non-resonating, together
with the weakly resonating chaotic zone. As expected, the chaotic zone grows with the increase
of the coupling parameters, while the periodic region becomes gradually smaller. Remember that
in general, invariant sets are here four dimensional, meaning that only their 2D projections can
be visible in these section plots. This explains why the number of subsets does not match their
periodicity. Also, note that the periodic sets are in fact mostly visible as non-resonating. This
means they are of periodicities incommensurable with the considered periodicities (frequencies).
This illustrates how our method can be employed to detect and visualize periodic sets of unknown
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Slika 11: MHPs of function f(x1, y1, x2, y2) = 2 cos(2πy1) + cos(2πy1) cos(2πy2) + cos(12πx2) +
cos(12πx1) under the dynamics of Froeschlé map for ω = 1

2
, 1
3
, ωg, computed on the phase space

section (x2 = 0, y2 = 0) over the grid of 500 × 500 points. The dynamics was run for T = 2 × 105

iterations. The values of ε and η are linked by ε = 2η and indicated in each plot.

periodicity, although without actually revealing the periodicity itself.
Next we examine the global evolution of the periodic sets with variations of ε = 2η. We start

with 18× 18× 18× 18 phase space points, which we pick at random from [0, 1]4 in order to avoid
hitting too many resonances. For each initial point we compute hω after T = 2 × 105 iterations
for the same function as in Fig.11, and for the same three frequencies. For each set of ε, η values,
the histogram of hω values is computed, and the results are shown in Fig.12. Each histogram plot
consists of two groups of peaks, one corresponding to the chaotic region (near 10−3) and the other
to non-resonating periodic sets (near 10−5). As already noted, periodic sets in the phase space
of Froeschlé map are in general of high periodicities, incommensurable with the three considered
frequencies. Despite not observing periodic sets of substantial size, we do know that many periodic
sets actually exit, which is suggested by the large volume of phase space points clearly displaying
non-resonating values of hω. With increase of parameters ε, η, we observe the transition to full
phase space chaos, as indicated by the growth of the chaotic peak. As discussed in [1], the chaotic
transition for Froeschlé map is qualitatively similar to that of standard map (break-up of invariant
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Slika 12: Histograms of hω values computed for f(x1, y1, x2, y2) = 2 cos(2πy1)+cos(2πy1) cos(2πy2)+
cos(12πx2) + cos(12πx1) under the dynamics of Froeschlé map for ω = 1

2
, 1
3
, ωg for a 4D grid of

18 × 18 × 18 × 18 random phase space points. The dynamics was run for T = 2 × 105 iterations.
The values of ε and η are linked by ε = 2η and indicated in each histogram.

KAM tori), although it appears to involve more complicated mechanisms. In agreement with what
observed there, we here conclude that the global merging of resonances occurs around the value of
ε = 2η ' 0.05.

6 Extended Standard Map

In this Section we study the extended standard map using HTA. The map has been proposed in [30]
as a three-dimensional generalization of standard map. It is a measure-preserving action-action-
angle mapping of the cube [0, 1]3 onto itself, defined by:

x′ = x+ ε sin(2πz) + δ sin(2πy) [mod 1]
y′ = y + ε sin(2πz) [mod 1]
z′ = z + x+ ε sin(2πz) + δ sin(2πy) [mod 1]

(8)

When either ε or δ are zero, the phase space can be divided into parallel 2D planes, such that
dynamics on each of plane is isolated from the dynamics on other planes. On the other hand,
when both ε and δ are non-zero, this dynamical system is argued to be ergodic over the entire
phase space [30]. In fact, no invariant surface persists once both perturbations are simultaneously
positive. On top of the numerical evidence already provided via ergodic partitioning in [1], we here
provide an additional argument supporting this claim.

