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Abstract We interpret and explain a phenomenon in short-term swing dynamics of
multi-machine power grids that we term the Coherent Swing Instability (CSI). This is
an undesirable and emergent phenomenon of synchronous machines in a power grid,
in which most of the machines in a sub-grid coherently lose synchronism with the rest
of the grid after being subjected to a finite disturbance. We develop a minimal math-
ematical model of CSI for synchronous machines that are strongly coupled in a loop
transmission network and weakly connected to the infinite bus. This model provides
a dynamical origin of CSI: it is related to the escape from a potential well, or, more
precisely, to exit across a separatrix in the dynamical system for the amplitude of the
weak nonlinear mode that governs the collective motion of the machines. The linear
oscillations between strongly coupled machines then act as perturbations on the non-
linear mode. Thus we reveal how the three different mode oscillations—local plant,
inter-machine, and inter-area modes—interact to destabilize a power grid. Further-
more, we present a phenomenon of short-term swing dynamics in the New England
(NE) 39-bus test system, which is a well-known benchmark model for power grid sta-
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bility studies. Using a partial linearization of the nonlinear swing equations and the
proper orthonormal decomposition, we show that CSI occurs in the NE test system,
because it is a dynamical system with a nonlinear mode that is weak relative to the
linear oscillatory modes.
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1 Introduction

Coupled swing dynamics in a population of synchronous rotating machines are of
vital importance for power grid stability. The so-called transient stability analy-
sis is associated with the ability of a power grid to maintain synchronism when
subjected to a large disturbance (Kundur 1994; Chiang 1999; IEEE/CIGRE Joint
Task Force on Stability Terms and Definitions 2004). Loss of transient stability
is recognized as one cause of large blackouts such as the September 2003 black-
out in Italy (Corsi and Sabelli 2004; Andersson et al. 2005). Transient stability is
mainly governed by oscillations of relative rotor angles between different rotating
machines in the short-term regime (0 to 10 seconds (Kundur 1994)) and is math-
ematically investigated by the so-called nonlinear swing equations (Kundur 1994;
Chiang 1999). This mathematical model is similar to equations of motion for coupled
mechanical pendulums and is valid because, for a balanced power grid, the dynamics
can be described by the relative rotor angles and amplitudes of machine voltages,
and in the short-term regime the amplitudes can be assumed to be stationary. Analy-
sis of the swing equations, which especially deals with global structures of phase
space far from equilibria, is hence needed for prevention of loss of transient stabil-
ity (see e.g. Kopell and Washburn 1982; Abed and Varaiya 1984; Salam et al. 1984;
Varghese and Thorp 1988; Ueda et al. 1992).

In addition to the above motivation of the stability problem for large-scale power
grids, designs of renewable energy sources offer a new situation of swing dynamics
and instabilities for small-scale power grids. The notion of a small-scale grid implies
that its geographical scale is much smaller than the current nationwide grids. This
small-scale feature inevitably results in a power grid in which generation plants and
loads are closely coupled. The reasons why the small-scale grid has recently emerged
are as follows.

(1) Since most renewable energy sources have smaller outputs than the conventional
thermal and nuclear plants, the integration of many renewable sources is in-
evitable for producing a large amount of energy.

(2) The close coupling of generation plants and loads can contribute to the reduction
of loss of energy for transmission and realize an energy-efficient infrastructure.

Examples of such small-scale grids include windfarms and microgrids. A wind-
farm has many induction generators that operate in parallel and supply the electricity
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to the outside of the farm (see e.g. Null and Archer 2008). A microgrid is defined as
an autonomous grid based on dispersed generations (see e.g. Lasseter and Paigi 2004;
Hatziargyriou et al. 2007) and has many power sources operating in a closely cou-
pled, parallel mode. Thus, it is fundamentally important to clarify swing dynamics
and stability of small-scale power grids for enhancing their performance. This con-
figuration for the small-scale grid is essentially different from the conventional one in
transient stability problems, in which many generators and loads are sparsely placed
and connected via a complex transmission network.

In this paper, we study an instability phenomenon, which we term the Coher-
ent Swing Instability (CSI), in short-term swing dynamics for multi-machine power
grids. CSI is an undesirable phenomenon of synchronous machines in a power grid,
in which a group of machines in the grid coherently loses synchronism with the rest
of the grid after being subjected to a finite, possibly local disturbance. One goal of our
study is to demonstrate swing dynamics that cause a cascade of failures in an inter-
connected power grid. Blackouts spreading into a large-scale power grid are brought
about by a sequence of failures (Andersson et al. 2005). A large-scale grid usually
consists of strongly inner-connected grids, called sub-grids, which are coupled to a
weak transmission network. The instability studied in this paper describes a failure of
one sub-grid caused by the CSI. In Susuki et al. (2010, 2011) we show that a sequence
of sub-grid failures can be induced by a sequence of CSIs. Thus we show how the
sequence of sub-grid failures can be dynamically organized. In this paper, we start
from a rudimentary power grid whose dynamics we can study in detail, analytically
and numerically, and we expand our study to a more realistic power grid which we
study mostly numerically.

CSI is related to three known phenomena in loss of transient stability: local plant
mode oscillations, inter-area mode instabilities, and multi-swing instabilities. A local
plant mode oscillation is associated with the swinging of a single plant with respect
to the grid (Kundur 1994; IEEE/CIGRE Joint Task Force on Stability Terms and
Definitions 2004). An inter-area mode oscillation is associated with the swinging of
many machines in one part of the grid against machines in other parts (Kundur 1994).
Instability of inter-area mode oscillation is defined as the growth of the amplitudes
of relative rotor angles as time passes and it implies the separation of a subgroup of
machines from the rest of the grid. In Avramović et al. (1980) the authors extract the
inter-area mode, which they call the slow mode, by applying the singular perturbation
technique to the linear equations that are derived by linearizing the nonlinear swing
equations. In Peponides et al. (1982) the authors apply the singular perturbation tech-
nique to the nonlinear swing equations and obtain a set of variables with different
time scales that consists of the slow inter-area variable and fast inter-machine ones.
For the example in Peponides et al. (1982), the slow inter-area mode is described
by the Center-Of-Angle (COA) variables (Athay et al. 1979) or Center-Of-Inertia
(COI) variables (Kundur 1994) (see Sect. 4.1 for the definition). Instability mecha-
nisms in the inter-area modes have been studied by various groups of researchers. In
Tamura and Yorino (1987) the authors associate parametric resonance in the well-
known Mathieu diagram with long-term (more than 10 seconds) dynamics in multi-
machine power systems. They use the linearized swing equations with quadratic non-
linear terms and point out the occurrence of sustained oscillations. In Vittal et al.
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(1991), Lin et al. (1996), the authors study the inter-area mode phenomena in terms
of the interaction of natural modes in oscillation via quadratic nonlinear terms. They
show that the nonlinear modal interaction indicates the onset of inter-area mode phe-
nomena, in which a finite, large initial disturbance results in the separation of a large
group of generators from the rest of the system. In Dobson et al. (2001) the author
studies the so-called strong modal resonance due to the change of model parameters
and associates it with the occurrence of sustained oscillations via Hopf bifurcations.
A multi-swing instability is a short-term oscillatory instability and implies the sepa-
ration of one machine or a group of machines after several swings beyond the first
swing. Mechanisms underlying this instability have also been studied. In Vournas et
al. (1996) the authors use a detailed model with excitation control and clarify the
transient dynamics close to an unstable limit cycle that cause the instability. In Chu
(2005) the author reviews lobe dynamics around a tangled separatrix due to periodic
forcing and associates it with the occurrence of multi-swing instability.

In this paper, we provide analytical and numerical analysis of CSI, where the phe-
nomenon involves the progression from a local plant mode oscillation, through pos-
sibly a multi-swing (or inter-machine mode) oscillation, to the full inter-area mode
phenomenon. In this way, we show that these separate phenomena can play a role in
the initiation and development of the inter-area mode phenomenon. The contributions
of this paper are two: (1) to develop a minimal mathematical model of CSI, based on
the notion of instability occurring for general oscillatory systems described in Mezić
(2005b, 2006), Eisenhower and Mezić (2007, 2008, 2010), Du Toit et al. (2009), and
(2) to explain the instability phenomenon occurring in power grids using the theory
of dynamical systems and the model developed. This notion of instability is some-
what broader than the standard definition in dynamical systems (Wiggins 1988), in
the sense that it does not happen upon an infinitesimally small perturbation around
an equilibrium of the system. However, it encompasses the situation when the system
escapes a predefined set around the equilibrium. Thus, the notion of instability that
we use here is not local. The model developed here provides a dynamical origin of
the non-local instability in power grids as well as a wide range of oscillatory systems.

