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Abstract

In this paper, we study the dynamical behaviour of a microcantilever-sample system
that forms the basis for the operation of atomic force microscopes (AFM). We model
the micro-cantilever by a single mode approximation and the interaction between the
sample and cantilever by a van der Waals (vdW) potential. The cantilver is vibrated
by a sinusoidal input, and its deflection is detected optically. We analyze the forced
dynamics using Melnikov method, which reveals the region in the space of physical
parameters where chaotic motion is possible. In addition, using a proportional and
derivative controller we compute the Melnikov function in terms of the parameters of
the controller. Using this relation it is possible to design controllers that will remove
the possibility of chaos.

1 Introduction

Surfaces at the atomic level can be probed with good accuracy using the atomic force mi-
croscope (AFM) which was invented in 1986. This is done by moving the sample beneath
a tip attached to a soft cantilever which causes the cantilever to deflect. The cantilever
deflection is measured by optical methods and is used as an indicator of the force variation
on the sample. The behaviour of the cantilever depends on the interaction force between
its tip and the sample, the spring force which is due to the cantilever, and the equilibrium
position of the tip in the absence of the interaction forces. Many cantilever-based instru-
ments are now available which can be used for force measurements, magnetic spin detection,
and thermal measurements [10]. All of these instruments share this basic mechanism of a
micro-cantilever interacting with a sample.

It has been experimentally observed that the motion of the cantilever can be chaotic
under certain physical condition [11]. This type of irregular motion is highly undesirable
for the AFM performance since it causes the AFM to give inaccurate measurements. This
paper is concerned with the modeling, analysis and control of a typical cantilever sample
interaction, which as was mentioned above is at the heart of the detection scheme employed
by AFM’s. The objective is to ensure good performance of the microscope by identifying and



subsequently eliminating the possibility of chaotic motion of the cantilever. In this work,
we show that based on a certain model approximation of the cantilever-sample system it is
possible to design controllers that will substantially improve the behaviour of the system
by eliminating the possibility of chaos.

We now describe briefly the contents of this paper. In section 2, we give a multimode
model approximation of the cantilever and from that we extract an approximation for the
cantilever-sample model. The dynamical analysis of the forced cantilever-sample system
is carried out in section 3. This section will include the analysis of the effect of feedback
on the qualitative behaviour of the system, and how a controller can be implemented to
eliminate the possibility of chaos in the system. Finally, we draw our conclusions in section
4.

2 Model Description

As has been stated before, the cantilever is at the heart of the detection scheme employed
by the atomic force microscope. It is essential that the dynamics of the cantilever be fully
understood, before attempting to unfold the complex dynamics which is introduced due to
the cantilever-sample interaction.

In the first part of this section we present the analysis of the cantilever dynamics rel-
evant for the atomic force microscope. In the second part of this section we utilize a one
mode approximation of the multi-mode model developed to study the cantilever-sample
interaction.

2.1 Multi-mode Model of the Cantilever

Figure 1 shows a cantilever subject to multiple loading. One end of the cantilever is fixed
and the other end is free. The distributed applied load per unit length is given by p(z,t).
A concentrated load F(t) is applied at a distance z; from the base of the cantilever. The
distributed load may be due to a piezoelectric material on the cantilever and the concen-
trated force may be due to the interaction between the sample and the cantilever tip. The
damping force per unit length is denoted by py(x,t). The length of the cantilever is L, its
Young’s modulus of elasticity is F, its cross sectional area is A, and its area moment of
inertia is I (all in SI units).

2.1.1 Undamped Free Vibration

In the absence of damping and applied loads, the equation of motion of the cantilever is
given by
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where a(z), b(x) are the initial conditions of the cantilever and z(x,t) is the displacement
of the cantilever. We will use the convention that f’(x,t) denotes the spatial derivative,
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Figure 1: A schematic showing a cantilever subjected to an applied load, p(z,t), the damp-
ing force, py(z,t) assumed constant per unit length and a concentrated force F'(t) applied
at a distance x; from the base of the cantilever.