We set a three-dimensional grid of 50 × 50 × 50 points covering the phase space of exten-
ded standard map with ε = 0.01 and δ = 0.001. We run the HTA of function f(x, y, z) =
sin(4πy) cos(4πx) cos(12πz) for T = 2 × 105 iterations, and for three frequencies ω = 1

2
, 1
3
, ωg.

We show the histograms of the obtained values of hω in Fig.13. For all three histograms, both the
range of values and the bell-shape of the curves, indicate that all grid points lie in the chaotic region
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Slika 13: Distribution of hω-values for extended standard map with ε = 0.01 and δ = 0.001 for a 3D
grid of 50× 50× 50 points covering the phase space. hω for f(x, y, z) = sin(4πy) cos(4πx) cos(12πz)
are computed for T = 2× 105 iterations, with frequencies as indicated.

of the phase space. This suggests that there are no periodic sets of the considered periodicities of
any size. In fact, it implies that there are no periodic sets of any periodicity, since any periodic set
of frequency different from the considered would be visible as non-resonating. Note that irrational
frequency ωg agrees with this result. This clearly confirms the claim of the extended standard
map being ergodic. This point also serves to note the usefulness of our method: we employed HTA
analysis to study higher-dimensional dynamical systems, much more complicated than the standard
map.

7 Discussion and Conclusions

We exposed a new method of analysis of measure-preserving dynamical systems based on harmonic
time averages (HTA) proposed in [2], with roots in both frequency analysis and ergodic theory, as a
continuation of our earlier work on ergodic partition theory [1, 14]. Both our methods are realized as
computational algorithms for detection and visualization of invariant and periodic sets in the phase
space of arbitrary measure-preserving dynamical system. We showed the method’s implementation
using the known properties of Chirikov standard map. Of course, our method is in no way limited
to discrete-time dynamical systems (maps) considered here. Except for bigger computational de-
mand, the method is fully implementable for continuous-time dynamical systems. The distribution
of values of hω was analyzed, resulting in the identification of histogram peaks that correspond to
different dynamical regions, in particular, resonating periodic set, non-resonating periodic sets and
chaotic region. The convergence issues have been considered in relation to estimating the preci-
sion of the obtained hω. The full potential of the method was demonstrated in an application to
higher-dimensional dynamical systems, 4D Froeschlé map and 3D extended standard map. Known
dynamical features of these systems were readily found, in addition to certain novel insights.

Our method is applicable regardless of the system’s integrability or other dynamical properties.
The key generalization to follow, is the development of clustering algorithms, in analogy with MSPs
examined in [1], aimed at visualizing the entire periodic partition for a given frequency [35, 36].
This is done by considering HTA of multiple functions with the same frequency and optimally
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clustering the scatter plot points (cf. Fig.3). The periodic partition is obtained upon identifying the
phase space part that corresponds to each cluster of scatter plot points. When a sufficient number
of linearly independent functions is considered, this clustering algorithm will reveal the periodic
partition with any prescribed precision. Of course, this opens the question of optimal clustering,
which may depend on the dynamical system and the corresponding scatter plot (e.g. shape/volume
of the clustering cells). Furthermore, the relationships between the convergence properties and
the nature of the underlying trajectory is to be further investigated. While the convergence slope
gives a rough estimate of the type of the orbit, a detailed analysis separating between rational and
irrational frequencies might yield further insights.

The full applicative extent of our method lies in high-dimensional systems, which can be inve-
stigated in various ways, for instance via MHPs done over 2D phase space sections. In fact, the
method can be easily extended to distributed systems, such as complex networks [33], and in par-
ticular networks that model extended dynamical systems [32, 34]. This could reveal novel details
related to the collective dynamical behavior, usually displayed by such systems.
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[34] Z. Levnajić and B. Tadić, “Self-organization in Trees and Motifs of Two-dimensional Chaotic Maps with Time
Delay”, J. Stat. Mech., P03003 (2008).

[35] H. C. Romesburg, Cluster Analysis for Researchers (Krieger Pub. Co., 2004).
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