The organization of this paper is as follows: in Sect. 2 we derive the dynamical
model for synchronous machines operating in a loop transmission network connected
to the infinite bus. The model explicitly describes both spatial oscillatory modes of the
loop network and local dynamics of individual machines with nonlinear power-angle
characteristics. In Sect. 3 we provide an example of CSI obtained by numerical simu-
lations of the model. Section 4 is devoted to mathematical analysis of CSI. A change
of variables is performed to facilitate the analysis. This reveals the existence of a
global mode that governs behavior in the rotor angle of every machine as well as
uniform motion of the network, which we call the nonlinear mode. Next we develop
a reduced-order, planar dynamical system that describes the behavior of the nonlin-
ear mode and characterizes the CSI. The planar system has one separatrix that de-
pends on both the loop topology and the power-angle characteristics. Analysis of the
reduced-order model shows that CSI is related to the escape phenomenon (Thompson
and Stewart 2002) or transport phenomenon (Wiggins 1992) in the system describing
dynamics of the nonlinear mode, and more precisely, to exit across the separatrix,
akin to the study on multi-swing instability (Chu 2005). However, in our description,
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Fig. 1 Rudimentary power grid
with the loop topology

the forcing comes from the other oscillatory modes of the model that are linear and
strong compared with the nonlinear mode. Hence we show that CSI occurs as a re-
sult of the interplay between grid topology—in the sense of strong interconnections
between the machines—and the weak local dynamics of machines. In Sect. 5 we an-
alyze the CSI phenomenon in the New England (NE) 39-bus test system. The NE test
system is a well-known benchmark system (Athay et al. 1979) and exhibits coupled
swing dynamics of 10 synchronous machines. We present simulations of short-term
swing dynamics of synchronous generators in the NE test system using the nonlinear
swing equations. By projecting the dynamics onto the phase plane of COA variables,
we show that the same mechanism of CSI as the one shown in the simple loop grid
emerges. Using a partial linearization of the swing equations and applying the Proper
Orthonormal Decomposition (POD) to the data, we show that the reason why CSI
happens in the NE test system is again the existence of a nonlinear mode that is weak
compared to linear oscillatory modes. This dynamical structure is equivalent to that
for the loop case. Thus we suggest that CSI is a phenomenon that occurs for various
realistic power grids. Section 6 concludes this paper with a summary and discussion.
This paper is a substantially enhanced version of the conference proceedings (Susuki
et al. 2008, 2009).

2 A Mathematical Model for Loop Power Grid

2.1 The Swing Equations

Consider a rudimentary power grid with the loop topology shown in Fig. 1, which we
call the loop power grid. Each small circle in Fig. 1 represents a synchronous machine
supplying electric power. The grid consists of N small, identical generators, encom-
passed by the dotted box, which operate in the AC loop network and are connected
to the infinite bus. We make five assumptions for the loop grid.

(i) The generators are small, and the transmission lines joining the infinite bus and a
generator are much longer than those joining two generators in the loop network.
Thus the magnitude of the interaction of an individual generator with the infinite
bus is smaller than the magnitude of interaction between any two generators.

(ii) The lengths of transmission lines between the infinite bus and individual gener-
ators are identical.

(iii) The lengths of transmission lines between generators are identical.
(iv) The power grid is loss-less.
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(v) The transformer inductance and synchronous reactance of each generator are
negligible.

These assumptions enable us to derive a simple mathematical model of CSI, and
they can be relaxed substantially while still observing the same phenomenon, as
shown in Sect. 5.

Next, we introduce the equations of motion for the power grid. We denote by δi

the angular position of a rotor with respect to the infinite bus of generators labeled
with integer values i = 1, . . . ,N . The non-dimensional deviation of rotor speed in
generator i relative to the system angular frequency (normally 2π × 50 rad/s or 2π ×
60 rad/s) is denoted by ωi . The short-term dynamics of generator i are represented
by the nonlinear swing equations (Kundur 1994)

dδi

dt
= ωi,

dωi

dt
= pm − b sin δi + bint

{
sin(δi−1 − δi) − sin(δi − δi+1)

}
. (1)

The loop topology of the generators induces the following conditions:

δ0(t) = δN(t), δN+1(t) = δ1(t). (2)

The parameters pm, b, and bint are constant in time and are in per-unit system: see
Appendix A. The constant pm is the mechanical input power to generator i, b is the
critical transmission power between the infinite bus and generator i, and bint is the
critical transmission power between generators i and i + 1. The constants b and bint
are inversely proportional to the lengths of the associated AC transmission lines.

2.2 The Mathematical Model

We now simplify (1) in order to construct a mathematical model of the phenom-
enon of interest, where the differences between individual angular positions stay
small for all time. Note that there are trajectories of the system (1) that stay on a
two-dimensional invariant manifold I in 2N -dimensional phase space of the system,
defined by the 2(N − 1) constraints δi = δi+1 and ωi = ωi+1 for i = 1, . . . ,N − 1
(see Mezić 2005b). These are trajectories with the common initial conditions δi(0)

and ωi(0) for all generators. We investigate the dynamics of the system (1) close
to this invariant manifold. This is equivalent to the condition that the differences
δi(t) − δi+1(t) and ωi(t) − ωi+1(t) for i = 1, . . . ,N − 1 are sufficiently small.
This allows us to use the first-order approximation of the sinusoidal coupling term
bint{sin(δi−1 − δi) − sin(δi − δi+1)} and to derive the following system:

dδi

dt
= ωi,

dωi

dt
= pm − b sin δi + bint

{
(δi−1 − δi) − (δi − δi+1)

}
. (3)

The system (3) is an N -degree-of-freedom Hamiltonian system with the Hamiltonian
function H(δ1, . . . , δN ,ω1, . . . ,ωN):

H =
N∑

i=1

ω2
i

2
−

N∑

i=1

{
pmδi + b cos δi − bint

2
(δi−1 − δi)

2
}
. (4)
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In (3) the linear term is an approximation of the sinusoidal characteristics in power
transfer between nearest generators. This approximation is physically valid under
the above assumption (i) that the length of transmission lines between nearest gen-
erators is much shorter than that between the infinite bus and individual generators.
That is, bint � b, and the strong local coupling keeps the connected generators in the
loop network close in angular position and speed deviation. Furthermore, the term
pm − b sin δi represents the nonlinear power-angle characteristics of each generator
connected to the infinite bus and suggests an inherent possibility of loss of synchro-
nism with the infinite bus. This nonlinearity is weak for the above assumption (i) of
small generators, that is, pm, b � bint.

The dynamical model (3) contains the terms that can account for the two causes of
loss of transient stability that have been discussed in Kundur (1994) from a phenom-
enological viewpoint. First, in large-scale power grids, loss of transient stability may
be the result of the superposition of several modes of oscillation, causing large excur-
sion of angular position beyond the first swing. The term bint{(δi−1 −δi)−(δi −δi+1)}
in (3) can cause such linear spatial oscillatory modes of the loop network (see
Sect. 4.2). Second, the multi-swing instability can be related to the collective escape
of generators from the potential well, defined by the nonlinear terms pm − b sin δi in
(3) (see Sect. 4.4). However, both of these effects are necessary to produce the insta-
bility phenomenon we describe in the next section. To see this, consider these effects
separately. If the nonlinear interaction with the infinite bus is removed, no instability
is possible, because the motion is a superposition of linear modes. On the other hand,
if there are no linear coupling terms, then every oscillator is stable inside its own po-
tential well. Thus, the instability phenomenon that we explain in this paper is due to
both the effects of a strong linear coupling and a weak local nonlinearity.

The model (3) is an approximation of the dynamics of the original swing equa-
tions (1). Basically the model is valid under the condition that the differences between
individual angular positions stay small for all time; mathematically, a trajectory of (3)
stays in the neighborhood of the invariant manifold I for all time. Here, due to the
presence of strong linear coupling in (3), many of the trajectories departing far from
I quickly approach I as time goes on. One example of this phenomenon is given in
the next section: see Figs. 2(a) and (b). Thus we expect that analysis of (3) gives a
clue to the problem on short-term swing stability in the loop power grid. Sections 3
and 4 are devoted to the analysis of (3).

3 The Phenomenology of Coherent Swing Instability

In this section we present numerical simulations of coupled swing dynamics repre-
sented by (3) and discuss the properties of the phenomenon that we name the Coher-
ent Swing Instability (CSI). The parameter settings for (3) used throughout most of
this section are

pm = 0.95, b = 1, bint = 100, N = 20. (5)

The values of pm/bint = 0.0095 and b/bint = 0.01 are chosen to satisfy the above
physical assumptions that imply a strong linear coupling of generators and a weak
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Fig. 2 Sequential snapshots of angular position δi (t) for coupled swing dynamics by the local disturbance.
Solid points on the circle denote the angular positions δi of N generators and move according to (3) from
the initial condition (6). At the initial time (a), generator N/2 is disturbed, and its initial position δN/2(0)

is denoted by the lower solid point, while all the other generators are at the elliptic equilibrium δi = δc
denoted by the circle ◦. The symbol × on the circle denotes the position of the hyperbolic equilibrium
δi = π − δc

local nonlinearity governing the dynamics of each individual generator. We also study
the variation of the observed phenomenon with the mechanical input power pm, the
strength of interconnections bint, and the number of generators N . All numerical



J Nonlinear Sci (2011) 21: 403–439 411

integrations of the Hamiltonian system (3) in this paper were performed using the
symplectic integrator (Yoshida 1990).