8f((9§’ t) and f(z,t) denotes the time derivative, 8fg;’ t). It can be shown [4] that the
solution of Eq. (1) has the form
oo
z(z,t) = Z Cjsin(wjt + 0;) @5, (2)
j=1

with
¢j(x) = (sin AjL+sinhA;L)(cos Ajz—coshA;z)+(cos AjL+coshA; L) (sinhXjz—sin A;z), (3)

where ); is a solution of
cos \;L cosh\;L +1 = 0. (4)

The j** mode deformation of the cantilever is given by ¢j(x), whereas the wavelength
of the j mode is given by AjL. The wavelengths are arranged in an ascending order
(A1 < Ay <...). The relation between the wavelength and frequency of mode j is given by

w?pAL*
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It can be shown that the cantilever deformations ¢; satisfy the relations;

L
| 6s@)n(@)de = L1, (6)
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/OL () = — 2(cos \j L)—\l; coshA\;L) ., (8)

¢j(L) = 2(cos A;L sinhA\;L — 2sin X\; L cosh \;L), (9)

¢ (L) = —2X;(sinh \; I sin \;L), (10)

where I; = (sinA;L + sinh\;L)?, §; = 0 if k # j and dx; = 1 if k = j. Conveniently,
wJQ- = 75;—7] if we define

b = BI [ )6 @)z and my = pA [ 43000001 (1)

2.1.2 Forced Vibration with Damping

To study the dynamics of the cantilever subjected to time varying forces we apply the
principle of virtual work to obtain the equation of motion [5]. Let the displacement of
the cantilever at position x and time ¢ be given by z(x,t). Suppose the cantilever is given
a virtual displacement of du(z,t). The elastic work and the inertial work done by the
cantilever are given by [5]

fEI/ "(6u)"dr and pr/ (x,t)0u(z, t)dx

respectively, whereas the work done by the external applied forces and the damping force
are given by

L L
/ p(z,t)ou(x,t)dr + Fou(zy,t) and — / palz,t)ou(z, t)dr,
0 0

respectively. Using the principle of virtual work whereby the net work must be zero, we
obtain

/UL{—E'IZ"(éu)" — pAZ(z,t)ou(z,t) — pg(x,t)du(z,t) + p(x, t)ou(z, t) }de + Fou(zy,t) = 0.

(12)
We assume that the damping is uniform and given by py(x,t) = £2(x,t). It can be shown
that any function r(z) which satisfies the boundary conditions imposed by the fixed-free
cantilever defined between 0 and L can be expanded as r(z) = Y72 ¢r(x)qr where ¢i(z)
were obtained from the free undamped vibration [5]. Thus, any deformation of the cantilever
can be represented as a weighted combination of the fundamental mode deformations of
the unforced cantilever. Therefore there exist coefficients g (t) and dug(t) such that,

t) = i or(z)qr(t) and  du(z,t) Z o (z)oug (¢ (13)
k=1



Substituting Eq. (13) into Eq. (12), we obtain
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Therefore,
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where .
pi(t) = [ pla ) @)dz and Fy(t) = y(a)) P (1),
As 6uj(t) is arbitrary, we have
mjq;(t) + ¢;jq;(t) + kjq;(t) = pj(t) + F;(t) forall j =1,2,..., (14)

where the 7 modal mass, spring constant, and damping coefficient are defined as

m;j 1= pA ./UL q’)?(fr)dfr, kj:=FEI /Ur(q’)']'(r))Q and ¢; 1= f/oi gb?(’l")d’l"
To obtain the necessary initial conditions of g;(t) for Eq. (14), we assume that

z(z,0) = a(z) and 2(z,0) = b(z).

