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Abstract— Two types of state-space objects - isostables and
isochrons - obtained as level sets of Koopman operator eigen-
functions, have recently been shown to be of utility in nonlinear
control theory. Algorithms to compute these are in the class of
the so-called Dynamic Mode Decomposition (DMD) algorithms
or Generalized Laplace Analysis (GLA) algorithms. It is in-
teresting to explore the relationship between these two, which
is what we pursue in this paper. We do this in the context
more general than isochrons and isostables, deriving results on
the relationship of the full Koopman Mode Decomposition with
objects computed in DMD, using the fact that GLA is known
to be an exact algorithm in the infinite time limit. We also
show that finite-dimensional DMD approximations of Koopman
eigenfunctions are in the Koopman operator pseudospectrum.

I. INTRODUCTION

The Koopman operator framework has proved useful in
certain problems in nonlinear control [1], [2]. It has its
roots in 1930’s through the work of Koopman and von
Neumann [3], [4]. The original work by Koopman [3] was
devoted to square-integrable observables on the state space of
Hamiltonian systems, while the framework we consider here
is broader and applies to dissipative systems as well. For a
detailed review of this theory and applications, we refer the
reader to [?].

For a dynamical system

ẋ = F(x), (1)

defined on a state-space M (i.e. x ∈M - where we by slight
abuse of notation identify a point in a manifold M with its
vector representation x in Rm, m being the dimension of the
manifold), where x is a vector and F is a possibly nonlinear
vector-valued smooth function, of the same dimension as
its argument x, denote by St(x0) the position at time t of
trajectory of (1) that starts at time 0 at point x0. We call
St(x0) the flow. Denote by g an arbitrary, vector-valued
observable from M to Rk. The value of this observable g
that the system trajectory starting from x0 at time 0 sees at
time t is

g(t,x0) = g(St(x0)). (2)

Note that the space of all observables g is a linear vector
space. The family of operators U t, acting on the space of
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observables parametrized by time t is defined by

U tg(x0) = g(St(x0)). (3)

Thus, for a fixed time τ , Uτ maps the vector-valued ob-
servable g(x0) to g(τ,x0). We will call the family of
operators U t indexed by time t the Koopman operator of
the continuous-time system (1). This family was defined for
the first time in [3], for Hamiltonian systems. In operator
theory, such operators, when defined for general dynamical
systems, are often called composition operators, since U t

acts on observables by composing them with the mapping
St [5]. In discrete-time the definition is even simpler: if

x′ = T(x), (4)

is a discrete-time dynamical system defined on a set M then
the Koopman operator U associated with it is defined by

Ug(x) = g ◦T(x).

The operator U is linear, as shown here for the discrete case:

U(c1g1(x) + c2g2(x)) = c1g1(T(x)) + c2g2(T(x))

= c1Ug1(x) + c2Ug2(x). (5)

In the continuous-time case, a similar calculation also shows
linearity of members of the Koopman family for each time
t. Level sets of Koopman operator eigenfunctions play an
important role in state-space geometry of nonlinear systems
[6]. Two classes of eigenfunctions - isochrons [7], and isosta-
bles [8] have been shown to be of importance for nonlinear
control problems. In [2] an isostable-based formulation for
the problem of convergence to/escape from the equilibrium
which is adapted to the short duration of the control, was
proposed. In particular, it was shown that the relevant end
cost function for the problem to be maximized when the
control is switched off is based on the notion of isostables,
introduced in [8]. The isostables are sets of the state space
that capture the asymptotic behavior of the uncontrolled
system. They provide a unique and rigorous measure of how
far with respect to time the trajectory is from the equilibrium.

Additionally, isochrons capture the phase of a nonlinear
system. An operator-theoretic formulation of isochrons as
level sets of a Koopman eigenfunction at purely imaginary
eigenvalue is given in [7]. Numerous problems in phase
control can be formulated using the notion of isochrons.

In this paper, we examine properties of computation of
isostables and isochrons using the so-called Dynamic Mode
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Decomposition (DMD), introduced in [9] and connected to
Koopman Mode Decomposition in [10]. Specifically, we
show that different versions of DMD yield exact Koopman
Modes provided the spectral information (eigenvalues) are
exact. To achieve this, we utilize the technique of the
Generalized Laplace Analysis [11]. In section II we first
show that finite-dimensional approximations of the Koopman
operator using companion matrix compute objects in the
pseudospectrum of the Koopman operator, and discuss the
relationship between the Generalized Laplace Analysis and
DMD in both the case when an eigenvalue of the Koopman
operator has a negative real part (isostable case) and the case
when the real part of an eigenvalue is 0 (isochron case). We
conclude in section III.

II. SPECTRAL PROPERTIES OF THE KOOPMAN OPERATOR

Let T be a dynamical system on a compact metric space
M . Let C(M) be the space of continuous functions on M .
Elements of M will be denoted by x. The Koopman (or
composition) operator U associated with T is defined by

Uf(x) = f ◦ T (x).