3.1 Basic Simulation

Now we describe a basic scenario of coupled swing dynamics and instabilities. Note
that if the condition pm < b holds, there are two global equilibria of (3) at (δi,ωi) =
(δc = sin−1(pm/b),0), which is a global energy minimum of the elliptic type, and
(π − δc,0) of the hyperbolic type. Let us consider a local disturbance given by the
following set of initial conditions, close to the elliptic equilibrium:

(
δi(0),ωi(0)

) =
{

(−0.352,0) for i = N/2,
(δc,0) for i �= N/2.

(6)

Physically, the generator N/2 is locally disturbed, while the other generators are at
their steady states, that is, the elliptic equilibrium denoted by the circle ◦ in Fig. 2.
The choice of the generator disturbed initially does not depend on the following nu-
merical results, because the system (3) has translational invariance along the loop
network. Figure 2 shows sequential snapshots of angular positions δi for coupled
swing dynamics by the local disturbance. The solid points on the circle denote the
angular positions of N generators. At the initial time in Fig. 2(a), generator N/2 is
disturbed, and its initial position δN/2(0) is denoted by the lower solid point, while
all the other generators are at the same position on the circle, denoted by the upper
solid point. In the snapshots shown in Figs. 2(b)–(j), the angular positions of N gen-
erators are in an intermediate regime of linear oscillations around their steady states
(these snapshots are compared to Fig. 4(a) where the average angle vs. time is plot-
ted). These oscillations are bounded and essentially linear. However, in Figs. 2(j)–(q),
they start to show coherent growth. Finally, they grow unbounded in Figs. 2(q)–(t).
The unbounded growth indicates that all the generators lose synchronism with the in-
finite bus. This is the phenomenon that we call the Coherent Swing Instability (CSI).
It represents a dynamic transition from a localized perturbation that initially causes
linear multi-swing (or inter-machine mode) oscillations and ultimately leads to co-
herent loss of synchronism of the whole group of generators with the infinite bus,
that is, instability of the inter-area mode oscillation.

Note that in Fig. 2 we plot t in units of
√

2H/ωb where H is the per-unit time
constant of each machine, and ωb the system angular frequency: see Appendix A. For
H = 10 s and ωb = 2π × (60 Hz), t = 50 is equal to 12 s in real time. Hence the onset
time of instability in Fig. 2 is within the short-term regime. Thus, we have discussed
the dynamical terms that lead to linear oscillations and (nonlinear) loss of coherence
at the end of the previous section, and we have connected them to descriptions of
various types of instabilities described in the literature on power systems.

3.2 Robustness Analysis

Local disturbances, different from (6), cause instability phenomena with time dura-
tion different from that in Fig. 2. Figure 3 plots the destabilization time tinst, which
is the time it takes for the collective coordinate—in this case the average of all the
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Fig. 3 Numerical results for
time and local disturbance
needed for coherent swing
instability: destabilization time
plotted against initial condition
δN/2 under b = 1. Figure (a) is
for various values pm of the
mechanical input power with
bint = 100 and N = 20.
Figure (b) is for various
strengths bint of the loop
network with pm = 0.95 and
N = 20, and (c) for various
numbers N of generators with
pm = 0.95 and bint = 100. The
solid vertical line denotes the
position of elliptic equilibrium,
and the broken line denotes the
position of the hyperbolic
saddle. (d) The number of
machines, N , vs. minimum
amplitude of perturbation, δN/2,
and (e) the number of machines,
N , vs. minimum perturbation
energy per machine. The data
are obtained with pm = 0.95,
b = 1, and bint = 100

angles δi (see Sect. 4)—to reach the position of the (hyperbolic) saddle. This time
is an indicator of the amount of time that it takes to reach CSI. In Fig. 3 we show
the results of numerical simulations that demonstrate the robustness of the observed
CSI phenomenon. On the horizontal axis we plot the initial angular position of distur-
bance for generator N/2. This angular position parameterizes the total energy of the
disturbance since there is no kinetic energy for the initial disturbance. If no instability
is observed during the time interval [0,100) we do not plot a point corresponding to
the initial disturbance. In Fig. 3(a) we observe that (1) there is a finite initial condition
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Fig. 3 (Continued)

δN/2 for which CSI happens for all mechanical input powers pm; that (2) the mini-
mum initial δN/2 to cause CSI becomes large with the decrease of pm; and that (3) for
pm < 0.75 we do not see the instability in the range of initial conditions. The setting
of small pm is interpreted as a light loading condition of generators. Thus, under
the conditions in this study, we can say that CSI happens at relatively heavy loading
conditions under which pm is close to the critical transmission power b, which is
equal to the rating of individual generators (see Appendix A). In addition, the range
of δN/2 in which instability is not observed becomes narrow with the increase of pm.
This is valid because at the limit of pm = 1 the two global equilibria disappear in the
Hamiltonian saddle-node bifurcation, and thus any initial condition causes instability.
In Fig. 3(b) we see that the amplitude of the minimum perturbation δN/2 that causes
CSI becomes slightly smaller with the decrease of the interconnection strength bint,
and that it saturates with bint > 100. This implies that sufficiently strong intercon-
nections do not affect the occurrence of CSI qualitatively. In Fig. 3(c) we see that
the amplitude of perturbation that causes CSI increases as the number N of gener-
ators increases, as would be expected from the intuition that more energy is needed
to destabilize a larger number of machines. In addition, from this figure we can see
that with the decrease of N , the range of δN/2 in which instability is not observed
is getting closer to the range between the two vertical lines, that is, the closed inter-
val [δc,π − δc]. This is a natural result, because the limit of N = 1 implies the grid
of a single machine connecting to the infinite bus, and the instability of single ma-
chine does not occur if the initial condition for angular position is placed within the
above interval (note that we need the initial condition of zero rotor speed difference).
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From these numerical simulations, we contend that the observed CSI is quite robust
to changes in parameters pm, bint, and N .

Figures 3(d) and (e) show numerical results for time and local disturbance needed
for CSI. The data are obtained under the parameter settings of pm = 0.95, b = 1,
and bint = 100, which are used for Fig. 3(c). The minimum energy per machine,
hmin(δN/2,N), quantifies the minimum energy added by local disturbance to cause
CSI and is defined as follows:

hmin = 1

N

{−(pmδN/2 + b cos δN/2) + (pmδc + b cos δc) + bint(δN/2 − δc)
2}. (7)

In Fig. 3(d) we see that the minimum amplitude of perturbation that induces CSI
converges to a constant value as N increases. In Fig. 3(e) we see that the minimum
energy reaches a maximum value at around N = 20, gradually decreases as the in-
crease of N , and finally converges to zero. The convergence is valid in the definition
of hmin(δN/2,N) if the minimum amplitude of perturbation δN/2 remains finite as N

goes to infinite. The global maximum of hmin suggests that if we regard the minimum
energy per machine as a quantitative measure of transient stability in the loop grid,
the increase of the number of machines and interconnections does not necessarily
contribute to the enhancement of transient stability and the robust operation of the
loop grid.

4 A Dynamical Mechanism of Coherent Swing Instability

This section is devoted to mathematical analysis of the CSI shown in Fig. 2. The
analysis relies on transformations into action-angle variables for multi-degree-of-
freedom Hamiltonian systems (Arnold 1989). We first describe the dynamics in col-
lective variables that are averages of individual variables. We then derive a planar
dynamical system that describes collective dynamics or dynamics of the nonlinear
mode of oscillation. Analysis of this planar system makes it clear that the CSI occurs
as a result of the interplay between grid topology and local dynamics.

4.1 Collective Dynamics

The collective-phase variable δ and its time derivative ω are defined as

δ = 1

N

N∑

i=1

δi, ω = dδ

dt
= 1

N

N∑

i=1

ωi. (8)

The variables are well known in power grid stability analysis as the COA (Center-Of-
Angle) or COI (Center-Of-Inertia) variables (Athay et al. 1979; Kundur 1994). Time
evolution of these variables, called collective dynamics, of the loop grid is given by
the equations

dδ

dt
= ω,

dω

dt
= pm − b

N

N∑

i=1

sin δi . (9)
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Fig. 4 Collective dynamics of
coupled swings for the local
disturbances δN/2(0) = 0 and
−0.352: (a) t–δ curves and
(b) trajectories in the δ–ω plane

Figure 4 shows two examples of the time evolution of the collective-phase variable δ

and trajectory in the δ–ω plane. The solid line is for the initial condition δN/2(0) =
−0.352 and corresponds to the CSI in Fig. 2. The broken line is for δN/2(0) = 0 and
does not lead to any instability. The two boxes (�) represent the equilibria of the
following system:

dδ

dt
= ω,

dω

dt
= pm − b sin δ. (10)

That is, the system represents the local dynamics of a single generator and is equiv-
alent to equations describing the motion of a mathematical pendulum with external
constant torque acting on it. It also describes the dynamics on the two-dimensional
invariant manifold I . The variables (δ,ω) are regarded as the local coordinates of this
manifold. The system (10) with |pm/b| < 1 has the saddle point (π −δc,0) connected
to itself by a homoclinic orbit Γ0, as drawn in Fig. 4(b).