From Eq. (13), we have

o
Z ) and b(z Z e
Multiplying the above equations by ¢;(z) and integrating, we have the necessary conditions

_ pAfUI‘a%;¢j(x)d$ and q.j(o) _ EI fUL Z])Qba(x)dx (15)

q;(0)

If the initial conditions are zero (that is a(z) = b(z) = 0) then ¢;(0) = ¢;(0) = 0. Assuming
zero initial conditions and taking the Fourier Transform of Eq. (14), we obtain Transform
of z(x,t) as

[e.e]
- pj(w) + Fj(w) . 16
2w, w) Z —mjw? +icjw + k; ¢ (). (16)
J=1
Thus, we have obtained an expression of the cantilever displacement in terms of the forces
on the cantilever. In the next section we only consider the first mode of vibration, i.e, the
first term in the above summation.



2.2 Cantilever-Sample Interaction

If only the first mode of the multimode model presented in the earlier subsection is utilized
then the cantilever-sample interaction can be modeled as shown in Figure 2. The cantilever
is modeled as a single spring-mass system with the stiffness of the spring being & = k; and
the equivalent mass m = my, where k; and m; are evaluated in the previous subsection.
The cantilever interacts with the sample via a tip that is mounted on the cantilever. The
cantilever-tip-sample system is modeled by a sphere of radius R and mass m, which is
suspended by a spring of stiffness k. We will frequently refer to the mass m as being the
tip of the cantilever.
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Figure 2: Tip-sample model

The tip-sample interaction is modeled by an interaction potential which is given by

AR
6(Z+x)

where, Z is the equilibrium position of the tip measured from a reference where the sample
is positioned in the absence of the sample, x is the displacement of the tip measured from
this equilibrium position with the upward direction as the positive direction. A = 72Qp1p2
is the Hamaker constant, where (@ is the interaction constant (aqueous solute concentration
in mole fraction units (mol dm~3/55.5)) [9], and p; and py are the densities of the tip and
surface materials. Thus, the potential for the tip-sample assembly is given by

AR 1
V(z,Z) = ————— + —ka?.
(@.2) = —5z 50 T 2™

The net energy of the system scaled by the effective mass m of the cantilever is given by



H(z,d,7) with
1 1 Dw?
H(x,i,7) = —&* + swiz? — ———
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where, w; = 1/% is the first modal frequency of the system and D = %. Note that H is
the Hamiltonian of the system, and therefore is a constant of the dynamics (invariant of

motion) since there is no dissipation.
Let 1 = x and o = . The dynamics of the tip-sample system derived from the above

Hamiltonian is given below (&1 = g—g and o = —%Hl)
.’i?l = T2 (17)
. Dw?

The actual system is both damped and forced, and therefore it is not Hamiltonian. We
assume that the damping and external forcing are small enough so that we can think of the
actual system as a perturbed Hamiltonian system. Hence, the study of the Hamiltonian
(unperturbed) system is very important, as the trajectories of this system will be used (as
we will see later) to study the behaviour of the perturbed system.

If £ > 0 then the spring force and the vdW force both are directed towards the sample
and therefore there will be no fixed points in this region. If 2 < 0 the spring force and the
vdW force are directed in opposite directions and therefore there is a possibility of fixed
points. The tip will not move if it is at a point where its velocity is zero and the spring
force is equal to the vdW force in magnitude. If such a point exists, then it is called a
fixed or equilibrium point. However, if Z is small enough, the system will not have fixed
points because the vdW force will be larger than the spring force for = < 0. In this case,
the surface snaps the tip into contact.

Next, we find the critical value of Z below which snapping occurs. We will also show
that if Z is larger than this critical value then we have two fixed points above the surface.