For a finite-time evolution of an initial function f(x) ∈
C(M) under T we get a sequence

(f(x), f ◦ T (x), ..., f ◦ Tn−1(x), f ◦ Tn(x)).

Let f i = f ◦ T i(x). Then clearly f i+1 = Uf i, for 0 ≤ i ≤
n− 1. If fn was in the space spanned by f0, ..., fn−1, and
these were linearly independent functions, we would have

fn =

n−1∑
j=0

cif
i,

for some coefficients ci, i = 0, ...n − 1. In that case, the
operator U would have a finite-dimensional approximation
Ũ on the span{f0, ...fn−1}, given by the companion matrix

Ũ =


0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cn−1

 (6)

Let ẽ be an eigenvector of Ũ satisfying

Ũ ẽ = λ̃ẽ

Then let f̃ = (f0, f1, f2, ...fn−1)T . The action of U on ẽ · f̃
is given as

Uẽ · f̃ = ẽ · f̃ ◦ T =

n−1∑
i=0

eif
i ◦ T

=

n−1∑
i=0

eif
i+1. (7)

Now, we also have

Ũ ẽ =


0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cn−1




e0
e1
e2
...

en−1

 (8)

=


c0en−1

e0 + c1en−1
e1 + c2en−1

...
en−2 + cn−1en−1



=


0
e0
e1
...

en−2

+ en−1


c0
c1
c2
...

cn−1

 = λ̃ẽ

Now using this in (7) we obtain Uẽ · f̃ = λẽ · f̃ − en−1c̃ ·
f̃ + en−1f ◦ Tn, or

Uẽ · f̃ = λ̃ẽ · f̃ + en−1(f ◦ Tn − c̃ · f̃). (9)

It is now clear that, under the assumption that f ◦ Tn is in
span{f0, ...fn−1}, ẽ · f̃ is an eigenfunction of U . If that
assumption is relaxed, and c̃ · f̃ is the orthogonal projection
of f ◦ Tn to the span{f0, ...fn−1} as in the companion-
matrix version of DMD [10], then ẽ · f̃ is an approximation
to the eigenvector of U with an approximate eigenvalue λ̃,
with the error en−1(f ◦ Tn − c̃ · f̃) = en−1r, where r is the
residual.

Note that the equation (9) could be written as

|Uẽ · f̃ − λ̃ẽ · f̃ | = |en−1r|

which means that ẽ · f̃ is in the (λ̃, ε) -pseudospectrum of U
for ε = |en−1r| (see [12]).

A. Koopman modes and Generalized Laplace Analysis
(GLA)

One outcome of the Koopman operator theory is the
theory of Koopman modes which are the projection of
the observables onto Koopman eigenfunctions. These modes
correspond to components of the physical field that exhibit
exponential growth, decay and/or oscillation in time, and
play an important role in the analysis of large systems
including fluid flows and buildings. ([11], [13].) The fol-
lowing theorem provides us with a theoretical algorithm for
computation of Koopman modes of the observable f .

Theorem 1 (Generalized Laplace Analysis): Let f(x, z)
be a field of observables f(x, z) : M × A → Rm, where
the observables are indexed over set A. We will occasionally
drop the dependence on x and denote f(x, z) = f(z) and
the iterates of f by f(T ix, z) = f i(z). Let λ0, ..., λk be the
simple eigenvalues of U such that |λ0| ≥ |λ1| ≥ ... ≥ |λk|
and there are no other points λ in the spectrum of U with
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|λ| ≥ |λk|. Then, the Koopman mode associated with λk is
obtained by computing

fk = φk(x)sk(z)

= lim
n→∞

1

n

n−1∑
i=0

λ−ik

f(T ix, z)− k−1∑
j=0

λijφj(x)sj(z)

 ,

= lim
n→∞

1

n

n−1∑
i=0

λ−ik

f i(z)− k−1∑
j=0

λijfj

 , (10)

where fj = φj(x)sj(z).
Proof: See [14].

In other words, fj is the skew-projection of the field of
observables f(x, z) on the Koopman eigenfunction φj(x)
associated with the eigenvalue λj . The skew-projection at
eigenvalue λl is formed by taking out the skew-projection of
all λj’s with |λj | > |λl|.

B. Approximation of Koopman modes: Dynamic Mode De-
composition (DMD)

In this section, we briefly review the basics of Dynamic
Mode Decomposition (DMD) and show the explicit relation-
ship to theorem 1. Let

f0, f1, f2, . . . , fn (11)

be a time-sequence of observations on the system. In the
companion-matrix method [10], we take the Krylov basis
{f0, f1, ..., fn−1} as the basis for the space of observables
(we assume f ’s to be linearly independent) and represent the
action of Koopman operator on that basis by the companion
matrix Ũ defined in (6). The entries of companion matrix
denoted by ci, 0 ≤ i < n are given by approximating
the last observation fn as a linear combination of previous
observations, i.e.,

fn ≈ c0f0 + c1f
1 + . . .+ cn−1f

n−1. (12)

The coordinates of the observable sequence (11) in the
Krylov basis would be

1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
0
...
1

 ,


c0
c1
c2
...

cn−1

 . (13)

The Dynamic Mode Decomposition of the sequence of
observations is then defined to be

fk =
∑
i

viλ
k
i , k < n

where λi’s are dynamic eigenvalues (i.e. the eigenvalues of
Ũ ) and vi’s are the dynamic modes. The above decomposition
can be stated in the matrix form,

f̃ = ṽ T (14)

with ṽ = (v0, v1, v2, ...vn−1) and T denoting the Vander-
monde matrix,

T =


1 λ0 λ20 . . . λn−10

1 λ1 λ21 . . . λn−11
...