Now we compare the dynamics of the full system (3) projected onto the δ–ω plane
with the dynamics of the system (10). For the solid trajectory showing the divergence
in Fig. 4(b), the intermediate linear oscillations in Figs. 2(b)–(j) appear as a trapped
motion inside Γ0, and the final coherent growth in Figs. 2(j)–(q) appears as a diver-
gence motion over Γ0. Trajectories of the system (10) are bounded oscillations (li-
brations) inside Γ0 and never diverge, or always diverge outside of it. Therefore, the
homoclinic orbit Γ0 defines a boundary of stable region, and we say that CSI occurs
when a trajectory projected onto the δ–ω plane starts inside the region defined by Γ0,
escapes from it, and diverges to infinity. In this section, we develop a reduced-order,
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planar (two-dimensional), non-autonomous dynamical system that can describe the
process of CSI.

4.2 Mode Decomposition

By setting pm = b = 0, oscillators represented by the linear system derived from (3)
can be decomposed into a superposition of eigenmode oscillations of the loop grid.
Any motion of the linear system is represented as a superposition of eigenmodes with
a finite number of eigenfrequencies. The eigenfunctions {eij }Ni,j=1 and eigenfrequen-

cies {Ωj }Nj=1 of eigenmodes are given as follows (see e.g. Forest et al. 1992):

eij =
√

2

N
cos

(
2πij

N
+ π

4

)
, Ωj = 2

√|bint|
∣
∣∣∣sin

πj

N

∣
∣∣∣, (11)

where i is the index of generator, and j is the mode number. These formulas make it
possible to investigate (3) in modal variables and action-angle variables.

Now we introduce two types of variable transformations and associate the collec-
tive variables δ and ω with dynamics of the full system. The first set of variables
(uj , vj ) (j = 1, . . . ,N) is defined as

uj �
N∑

i=1

eij δi , vj �
N∑

i=1

eijωi, (12)

where (uj , vj ) are the variables of j th spatial mode, called j th modal variables. The
Hamiltonian H can be written in new coordinates (u1, . . . , uN , v1, . . . , vN) as

H =
N∑

j=1

1

2

(
v2
j + Ω2

j u2
j

) −
N∑

i=1

{

pm

N∑

j=1

eijuj + b cos

(
N∑

j=1

eij uj

)}

. (13)

The second set of variables we introduce are the action-angle ones (Arnold 1989).
It should be noted that the eigenfrequency ΩN of the N th mode is equal to zero, in
other words, the N th mode is non-oscillatory under pm = b = 0. We call it the non-
linear mode, because the behavior of the mode under pm �= 0 and b �= 0 is described
by nonlinear differential equations similar to the system (10) (see (16)). Define the
variables (Ij , θj ) (j = 1, . . . ,N − 1) by

uj =
√

2Ij

Ωj

sin θj , vj = √
2IjΩj cos θj , (14)

where (Ij , θj ) are called the action-angle variables. The Hamiltonian H becomes

H = 1

2
v2
N +

N−1∑

j=1

IjΩj −
N∑

i=1

{

pm

N−1∑

j=1

eij

√
2Ij

Ωj
sin θj + pmeiNuN

+ b cos

(
N−1∑

j=1

eij

√
2Ij

Ωj
sin θj + eiNuN

)}

. (15)
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As a result of the variable transformations, we obtain the following equations:

duN

dt
= vN,

dvN

dt
= pm

√
N − b

1√
N

N∑

i=1

sin

(
N−1∑

j=1

eij

√
2Ij

Ωj

sin θj + eiNuN

)

,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(16)

and

dIn

dt
= b

√
2In

Ωn

cos θn

N∑

i=1

ein sin

(
N−1∑

j=1

eij

√
2Ij

Ωj

sin θj + eiNuN

)

,

dθn

dt
= −Ωn − b

sin θn√
2InΩn

N∑

i=1

ein sin

(
N−1∑

j=1

eij

√
2Ij

Ωj

sin θj + eiNuN

)

,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(17)

where n = 1, . . . ,N − 1. The interaction between the modes is weak because of
pm, b � bint. That is, CSI occurs in a system consisting of the nonlinear mode and
N − 1 oscillatory eigenmodes coupled via weak nonlinear terms.

Here we show that the dynamics of the nonlinear mode derived in the previous
subsection are equivalent to the dynamics in the collective variables (δ,ω). Because
eiN = 1/

√
N for all i, the N th modal variables (uN, vN) are re-written as

uN = 1√
N

N∑

i=1

δi, vN = 1√
N

N∑

i=1

ωi. (18)

Using uN = δ
√

N and vN = ω
√

N we re-write (16) as follows:

dδ

dt
= ω,

dω

dt
= pm − b

N

N∑

i=1

sin

(
N−1∑

j=1

eij

√
2Ij

Ω j
sin θj + δ

)

.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(19)

Now, by direct calculation, we have the following orthonormal property of the eigen-
vectors {eij } defined in (11):

N∑

j=1

ekj eij =
{

1 k = i,
0 k �= i.

(20)

By multiplying both sides of uj in (12) by ekj and summing the resulting equations
of uj over j , we have

N∑

j=1

ekjuj =
N∑

j=1

N∑

i=1

ekj eij δi , (21)
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Fig. 5 Collective dynamics of
coupled swings for the first
mode disturbance with different
strengths c = 1.7,1.745,1.8:
(a) t–δ curves and
(b) trajectories in the δ–ω plane

and by using the above orthonormality and (14),

N−1∑

j=1

ekj

√
2Ij

Ωj

sin θj + ekNuN = δk. (22)

Because of ekNuN = δ, the argument of the sinusoidal function in (19) coincides
with δi . Equations (19) are identical to (9).

4.3 Mode Dynamics

Putting initial energy into any of the eigenmodes of the linear system leads to CSI, but
the minimum potential energy differs with each mode. Figure 5 shows three trajecto-
ries of coupled swing dynamics for the first mode disturbance. The mode disturbance
is given as the initial conditions:

(
δi(0),ωi(0)

) = (δc + cei,1,0), (23)

where c is the strength of mode disturbance. The disturbance implies that at the initial
time t = 0, all the energy is in the potential energy, in the shape of the first linear
mode. The left box (�) in Fig. 5 represents the initial condition of the first mode
disturbance in the δ–ω plane. The trajectories with c = 1.745 and 1.8 show behaviors
similar to that in Fig. 4(b). They start inside the region defined by the homoclinic orbit
Γ0, escape from it, and diverge to infinity. This indeed shows the CSI phenomena
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caused by the first mode disturbances. Higher mode disturbances also induce CSIs,
similar to that for the first mode disturbance.

Next we quantitatively investigate the dynamics of oscillatory modes. Figure 6
shows trajectories of (3) projected onto the modal variable (uj , vj ) planes. The fig-
ures are for (a) the local disturbance at δN/2(0) = −0.352 and (b) the first mode
disturbance at c = 1.745 (see (23)). It should be noted for Fig. 6(b) that there are
other trajectories of oscillatory modes that do not appear here, because they have
much smaller amplitudes compared to the trajectory shown above. For the dynami-
cal system of (16) and (17), if there is no coupling between the eigenmodes, that is,
pm = b = 0, then the system becomes integrable, and each oscillatory mode shows
a periodic motion. Figure 6 suggests that each oscillatory mode keeps its periodic
motion under the presence of weak coupling. Note that figures similar to Fig. 6 are
reported in Eisenhower and Mezić (2007, 2008), Du Toit et al. (2009) for other oscil-
latory systems.

4.4 The Dynamical Mechanism

Because of the above results on oscillatory modes, we now assume that the interaction
of the 1, . . . ,N − 1 eigenmodes is negligible, and that their oscillations affect the
collective dynamics of the nonlinear mode as external forces. This assumption was
developed in Du Toit et al. (2009) for the analysis of coupled oscillators of the type
which we consider here. We call the resulting theory the Harmonic Field Theory, as
opposed to the well-known Mean Field Theory which would in this case correspond
to averaging over fast angles and would not predict the loss of stability. Then, based
on the system (19), we have the following system of collective variables:

dδ

dt
= ω,

dω

dt
= pm − b

N

N∑

i=1

cos

(
N−1∑

j=1

eijuj (t)

)

sin δ − b

N

N∑

i=1

sin

(
N−1∑

j=1

eij uj (t)

)

cos δ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(24)
with

uj (t) = cj cosΩj t, (25)

where cj is the amplitude of the j th mode oscillation and is assumed to be constant.
This approximation, when inserted in (24), implies that the collective dynamics are
described by the second-order, non-autonomous system with external forces of multi-
ple frequencies. The external forces depend on how a disturbance is added to the grid.
If cj is zero for all j , that is, there is no disturbance, then the system (24) becomes
the system (10) describing the motion of a single pendulum. This suggests that the
approximate planar, time-dependent system (24) describes the dynamics of the full
system (3) close to the two-dimensional invariant manifold I for small cj .