At the fixed point the acceleration and the velocity of the tip must be equal to zero.
Hence, to find the fixed points of the system we set #; and &9 to zero in equations (17) and
(18). 47 = 0 implies that zo = 0, and @9 = 0 gives

2} 4+ Ba? + Cxy + D =0, (19)

where, B = 27 and C = Z?. We will find the roots of this polynomial as a function of Z
and D. Define

B2 72
- O - - _Z 20
P 3 3 (20)
BC 2B? 273
- D_ =D _-=_ 21
4 3 o7 27 (21)
3 2 2
p°  q D 1 3
R = “+i=(=Z) -—=—Dz 29
07 T (2) 27 (22)



Let y? = —% + /R, and the three cube roots of y3 be y;,i = 1,2,3. Then the three roots

of (19); x14, 7 = 1,2,3 are given by

P B
3 )

Tl =Y — 5

i=1,2,3. (23)
3y

If R, < 0 then y? is imaginary, otherwise it is real. Let Z, be the solution to R, = 0, i.e.,

the solution to )
D 1
—) - =DzZ3=0
(3) Ho2=0

which implies that

3
Z, = ~(2D)3.
5(2D)

We divide the analysis of the dynamics into two cases; Z > Z; and Z < Z;.

wl—

3 Dynamical Analysis: The Case Z > Z;

In this section we discuss the important case when Z > Z,, and at the end of the section
we give a comment concerning the other case. First we analyze the system when there is
no damping and forcing which will form the basis for the study of the perturbed system
where the cantilever is forced sinusoidally and damping is present.

If Z> Z,, R, <0 and y? is imaginary, we can write

y? = —% + jv/—R, = rPeti? (24)
where,
3 &
=T R, (25)
and

/"R,
~q/2
We consider only +j6 because (as we will see later) —j60 gives the same results. Thus, the

three roots of 3 are y; = re%, where, 0; = g, Oy =01 + %ﬂ, and 03 = 6; + %”. Therefore,

f = arctan (26)

we have

0, 9. B
Ty = redti P o-dti 2
3r 3

w| W

= 7(cosb; + jsinb;) — 3£(cos 0; — jsinb;) —
T

B
= (rg%) cos0¢—§+jsin9i <r+?%>,



for 1 = 1,2,3. Note that

Therefore, r = Z/3 and we get

p Z —Z°/3
— = =0(Z .
r—+ 5 = 3 7 0(Z>0)

Thus, the roots of (19) are real for Z > Z; and they are given by

27
1 = —?(1 — cos ;). (27)

Note that 6, appears in the expression above only as cos #; which is an even function of 6;.
Therefore, in (24) we can restrict the analysis to the roots of y? = r3e/?. Thus, the fixed
points for the system when Z > Z; are given by

(14,0), i =1,2,3, (28)

where, 1;, i = 1,2,3 are given by (27).
2

At the fixed point, the vdW force % and the spring force kz; must be equal in
magnitude and opposite in direction. In other words, for a fixed point to exist at (x1,0)

the following relation must hold

In Figure 3 the vdW forces for Z = Z;, Z = 71 < Zs, Z = Zo > Zg, and Z = 73 > Zo,
and the spring force are plotted against x1. The tip positions corresponding to the fixed
points are the intersection points of the vdW and spring forces.

Note that when Z = Z;, R, = 0 and from equations (25) and (26) we have that § = =

(since —q/2 is negative in this case). Thus, 6; = 5, 03 = 7, and 03 = %’r Therefore,
T11 = f%, T1g = f%, and 113 = f%. 11 and z13 are equal and are located above the

surface. x19 lies below the surface and thus has no practical significance. The spring force
is equal to the vdW force at only one point above the surface, namely —Zs/3. This means
that the spring force is the tangent of the vdW force at the point —Z;/3 (see Figure 3 ).
If Z > Z then it is clear that that 6 € (0, 7). Therefore, 6; € (0, 3), 02 € (%”,ﬂ), and 03 €

(4, 5Z). This implies that 211 € (—Z,/3,0), 212 € (—42/3,—~Z), and z13 € (—Z, —Z,/3).
Thus, we have two fixed points above the surface. This is also clear from Figure 3. Note
that as Z increases the points z17 and x13 move towards zero and the surface, respectively.
The two roots that correspond to the equilibrium points that are located above the surface
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Figure 3: This figure shows the vdW force for different values of Z. The spring force is also
plotted.
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Figure 4: Root locus plot of the roots of (19) that correspond to the two fixed points above
the surface as a function of Z
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are plotted as a function of Z as shown in Figure 4. We can see that one equilibrium point
moves towards zero and the other one towards the sample as Z increases.