...
...

. . .
...

1 λn−1 λ2n−1 . . . λn−1n−1

 ,
In the following theorem, we show that Dynamic Mode
Decomposition computes the Koopman modes at n→∞.

Theorem 2: Let λi, i = 0, 1, . . . ,m denote the dis-
tinct eigenvalues of the Koopman operator restricted to the
span{f0, f1, . . . , fn−1}. Also assume that λi converge to
µi, the true eigenvalues of the Koopman operator. Then the
columns of ṽ in (14) converge to Koopman modes associated
with λi, i = 0, 1, . . . ,m, as n→∞.

Proof: Without loss of generality assume ‖λ0‖ ≥
‖λ1‖ ≥ ‖λ2‖ ≥ . . . ≥ ‖λm‖. Then one could solve the
linear system in (14) as follows: Divide the i-th column of the
Vandermonde matrix by λi−10 . Then replace the first column
by the sum of all columns. The first column of the above
system then reads

f0 +
1

λ0
f1 +

1

λ20
f2 + . . .+

1

λn0
fn−1

= (v0, v1, v2, . . . , vm)



1 + 1 + 1 + . . .+ 1

1 + λ1

λ0
+

λ2
1

λ2
0
+ . . .+

λn−1
1

λn−1
0

1 + λ2

λ0
+

λ2
2

λ2
0
+ . . .+

λn−1
2

λn−1
0

...

1 + λn−1

λ0
+

λ2
n−1

λ2
n−1

+ . . .+
λn−1
n−1

λn−1
0


.

By using the geometric series sum,

f0 +
1

λ0
f1 +

1

λ20
f2 + . . .+

1

λn−10

fn−1

= (v0, v1, v2, . . . , vn−1)



n
1−(λ1/λ0)

n−1

1−λ1/λ0

1−(λ2/λ0)
n−1

1−λ2/λ0

...
1−(λn−1/λ0)

n−1

1−λn−1/λ0


.

Assume limn→∞ ||vn|| = 0. In the limit n → ∞, we can
divide both sides by n to get

lim
n→∞

1

n

n−1∑
i=0

λ−i0 f i = lim
n→∞

v0 +
1

n

1− (λ1/λ0)
n−1

1− λ1/λ0
v1

+
1

n

1− (λ2/λ0)
n−1

1− λ2/λ0
v2 + . . . ,

= v0.

where we have used the fact ‖λ0‖ ≥ ‖λ1‖ ≥ ‖λ2‖ ≥ . . .,
and used the Koopman-von Neumann Lemma [15] that
implies that

lim
n→∞

1

n

n∑
i=1

a(n) = 0 (15)
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provided limn→∞ a(n) = 0. Now that we have computed
v0, we can treat it as a known variable and move it to the
left-hand-side of equation (14), and thus obtain

(f0 − v0, f1 − λ0v0, f2 − λ20v0, . . . , fn−1 − λn−10 v0)

= (v1, v2, . . . , vm)


1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12
...

...
...

. . .
...

1 λn−1 λ2n−1 . . . λn−1n−1

 .
By repeating the same procedure as above, but this time by
dividing λi−11 , the second dynamic mode, v1, is computed
to be

v1 = lim
n→∞

1

n

n−1∑
i=0

λ−i1 (f i − λi0v0).

Using induction, it follows that the k-th dynamic mode is
given by

vk = lim
n→∞

1

n

n−1∑
i=0

λ−ik (f i −
k−1∑
j=0

λijvj). (16)

Comparing equations (10) and (16) indicates the equivalence
of Koopman modes and dynamic modes over infinite itera-
tions of the dynamical system.

III. CONCLUSIONS

In this paper, we have studied some problems in compu-
tation of spectral objects related to Koopman operators. Two
such objects of importance in nonlinear control are isochrons
and isostables. We showed that, under the assumption of
known eigenvalues for the discrete spectrum associated with
the Koopman Mode Decomposition, the computational meth-
ods of Dynamic Mode Decomposition compute the Koopman
Modes exactly. We also showed that finite-dimensional DMD
approximations are in the pseudospectrum of the Koopman
operator. The problem of determining under which condi-
tions do the finite-dimensional pseudospectral approxima-
tions converge to the true spectrum is tackled in [16].
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