Figure 5 demonstrates the CSI caused by a single first mode disturbance. In the
following, we consider the case of a single nth mode disturbance, namely cj = 0



420 J Nonlinear Sci (2011) 21: 403–439

Fig. 6 Dynamics of the oscillatory modes under coherent swing instability. We show trajectories of
the swing equations (3) projected onto the modal variable (uj , vj ) planes: (a) local disturbance at
δN/2(0) = −0.352. For (a) the other trajectories of the oscillatory modes are omitted. (a) Local distur-
bance at δN/2(0) = −0.352 and (b) first mode disturbance at c = 1.745. For (b) there are trajectories
projected onto other modal planes that do not appear, because they are very small compared to the trajec-
tory (b)
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except for j = n. For this case, using the standard Bessel function Jk(·), we can
re-write (24) as follows:

dδ

dt
= ω,

dω

dt
= pm − b

N

N∑

i=1

J0(einc) sin δ − b

N
e(t, δ),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(26)

where c = cn, and e(t, δ) is the time-dependent forcing term defined by

e(t, δ) = 2
N∑

i=1

{ ∞∑

k=1

(−1)kJ2k(einc) cos 2kΩnt

}

sin δ

+ 2
N∑

i=1

{ ∞∑

k=0

(−1)kJ2k+1(einc) cos(2k + 1)Ωnt

}

cos δ. (27)

This implies that the collective dynamics are described by the second-order, non-
autonomous system with external forcing of period Tn = 2π/Ωn, with the base fre-
quency Ωn, and harmonics 2Ωn, 3Ωn . . . . It is noteworthy that the critical power b

of the system (10) changes in the effective coefficient beff(c) = (b/N)
∑N

i=1 J0(einc)

of the planar system (26). If pm < beff(c), the planar system (26) without e(t, δ) has
one homoclinic orbit Γc connecting the saddle-type equilibrium (δ∗

c ,0) to itself:

δ∗
c = π − sin−1 pm

b
N

∑N
i=1 J0(einc)

. (28)

The escape criterion developed in Eisenhower and Mezić (2010) for static perturba-
tions can now be based on the Hamiltonian of the steady part of the above system
(26); it is

Hn(δin,0; c) ≥ Hn(δ
∗
c ,0; c), (29)

where δin is the perturbation angle, and Hn(δ,ω; c) is defined as

Hn(δ,ω; c) = 1

2
ω2 − pmδ − b

N

N∑

i=1

J0(einc) cos δ. (30)

Figure 7 shows several examples of homoclinic orbit Γc for n = 1 and the associ-
ated collective dynamics produced by simulating the full system (3). Figures (a)–(c)
plot the trajectories of coupled swing dynamics for the same parameters as those used
in Fig. 5 at bint = 100 and (d)–(f) the trajectories at bint = 10. Except for (a), the tra-
jectories escape the region defined by Γ0 in the undisturbed (c = 0) case. The box
(�) represents the initial condition in the collective coordinate plane that is selected
to be the same for all strengths of modal perturbation c. The homoclinic orbit Γc
shrinks as the parameter c increases from 1.7 to 1.8, and it passes through the ini-
tial condition. The relationship between Γc and collective dynamics is simple in the
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Fig. 7 Relationship between homoclinic orbit Γc and collective dynamics of coupled swings for first
mode disturbance: (a)–(c) bint = 100 and (d)–(f) bint = 10

cases (a)–(c) of a large setting of parameter bint. If the initial condition (�) is inside
Γc in Fig. 7(a), then instability does not occur. If the initial condition is outside Γc

in Fig. 7(c), then CSI occurs. The relationship between the homoclinic and collective
dynamics, on the other hand, is not simple in the cases (d)–(f) where bint is much
smaller. The trajectories diverge in Figs. 7(d)–(f), not depending on where the ini-
tial condition is placed. The parameter bint determines the angular frequencies Ωj of
the linear modes between coupled machines (see (11)), and pm and b determine the
timescale of the dynamics in the nonlinear mode (see (19)) as well as the strength of
coupling between different linear modes (see (17)). In the case of bint = 10, the in-
teraction between the linear modes and the local nonlinear dynamics occurs at the
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same timescales, and thus the stronger exchange of energy between the non-uniform
linear modes can occur. The reduced-order system (26) is derived when we ignore
the exchange of energy between such modes. This is why the phase space analysis of
(26) is not valid for an analysis of CSI under bint = 10.

Now let us summarize the dynamics of CSI. The non-local instability which we
study here is governed by the dynamics of the nonlinear mode and is associated with
a transition across the homoclinic orbit Γc. The intermediate (long) oscillation in
Figs. 5(b) and 7(b) at c = 1.745 corresponds to wandering-like motions near Γc,
which have been described as multi-swing motions in e.g. Chu (2005). Here the ho-
moclinic orbit Γc depends on both the parameters (pm, b) of the generator and the
eigenfunction {ein}Ni=1 of the loop grid. In addition, Γc, shrinks with the increase of
the initial perturbation c. This clearly shows that CSI occurs as a result of the in-
terplay between grid topology and local dynamics. Thus, the reduced-order system
(26) with Γc quantifies both the effects of grid topology and of disturbances; the for-
mer effect determines the eigenfunction of the linear oscillations, and the latter one
determines the emergent escapes from the region defined by Γ0.

4.5 Remarks

The analysis performed above is applicable to the cases of multiple-mode and lo-
cal disturbances. When considering any disturbance with N − 1 eigenmodes for the
system (24), we can re-write it as follows:

dδ

dt
= ω,

dω

dt
= pm − beff(c) sin δ − b

N
e(t, δ),

⎫
⎪⎪⎬

⎪⎪⎭
(31)

where e(t, δ) is the time-dependent term and has zero time average. The effective
coefficient beff(c) for c = (c1, . . . , cN−1)

T is defined as

beff =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b
N

∑N
i=1(

∏N/2−1
j=1 J0(eij cj + ei,N−j cN−j ))J0(ei,N/2cN/2)

if N ≥ 2 is even,

b
N

∑N
i=1

∏(N−1)/2
j=1 J0(eij cj + ei,N−j cN−j )

if N ≥ 3 is odd.

(32)

The system (31) is derived in Appendix B. Thus, the general situation of multiple-
mode initial excitations leads to motion of a point in a sinusoidal-shape potential
under excitation with different (incommensurate) frequencies Ωi (i = 1, . . . ,N − 1).
Note that each term in e(t, δ) contains at least one Bessel function Jk(eij cj ) (k > 0).
For small cj , the order of b · e(t, δ)/N is expected to be smaller than that of the
coefficient of sin δ, because the Bessel function Jk(x) for k > 0 converges to zero as
x → 0. Thus the planar system (including the case of a single nth mode disturbance
c = (cn)) can be treated with Melnikov’s method (Melnikov 1963; Guckenheimer
and Holmes 1983).

The derivation of the reduced dynamical system (24) for collective variables does
not depend on network properties such as topology and strength of interconnections
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Fig. 8 The New England (NE) 39-bus test system (Athay et al. 1979; Pai 1989). The generators are
denoted by circled numbers

(weight). They control the parameters of eigenvectors eij and eigenfrequencies Ωj

only. Hence, the system (24) is applicable to a classical power grid model with an
arbitrary network structure, and the phase plane analysis performed above is useful
for analysis of the CSI phenomena in general power grids. This suggests that the
system (24) may be used for design of power grids with stability specifications, for
example, to minimize the rate of occurrence in CSI.

5 Analysis of a Practical Test System

In this section, we demonstrate that CSI occurs in the New England (NE) test system
shown in Fig. 8. The test system consists of 10 generation units (equivalent 10 syn-
chronous generators), 39 buses, and AC transmission lines. Most of the buses have
constant active and reactive power loads. The details of the grid, such as unit rating
and line data, are available in Pai (1989). In Sect. 5.1 we numerically observe the CSI
phenomenon by using the swing equations. In Sect. 5.2 we investigate the phenom-
enon in the NE test system by using the notions of collective variables and partial
linearization, and of POD.