As 7 goes to oo, 0 goes to zero since @ goes to zero with positive —¢/2. Hence, z1;
goes to zero, x19 goes to the surface from below, and x13 goes to the surface from above.
There is a fixed point at zero because the vdW force is equal to zero there. Since Z goes
to oo, the spring force is larger than the vdW force at any point between the surface and
211 = 0. When the tip gets closer to the surface the vdW force increases rapidly and it

becomes equal to the spring force at a point that approaches the surface (see Figure 3).

3.1 Phase Portrait

We will examine the nature of the fixed points by linearizing the system as given below

0 1 x
(ff‘l>:<_ PRELY 0) <T1>,7;:1,3.
T2 WI T Z5z,)° T2

For Z > Z the eigenvalues of the linearized system are purely imaginary at z; = 11, and
real with equal magnitude and opposite sign at z; = x13. Thus, the fixed point z1; is a
center, whereas x5 is a saddle point. From now on, we will denote z1; and z13 by z. and
T, respectively.

Figure 5 shows the phase portrait of the system. There is a homoclinic orbit connected
to itself at the point (x4,0). This homoclinic orbit is filled with periodic orbits around
the the center (z.,0). When z; < x, the tip accelerates towards the surface and hits it
with a large velocity (snapping). Denote the maximum position on the z; axis that the
homoclinic orbit obtains by z.. If 24, < 1 < z. and x4 is not too large, the tip oscillates
around the center. If x5 is large enough, then the tip will have extra energy, so it will pass
zs accelerating towards the surface.

X2

periodic
orbits

X1

homoclinic
orbit

surface

Figure 5: phase portrait

11



3.2 Homoclinic Solution

In this section, we find an analytic relation between time and z; for the homoclinic orbit.
Since the Hamiltonian of the system is an invariant of motion, it is constant along the
trajectories of the system. Thus, the homoclinic solution satisfies the following equation

H(mlamQaZ) :H(.’I,‘S,O,Z).
If we let ¢ = H(x4,0,7), we have

Ly 145, Dw%

PRI Ry e

This can be written as

o3+ Zx? 23.7:172(D+%Z)
1 1

2 2 Wi wy

TH = —wj .

Z+ (29)
The roots of the numerator of the right hand side of this expression are xs (two repeated
roots) and z.. This is because the homoclinic orbit crosses the x; axis at the points zg and
Ze. Since for H(zy1, 9, Z) = ¢, the solution exits on both sides of the saddle point (since
x4 has stable and unstable manifolds), =5 has to be a repeated root so that x3 is positive
around z,. Therefore, we have

2c c
m?+ZrI:%—2rI;12<D+ 2Z> = (21 — x4)? (21 — o)
w1 w1
= 1z} — (7 + 275) 2] + (2.’1:5.7:6 + 7‘?) T — T3, (30)

Equating the coefficients of z% in (30) we have, Z = — (z, + 2x). Solving for z., we get
Te=—2 —2x5=—x5— (Z +x5). (31)

Using (19) and (31) it is easy to show that the other coefficients in (30) are equal which
justifies our claim.

Note that z. is equal to the difference between the two dimensions that are shown in
Figure 6. From equation (29) we have

Te — T

— (s <21 < Zp).
Z_I_xla(s_ 1= e)

Ty = *wi (z1 — )
To obtain the homoclinic orbit we will solve the equations of motion and assume that the
time origin £y is chosen so that 1 (tg) = x.. It is clear that if ¢ > ¢y then the trajectory is
such that z4(t) < 0. Therefore, we have for ¢t > ¢

Te — T

1 =2 = —wi (31— 3)y [ S
1

(s <1 < x¢). (32)
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Figure 6: Homoclinic orbit
(Note that the right hand side is always negative in the region of interest). Similarly, if
t < to then zo > 0 and we have

Te — T
Z-I—.’L‘l’

1 =29 = +wy (T — Ts) (s < x1 < Te). (33)

We will now solve for z1(¢t) when ¢ > 3. Separation of variables in equation (32) yields

1 7+ x1

Tl —Ts | Te — X1

d.’El == —wldt. (34)

Substituting v = 1 — x4 in (34), we have

L gy 4 ZE s
—Qau
v P uv P

where, P = [(Z + z5) + u| [(ze — ©5) — u]. Note that when ¢ = ¢y, u = . — z,. Integrating
(35) from time % to time ¢ and substituting back z; = u + x5, we have (see [8] )

. X1+ 2+ xs 7 + x4
— arcsin — *
T —7 — 3z,

I ((Z +25) (—Z — 3x) + (=7 — 225) (21 — x5) + /(Z + x5) (e — x5) P>

du = —w1dt, (35)

zs (T — Ts)

T
) (36)
where, (as we had earlier) z, = —2Z (1 — cos f3). Therefore, if the initial condition at time

to for the system is (z,,0) then for ¢ > to, z1(t) is obtained from equation (36) and

Te — T
Z-I—.’L‘l-

(37)

T9g = —wq (151 - xs)

13



Similarily, if the initial condition at time ¢y for the system is (z.,0) then for ¢t < tg, x1(¢)
is obtained from the following equation

. X1+ 2+ xs 7 + x4
— arcsin — *
T —7Z — 3z,

I ((Z +25) (—Z — 3x) + (=7 — 225) (21 — x5) + V/(Z + x5) (e — x5) P)

T (xl - xs)

7% = +w (t — o), (38)

and zs(t) is obtained from

Te — T
- —my) | L 39
T9 = twi (21 — T5) 7+ (39)
Note that for a given z; in the desired range of interest xo(—7) = —xo(7) for 7 =t — ;.

Therefore, x5 is an odd function of 7. Thus, we have obtained a complete description of
the homoclinic orbit.

3.3 The Perturbed System

In most AFMs the cantilever motion is damped due to the surrounding air. In addition,
the cantilever is forced by a small sinusoidal signal m f cos wt, where, w takes values around
the natural frequency w; of the system. The differential equation for the perturbed system
can be written as

:-U1:I2

2
2 Dwy

Ty = —wiT) — 5+ feoswt — pxo,

(Z + z)

where we have assumed that the damping force per unit mass is puze. Given a small enough
e (what we mean by small enough will become clear later), define y and § such that ey = f
and ed = p. Using suspension (i.e, consider the time to be a new state variable, ¢), we have

.’tl = I9

. Dw?

By = —wim — m+6(7005¢*5$2)
é = W,

where ¢(t) = wt + t¢. Define

9(71,72,9) = < ! > :

Y cos ¢ — dxg

Thus, the Hamiltonian system described previously is now perturbed by eg. The next step
is to study the dynamics of the perturbed system. To achieve this goal, we will study the
Melnikov function for the perturbed system.

14



3.4 Melnikov Function

Since the system that we are considering is a time-periodic perturbation of a Hamiltonian
system, Melnikov’s method can be used to describe how the homoclinic orbit breaks up in
the presence of the perturbation. The Melnikov function is defined as [1]

M((tg, ¢o) = /O:o DH (z1,(7), 22n(7))g(210(7), 221, (1), d(7 + to))dr,

where, DH (z1,19) = (é‘)—f1 g—g ), and z1,(7) and z9;,(7) are the homoclinic solution as

given by equations (36), (37), (38), and (39). Therefore,

M(to, do) — /OO 2on (1) (7 cos(@T + who + bo) — dxan (7)) dr

— 00
o

o
= -0 / z2, (7)dT + 7 cos(wto + ¢o) / Top(7) cos wrdr
J =00 J =00
(e e]