5.1 Numerical Simulation

First of all, we introduce the equations of motion for the NE test system. Assume
that generator 1 is the infinite bus in order to explicitly represent the outside of the
system. The short-term swing dynamics of generators 2–10 are represented by the
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swing equations (Kundur 1994):

dδi

dt
= ωi,

Hi

πfb

dωi

dt
= −Diωi + Pmi

− GiiE
2
i −

10∑

j=1,j �=i

EiEj

{
Gij cos(δi − δj ) + Bij sin(δi − δj )

}
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

where the integer label i = 2, . . . ,10 denotes generator i. The variable δi is the an-
gular position of rotor in generator i with respect to bus 1 and it is in radians [rad].
The variable ωi is the deviation of rotor speed in generator i relative to system an-
gular frequency 2πfb = 2π × (60 Hz) and is in radians per second [rad/s]. We set
the variable δ1 to a constant, because bus 1 is assumed to be the infinite bus. The
parameters fb, Hi , Di , Pmi , Ei , Gii , Gij , and Bij are in per-unit system except for
Hi and Di in seconds [s], and for fb in Hertz [Hz]. The mechanical input power
Pmi of generator i and the internal voltage Ei of generator i are normally constant
for short-term rotor angle stability (Kundur 1994). The parameter Hi is the per-unit
time inertia constant of generator i, and Di is its damping coefficient. The parameter
Gii is the internal conductance, and Gij + jBij (where j is the imaginary unit) is the
transfer impedance between generators i and j . They are the parameters that change
with network topology changes. Electrical loads are simply modeled as passive im-
pedances.

We numerically simulate coupled swing dynamics of generators 2–10. All numer-
ical simulations discussed in this section were performed using MATLAB/Simulink:
for example, the ode45 function was used for numerical integrations of (33). The
voltage Ei and the initial condition (δi(0),ωi(0) = 0) for generator i are fixed using
power flow computation. The inertia constant Hi is the same as in Pai (1989). For
the simulation we use the following load conditions: Pmi and constant power loads
are 50% at their rating. The damping Di is fixed at 0.005 s for each generator.1 The
elements Gii , Gij , and Bij are calculated using the data in Pai (1989) and the result
of power flow computation. We use the following fault condition: each generator op-
erates at a steady condition at t = 0 s. Then a three-phase fault happens at point F
near bus 16 at t = 1 s − 20/(60 Hz) = 2/3 s, and line 16–17 trips at t = 1 s. The fault
duration is 20 cycles of a 60-Hz sine wave. The fault is simulated by adding a small
impedance (10−7j) between bus 16 and the ground.

Figure 9 shows the time responses of angular position δi and relative rotor speed
ωi of generator i. Before t = 2/3 s (the onset time of fault), each generator operates at
a steady condition. In the fault duration from t = 2/3 s to 1 s, all the generators 2–10
accelerate from their steady conditions. After the line trip at t = 1 s, they respond in
an oscillatory manner. These oscillations are bounded during the period from t = 1 s
to 8 s. At about time 8 s they begin to grow coherently. That is, every generator loses

1When the relative rotor speed ωi is in per-unit system with base 2πfb, the damping coefficient Di =
0.005 s is equal to 1.88 in per-unit system with its base 1/(2πfb).
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Fig. 9 Coupled swing dynamics in the swing equations (33) of the New England (NE) 39-bus test system.
The upper three plots are for angular positions δi of the nine generators, and the lower plots are for the
relative rotor speed ωi

synchronism with the infinite bus at the same time. This corresponds to the growth of
the amplitude of the inter-area mode oscillation between the NE test system and the
infinite bus, namely, the outside of the grid. This is typical of the CSI phenomenon.

Note that for the loop grid in Sects. 2–4, CSI exhibits a dynamical transition
from inter-machine mode oscillation to the instability of the inter-area mode oscil-
lation. The non-existence of an inter-machine mode in the NE test system is based
on the model structure of the grid. The swing equations (33) have all-to-all coupling,
and the equations (1) for the loop grid have nearest-neighbor coupling. The all-to-
all coupling—which leads to the lack of the inter-machine mode—physically comes
from the model assumption and grid topology: in the NE test system, we derive the
swing equations by considering transformer reactances and transient reactances in



J Nonlinear Sci (2011) 21: 403–439 427

every generator. In addition, the graph structure of the NE test system results in the
all-to-all and heterogeneous coupling structure in (33).

5.2 Numerical Analysis

In this section we analyze the instability phenomenon observed in the NE test sys-
tem. We introduce the notion of collective variables and describe the simplification
of the problem rendered by the linearization of interconnection terms, as developed
in Sect. 4. These are the same tools used for analysis of the simple loop grid. Fur-
thermore, we use the POD (Proper Orthonormal Decomposition) and obtain a set of
empirical modes of the phenomenon.

5.2.1 Collective Dynamics

In Sect. 4 we showed that CSI involved the divergent motion in the projection of
the full-system dynamics onto the phase plane of collective variables. The collective
variables are known as the COA (Center-Of-Angle) variables (Athay et al. 1979).
Here we discuss the relationship between the phenomena uncovered in the loop grid
and observed in Fig. 9. For the NE test system, the COA δCOA and its time derivative
ωCOA are defined as

δCOA =
10∑

i=2

Hi

H
δi, ωCOA = dδCOA

dt
=

10∑

i=2

Hi

H
ωi, (34)

where H = ∑10
i=2 Hi . The variables δCOA and ωCOA describe the averaged motion of

all the generators in the test system. Figure 10 plots the trajectory of (33) showing

Fig. 10 Collective dynamics of the New England (NE) 39-bus test system. This plot corresponds to the
dynamics of Center-Of-Angle (COA) variables for the phenomenon observed in Fig. 9
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the phenomenon in Fig. 9 in the δCOA–ωCOA plane. The trajectory starts near the ori-
gin at time 0 s, makes a couple of almost periodic loops around the initial point and
finally diverges. This behavior of collective variables is similar to that investigated in
the loop grid (see Figs. 4(b) and 5(b)), in which a projected trajectory escapes the re-
gion of bounded motions due to a perturbation originating from the interconnections
between individual generators.

5.2.2 Partial Linearization

In Sect. 4 we studied the swing equations (3) with weak local nonlinear and
strong linear interconnection terms. The local term pm − sin δi represents the in-
teraction of an individual generator with the infinite bus. The interconnection term
bint{(δi−1 − δi) − (δi − δi+1)} represents the interaction between nearest-neighbor
generators. The value of bint/pm in Sects. 3 and 4 is of order 102. Thus, the mag-
nitude of the interaction between any two generators is much larger than that of the
interaction of an individual generator with the infinite bus. By linearizing the inter-
connection term in (33), we can evaluate the magnitudes of the local and intercon-
nection terms in a way consistent with Sect. 4. We assume that in the NE test system,
the difference between any two swings δi(t) and δj (t) (i, j = 2, . . . ,10) is small: for
a small parameter ε,

δi(t) − δj (t) = εzij (t), (35)

where zij (t) is the time-dependent function containing high harmonic components.
By substituting the small difference εzij (t) into the interconnection term of (33), we
have the following first-order approximation:

Hi

πfb

d2δi

dt2
≈ −Di

dδi

dt
+ Pi − fi(δi) −

10∑

j=2

Aij δj , (36)

where Pi is the effective input power of generator i, defined as

Pi = Pmi −
10∑

j=2

EiEjGij . (37)

Also the nonlinear function fi(δi) is defined as

fi(δi) = EiE1
{
Gi1 cos(δi − δ1) + Bi1 sin(δi − δ1)

}
. (38)

The constant Aij is the element of the interconnection matrix A, defined by

Aij =
{∑10

k=2,k �=i EiEkBik if i = j ,

−EiEjBij otherwise.
(39)

On the right-hand side of (36), the last term, −∑
Aij δj , represents the interaction

between generator i and the other generators in the NE test system and hence the



J Nonlinear Sci (2011) 21: 403–439 429

Table 1 Numerical result of the parameter Pi and L1-norm ‖fi‖1 for the local effect

i = 10 2 3 4 5 6 7 8 9

Pi −1.1632 1.0024 1.3686 0.3357 1.1662 0.7714 0.6754 0.9787 1.8524

‖fi‖1 11.6381 5.8010 6.1909 2.4759 0.9802 2.4050 2.0003 5.7453 4.0140

interconnection (or inter-machine) effect. The other terms on the right-hand side of
(36), except for the constant Pi , represent the interaction of generator i with the in-
finite bus and hence the inter-area effect. Note that, dynamically, the inter-area terms
depend only on the local angular position δi . We assume that the damping coefficient
Di is relatively small. To quantify the relative contributions of the linear interconnec-
tion and the local effects, we calculate maximum values of these terms, excluding the
small damping contribution. For the estimation of interconnection effect, we use the
induced 1-norm of the matrix A, denoted by ‖A‖1 as follows:

‖A‖1 = max
i

2|Aii |. (40)

The induced norm of A gives a measure of how much the corresponding linear map
affects the swing dynamics of generators. For the local effect, we calculate the para-
meter Pi and L1-norm of the continuous function fi(δi) on the circle T

1, denoted by
‖fi‖1. Since EiE1 is positive, the L1-norm of fi is given by

‖fi‖1 = 2EiE1
{
(Gi1 cos δ1 − Bi1 sin δ1)

2 + (Gi1 sin δ1 + Bi1 cos δ1)
2}1/2

. (41)

The calculation of ‖fi‖1 is given in Appendix C. Using the current parameters, the
1-norm ‖A‖1 becomes 20.9311. The parameter Pi and L1-norm ‖fi‖1 are shown
in Table 1 and are of order 1, except for ‖f10‖1. The averages of Pi and ‖fi‖1 are
much smaller (one-fifth) than the 1-norm ‖A‖1. Hence, in the NE test system, the
magnitude of the interaction between two generators is larger than that of a generator
with the infinite bus. This clearly shows that in the NE test system, we have a dy-
namical system with weak local and strong interconnection terms for which the CSI
phenomenon is relevant. Note that the interconnection term is strong here due to the
topology of the interaction of generators, where many generators affect the dynamics
of any single one, as opposed to the loop grid in Sect. 4, where the strength of the
interconnection between the nearest-neighbors caused the CSI phenomenon.

5.2.3 Empirical Mode Decomposition

In Sect. 4 we reformulated (3) by using the analytical formula of the basis vectors
in the normal modes of oscillations determined by the linear interconnection term
and showed that the process of CSI was decomposed into one nonlinear mode and
linear oscillatory modes. For (33) and (36), it is difficult to find analytical formulas
of the normal modes determined by the interconnection terms. In this section, we
decompose the phenomenon in Fig. 9 using POD, which was used in the past in the
context of power grids (Parrilo et al. 1999; Messina and Vittal 2007).
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POD provides a basis for the modal decomposition of an ensemble of functions,
such as data obtained in the course of experiments, and it provides energy-wise,
the most efficient way (however, perhaps not from a dynamical perspective (Mezić
2005a)) of capturing the dominant components of the process (Holmes et al. 1996;
Feeny and Kappagantu 1998). Consider finite simulation outputs of angular posi-
tions, {δi(nTs)} (i = 2, . . . ,10, n = 0, . . . ,Ns − 1) where Ts is the sampling period of
outputs, and Ns is the number of samples. The outputs are represented by

δi(nTs) =
9∑

j=1

eij aj (nTs). (42)

We require the time-invariant basis vectors {eij } (i = 2, . . . ,10) to be orthonormal
and closest in energy norm to the output, and call them Proper Orthonormal Modes
(POMs). Every vector {eij } is obtained by computing the correlation matrix R from
{δi(nTs)} and by finding the orthonormal eigenvectors of R: see Feeny and Kappa-
gantu (1998) for details. The time-varying coefficient aj (j = 1, . . . ,9) in the POD
holds the following correlation property: 〈ajak〉 = 〈a2

j 〉 (if j = k) or 0 (otherwise),

where 〈•〉 represents a time average of {•}. POMs are ordered by 〈a2
j 〉 ≥ 〈a2

j+1〉.
POMs are obtained using Ns = 5341 snapshots in the simulation outputs partially

shown in Fig. 9. The time interval is [1 s,90 s], and Ts is equal to 1/(60 Hz). Fig-
ure 11 shows the projection of the trajectory of (33) onto subspaces spanned by every
POM. The projected trajectory (aj (nTs), bj (nTs)) for the j th POM (j = 1, . . . ,9) is
computed as

aj (nTs) =
10∑

i=2

eij δi(nTs), bj (nTs) =
10∑

i=2

eijωi(nTs), (43)

where n = 0, . . . ,Ns − 1 (because of the smallness of the damping term we use the
same modes for the angles and their derivatives). The last two rows of Fig. 11 show
the power spectra of the time series of the coefficients aj (j = 1, . . . ,9). In the first
POM, the trajectory shows a transition from periodic motion to a divergent one. This
behavior is similar to the behavior of the nonlinear mode described in Sect. 4 (see
Figs. 4(b) and 5(b)). The trajectory of the first POM coincides with the trajectory
projected onto the COA plane in Fig. 10 by rotating it by 180◦ around the origin. On
the other hand, in the other POMs, each trajectory shows a periodic or quasi-periodic
motion. This is confirmed by looking at the results of power spectra presented in the
last two rows of Fig. 11, where each power spectrum possesses one peak or only a
few peaks. This modal decomposition is the same as that for the loop grid obtained
in Sect. 4 (see Fig. 6). Hence we can say that the dynamic phenomenon shown in
Fig. 9 results from the interaction of one non-linear mode and many linear oscillatory
modes.

5.3 Summary and Remarks

Let us summarize the above analysis of the NE test system. The results in Sects. 5.2.1
and 5.2.3 show that for the phenomenon shown in Fig. 9, the first POM dynamics co-
incide with the COA dynamics. The results in Sects. 5.2.2 and 5.2.3 demonstrate that
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Fig. 11 Projected trajectories onto Proper Orthonormal Mode (POM) planes and power spectra of time
series of coefficients aj during [1 s, 90 s] with sampling frequency 60 Hz. Zero-frequency components for
the second to ninth POM are not shown here

we have the dynamical system with a nonlinear mode, which is weak compared with
linear oscillatory modes. The weak nonlinear mode comes from the interaction of in-
dividual generators with the infinite bus and is determined by the nonlinear function
fi(δi). The strong linear modes come from the interaction between generators whose
magnitude is determined by the matrix A and whose magnitude is much larger than
the magnitude of the nonlinear function fi(δi). They act as perturbations to the weak
nonlinear mode. The above dynamical structure is equivalent to that in the simple
loop grid in Sects. 2–4. Thus we can say that the phenomenon shown in Fig. 9 is
CSI, which is observed for the loop grid, and occurs in the dynamical system with a
nonlinear mode that is weak compared to linear oscillatory modes.

The simulations performed in this section show that the CSI is robust in the sense
that the phenomenon persists under additional physical refinements of the swing
equations. The NE test system is an benchmark example, being a slight simplification
of the real NE grid. Although the mathematical models are derived under reasonable
assumptions for short-term rotor swing stability, they do not necessarily represent
true dynamics of the NE grid. Here it is valuable to discuss whether the CSI in Fig. 9
can occur in a real power grid. The fault duration, which we set at 20 cycles in the



432 J Nonlinear Sci (2011) 21: 403–439

Fig. 11 (Continued)

simulations, is normally less than 10 cycles. Such a long duration may imply the
malfunction of protection systems, and hence the CSI in Fig. 9 may be regarded as
a rare event in short-term swing dynamics. However, in Susuki et al. (2011) we will
show that in a system of interconnected power grids, CSI is observed in the case of a
fault duration of less than ten cycles. Furthermore, in the simulations we ignore any
effect of the load dynamics. The effect is normally negligible because it does not af-
fect short-term swing dynamics (Kundur 1994) and will not cause any drastic change
of simulation results. Thus we suggest that CSI is a phenomenon that can occur for
various configurations close to real power grids.

In Susuki et al. (2009) we derived a reduced-order model for analyzing CSI using
the Galerkin method. The derived model is effective for analyzing the CSI showing
an immediate growth of all angular positions without any multi-swings. That model
is not effective for analyzing the CSI shown in Fig. 9, because we excluded all the
effects of high-order (periodic or quasi-periodic) POMs to the first POM, and the
derived model fails to reproduce the transition from a periodic motion to a divergent
one, observed in the first POM. Although the reduced-order model is not necessarily
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invalid for all the CSI phenomena and inter-area oscillations, the current analysis
extends the validity to the case when several periodic swings are first experienced.

6 Conclusions

This paper was devoted to analytical and numerical analysis of CSI in the nonlinear
swing equations (3) and (33). The swing equations (3) exhibit CSI of the rudimen-
tary power grid in Fig. 1, in which after being subjected to a local disturbance, all the
machines in the grid first show intermediate multi-swings (or inter-machine mode os-
cillations) and finally lose synchronism with the infinite bus in a coherent manner (or
destabilize the inter-area mode oscillation). We developed the reduced-order, planar
system (26) that describes the behavior of the nonlinear mode and characterizes the
CSI. This model provides a dynamical mechanism of CSI: it is related to the escape
from a potential well, or more precisely, to exit across a separatrix in the dynami-
cal system for the amplitude of the weak nonlinear mode. The escape phenomenon
can be analytically evaluated using phase plane analysis of the reduced-order system
(26). Hence we successfully explain the CSI phenomenon by using (26) and regard
it as a minimal mathematical model of CSI. One contribution of this paper was to
develop the model that not only exhibits CSI but also explains its dynamics as the
compound and global phenomenon of oscillations in the local plant mode, the multi-
swing (inter-machine) mode, and the inter-area mode. In addition, we show the CSI
phenomenon in the New England (NE) test system. The other contribution of this
paper was to demonstrate that CSI is an instability phenomenon that can occur for
various realistic power grids.