—y sin(wtg + ¢g) / Zop(7) sinwTdr

— 00

o o0
= —2¢ / 23, (T)dT — 27y sin(wty + ¢q) / Top (7) sinwTdr.
Jo Jo

The last equality holds because zo,(7) is an odd function of 7, assuming x1;, = z, at t = t;.
Let ag = —2 [;° 22, (7)d7 and a5 = —2 [;° 295 (7) sinwTdr. Hence,

M (tg, o) = agd + asysin(wty + ¢p). (40)

The Melnikov function is a signed measure of the distance between the stable and unstable
manifolds for the perturbed system. The manifolds intersect if the Melnikov function has
zeros. The intersection of manifolds indicates the presence of chaos [1]. The Melnikov
function will have zeros if and only if

)

— <

v

).-

o> (é) then M (ty, ¢g) has no zeros, otherwise it does.
v V) er

¢o fixes a Poincaré section, while ¢y specifies a point on the unperturbed homoclinic
orbit. Every zero of the Melnikov function corresponds to an intersection (within order ¢)

of the stable and unstable manifolds [1, 2]. Note that if % < (%) then the two manifolds

cr
intersect at an infinite number of points for every Poincaré section ¢y.

Qs

aqd

Define

Qs

aq
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3.5 Qualitative Behaviour

In this subsection, we define variables which facilitate the study of the qualitative behaviour
of the system. Recall that

L-Ul = I9
2
fy = —wir) — _ Doy
(Z +z1)?
Let T' = wqt (time scale) and divide the left and right hand sides of the above equations by
Zs to get

+ e(ycoswt — dxs) .

& = &
d
5,2 = *fl*mﬁ‘E(FCOSQT*Afg),
where, & = 7, f2=&,d:%,F:ﬁ,A:u%,a:Zl‘s, and Q = . The

prime denotes the derivative with respect to T'. In the new co-ordinates there is no explicit
dependence on D and w; (note that the same v and d give different I' and A for different
values of D and w; ). In other words, there is no explicit dependence on the material
properties and the dimensions of the cantilever and tip. The quantitative results differ by
scaling factors depending on these two parameters.

The new system looks like the old system with Z replaced by «, D by d and w; by 1.
Hence, all of the previous analysis applies to the new system with the new factors. The
Melnikov function in the new co-ordinates is

M (Tp, po) = AgA + A sin(Q2Ty + ¢y),

where, Ay = —2 [° &3, (7)dr, and As = —2 [;° &1 (7) sin Q7d7. Define the critical value of
% as (% = ‘% . It is easy to verify that
cr

CT CT‘
A

(T) is computed numerically for different values of & > 1 and € around 1. The
Ccr

results are plotted as shown in Figure 7. If the material properties and dimensions of the
cantilever and tip are given, then we first compute Z, and w; and then with the appropriate
scaling transform Figure 7 to a figure with 2, Z, and w as co-ordinates.

Intersection of the stable and the unstable manifolds occurs for points which lie below
the surface plotted in Figure 7. As a increases the system tends to the spring-mass-damper
system behaviour which does not exhibit chaotic motion when it is perturbed by a sinusoidal
external forcing, and the exact trajectories of the system can be found analytically. When
Z is small enough,i.e., « is close enough to 1, again there will be no chaotic motion because
zs and z, get close enough to each other such that small perturbations cause the motion
to be outside the homoclinic orbit and the surface will snap the tip into contact. If we fix
« then as (2 increases the chance for chaos decreases.

16
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Figure 7: (%) surface. The region below the surface is the region where chaos exists in
cr

the system. The region above the surface is the region of no chaos.

3.6 State Feedback Control

In most AFMs the state z; (position) is measured, and the state zo (velocity) can be
estimated. This makes it possible to apply a force of the form v = k,z1 + k,z2 to the
cantilever. In this case, the state equations of the system are written as

.’i?l = TI9
. Dw? k k
By = —wiz) — m + e (ycoswt — dxs) + prl + vag
D 2
= —w? 4 (ycoswt — §y22) ,

em’
We can see that applying the above state feedback control is equivalent to changing k

and § in the system independently. Note that £y = 0 means that the tip accelerates towards
the sample regardless of the initial condition. If k1 < 0 there is only one equilibrium point
above the sample (z1 > 0,0) which is unstable. We will restrict our analysis to the case
when k1 > 0 and §; > 0.

Since k1 and 1 are independent, we will discuss the effect of changing each one sepa-
rately. We assume that w, v and Z are fixed. Suppose that ko > k; > 0. Then it is easy
to see from Figure 8 that —7 < x4 < xs1, 0 > zeo > z and Zgo < Zg. A stiffer spring
allows the tip to get closer to the sample before snapping occurs, and it shifts z. closer
to zero. The homoclinic orbits for k1 and ko are shown in Figure 9. It is clear that the

where, (wn1)? = & with ky =k — kp, Dy = 5, and 6, =5 — 12

homoclinic orbits for k1 and ks do not intersect.
Now by fixing k = kg and § = dy we get the point («g, Qg (%)0) in a three dimensional
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1
space, where ag = % with Zyg = %(2£)3, Qp = % with wyg = @/fﬂ—o, and (%)U =

6ko w10

waSU%O. Let k = pky, where p > 0. It is easy to see that this corresponds to the point
(p%ozo, p%l Qo, p% (%)0). Varying p is equivalent to varying k. The variation of p induces

a variation of the point (p%ag, p%l Qq, p% (%)0) on a one dimensional curve in a three
dimensional space. Each curve is characterized by a fixed w, 7, Z, and §, and each point on
the curve corresponds to a particular k. As k increases the point moves in the +«, —(2, —1—%
direction, and vice versa. Figures 10 and 11 show curves of constant w, v, Z, and § along
with the (%)Cr surface. Recall that when the operating point is on or under this surface
the stable and unstable manifolds intersect, otherwise they do not. If the curve of constant
w, v, 4, and J intersects the (%)CT surface, then we can move the operating point from
one side of this surface to the other by changing k appropriately. Note that by varying k
e (2).
co-ordinates. Clearly, with the aid of this diagram we can select the controller parameter
k, to suppress the possibility of chaos.

Now we will analyze the effect of the controller term k,. Let & = ky be a fixed constant

surface shifts in the Z, w and % co-ordinates , while it is fixed in the o, Q and %

T
(0) the operating point moves in the vertical (%) direction . As § increases the operating

point moves in the —i—%, and vice versa. Thus, we can move the operating point from one

side of the (%) surface to the other by changing d appropriately. This procedure gives us

cr
the controller term k, which results in the elimination of the possibility of chaos.
In summary, the tools of Melnikov theory are used to provide a procedure for the design
of a controller of the form u = k,z1 + kpz2 that will eliminate chaos if it exists when u = 0.

and let § = pdy. These nominal conditions give the point (g, g, p (é)o). By varying p

200

-1
0 o 40000 ¢

Figure 10: lines of constant w, -y, Z, and ¢ and the (%) surface
cr

Finally, for the case when Z = Z; < Z,, the vdW force is greater than the spring force
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200 O

Figure 11: lines of constant w, v, Z, and ¢ and the (%) surface
cr

whenever 1 < 0 (see Figure 3 ). Hence, there are no fixed points above the surface and
the corresponding two roots are imaginary as shown in Figure 4. In this case, the surface
snaps the tip into contact.

4 Conclusions

A mathematical model for the cantilever-sample interaction in the AFM was utilized to
explore the dynamical behaviour of the cantilever. It is shown that it is possible for chaos
to exist in the system depending on the extent of damping and forcing. The region in
which chaos exists was found. It was shown that feedback control can be used to elimi-
nate the possibility of chaos. Ongoing research involves the experimental validation of the
predictions, and the implementation of control to eliminate chaos.
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