As mentioned in Sect. 1, there are numerous references of instability phenomena
related to CSI: inter-area mode and multi-swing instabilities. Again we comment the
relationship between these and our studies. Inter-area mode oscillation is studied as
modal interaction via nonlinear quadratic terms in Tamura and Yorino (1987), Vittal
et al. (1991), Lin et al. (1996) and by parameter change in Dobson et al. (2001). These
studies are for oscillatory instability of a group of generators, that is, development of
inter-area mode oscillation. Our result pertains to the separation or loss of synchro-
nism of a group of generators, that is, the divergence of inter-area mode oscillation.
The divergence is not local in the sense that it does not happen due to an infinitesi-
mally small perturbation around an equilibrium. Hence, the mechanism behind it is
different from the modal interaction developed in Tamura and Yorino (1987), Vittal
et al. (1991), Lin et al. (1996) and local bifurcation of stable equilibria (Dobson et al.
2001). Next, multi-swing instability has been characterized as the effect of voltage
control to cause an unstable limit cycle (Vournas et al. 1996) and a tangled separatrix
(Chu 2005), and interactions of inter-area and local plant modes (IEEE/CIGRE Joint
Task Force on Stability Terms and Definitions 2004). Our mechanism is an exit across
the separatrix, akin to Vournas et al. (1996), Chu (2005); however, it is more com-
plicated and is obtained for multi-machine power grids. Our result analytically gives
a novel dynamical perspective of the multi-swing instability, which has been recog-
nized as the modal interaction (IEEE/CIGRE Joint Task Force on Stability Terms and
Definitions 2004).
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Many follow-up studies to the present one are possible. One is to apply the de-
veloped theory to the dynamics of general nonlinear swing equations and to the
cascading dynamics in real power grids, as mentioned in Sect. 1. This is partly
performed in Sect. 5. Another is to explore the dynamics of small-scale electric-
ity grids with the current approach. The condition of a strong linear network and
weak local nonlinearity holds in the cases that grid components are connected via
short transmission line, that their rating is smaller than the capacity of grid, and
that they operate onto a large-scale power grid via a long transmission line. These
can be indeed found in emergent technologies of electricity grid, for example, wind-
farms and microgrids. A windfarm has many small and closely coupled induction
generators that operate in parallel and far from the heavily loaded area. This is ex-
actly the same network configuration as that in this paper. A microgrid is an au-
tonomous small-scale grid based on dispersed generation and control architecture,
and it has many power sources operating in parallel. If many small grid components,
including individual generation units and small grid itself, are connected under syn-
chronization based on power electronics equipment (see e.g. Blaabjerg et al. 2006;
Hikihara et al. 2007), then they may behave like the small synchronous generators in
this paper. Of course, additional features of small-scale grids need to be included in
the model description, because we cannot ignore the presence of transmission con-
ductance (dissipation) and power electronics equipment that may play a role in avoid-
ing coherent swings of rotating machines. Our analysis in this paper, however, does
show that small-scale electricity grids may possess an inherent instability differing
from those of large-scale, sparse power grids.
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Appendix A: Dimensional Analysis for Swing Equations (1)

In this section we derive the non-dimensional swing equations (1). Under the assump-
tions (i)–(v) in Sect. 2, the short-term dynamics of generator i are represented by the
nonlinear swing equations (Kundur 1994):

2HPr

ωb

d2δi

dt2
= Pm − Pei (δ1, . . . , δN ), (44)

where i = 1, . . . ,N , and N is the number of identical generators in the loop net-
work. The variable δi is the angular position of rotor with respect to the infinite bus
of generators labeled with integer values. The mechanical input power Pm to each
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generator in Watts [W] is assumed to be constant for short-term rotor swing stability
analysis (Kundur 1994). The electrical output Pei of the generator i in Watts [W] is a
function of the angular positions δi . The parameters H , Pr, and ωb are constant and
are determined by grid and machine settings. The parameter H is the per-unit time
constant of the generator in seconds [s], Pr its the rated active power in Watts [W],
and ωb the nominal system frequency in radians per second [rad/s]. Now, using the
non-dimensional time t∗ = t

√
ωb/(2H), we have

d2δi

d(t∗)2
= Pm

Pr
− 1

Pr
Pei (δ1, . . . , δN ). (45)

The last term on the right-hand side corresponds to the non-dimensional electrical
output, represented by

1

Pr
Pei (δ1, . . . , δN ) = V ∗V ∗

inf

X∗
inf

sin δi + V ∗2

X∗
int

{
sin(δi − δi−1) + sin(δi − δi+1)

}
. (46)

The first-term on the right-hand side represents the transfer of active power between
generator i and the infinite bus, and the second and third terms the transfer of active
power between two generators. The parameters V ∗, V ∗

inf, X∗
inf, and X∗

int are constant
and in per-unit system. The constant V ∗ is the terminal voltage of a generator, V ∗

inf the
voltage of the infinite bus, X∗

inf the impedance of AC transmission lines joining a gen-
erator and the infinite bus, and X∗

int the impedance of AC transmission lines joining
generators i and i+1 in the loop network. We now denote by pm the non-dimensional
mechanical input power Pm/Pr, by b the non-dimensional maximum power transfer
V ∗V ∗

inf/X∗
inf to the infinite bus, and by bint the non-dimensional maximum power

transfer V ∗2/X∗
int between two generators in the loop network. Thus, using the non-

dimensional rotor speed difference ω∗
i = dδ∗

i /dt∗ and removing ∗ from the variables,
we obtain the non-dimensional swing equations (1) with the four characteristic pa-
rameters pm, b, bint, and N . The parameter b becomes unity if we assume that the
rated active power Pr of the generator is identical to the maximum power transfer to
the infinite bus. The value of b = 1 is used in Sects. 3 and 4.

Appendix B: Derivation of Reduced-Order System (31)

We derive the reduced-order system (31) for any disturbance with N −1 eigenmodes.
Recall that the set of N − 1 eigenfrequencies, {Ωj }N−1

j=1 , obey the property Ωj =
Ωj−N for j = 1, . . . ,N/2 − 1 (if N ≥ 2 is even) or for j = 1, . . . , (N − 1)/2 (if
N ≥ 3 is odd). Then, we have

N−1∑

j=1

eij cj cosΩj t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑N/2−1
j=1 c̃j cosΩj t + ei,N/2cN/2 cosΩN/2t

if N ≥ 2 is even,
∑(N−1)/2

j=1 c̃j cosΩj t

if N ≥ 3 is odd,

(47)
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where c̃j = eij cj + ei,N−j cN−j for j �= N/2 and c̃j = ei,N/2cN/2 for j = N/2. By
defining the new time-dependent variable φn(t) by

φn(t) =
N−1∑

j=n

eij cj cosΩj t, (48)

we have the following formula:

(
sinφ1(t)

cosφ1(t)

)
=

⎧
⎪⎨

⎪⎩

(
∏N/2−1

j=1 Aj (t))AN/2(t)
(0

1

)
if N ≥ 2 is even,

(
∏(N−1)/2

j=1 Aj (t))
(0

1

)
if N ≥ 3 is odd,

(49)

where the time-dependent matrix Aj (t) belongs to SO(2) and is given by

Aj (t) =
(

cos(c̃j cosΩj t) sin(c̃j cosΩj t)

− sin(c̃j cosΩj t) cos(c̃j cosΩj t)

)
. (50)

Here we recall the Jacobi–Anger expansion for the Bessel function Jk(·), namely

cos(c̃j cosΩj t) = J0(c̃j ) + 2
∞∑

k=1

(−1)kJ2k(c̃j ) cos 2kΩj t,

sin(c̃j cosΩj t) = −2
∞∑

k=1

(−1)kJ2k−1(c̃j ) cos(2k − 1)Ωj t.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(51)

Here, since the N − 1 eigenfrequencies Ωj are incommensurate, by using in (49)
the sum and difference formulas of the trigonometric functions, we see that the time
average of sinφ1(t) over infinite time is identically zero, i.e.

〈
sinφ1(t)

〉 = lim
τ→∞

1

τ

∫ τ

0
sinφ1(t)dt

= 0. (52)

On the other hand, the time average of cosφ1(t) is generally non-zero and is given by

〈
cosφ1(t)

〉 =
⎧
⎨

⎩

(
∏N/2−1

j=1 J0(c̃j ))J0(c̃N/2) if N ≥ 2 is even,

∏(N−1)/2
j=1 J0(c̃j ) if N ≥ 3 is odd.

(53)

Thus we have the effective coefficient beff(c) in the system (31), defined as

beff(c) = b

N

N∑

i=1

〈
cosφ1(t)

〉
, (54)
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where c = (c1, . . . , cN−1)
T. In addition to this, we obtain the concrete formula of

e(t, δ) as

e(t, δ) =
N∑

i=1

(
cosφ1(t) − 〈

cosφ1(t)
〉)

sin δ +
N∑

i=1

sinφ1(t) cos δ. (55)

By the construction of e(t, δ), we have
〈
e(t, δ)

〉 = 0. (56)

Each term of e(t, δ) contains at least one Bessel function Jk(c̃j ) (for k > 1 and some
j ), because of the formula (49) and the Jacobi–Anger expansion. Thus we have the
reduced-order system (31).

Appendix C: Calculation of L1-Norm of fi

The L1-norm of the function fi(δi) defined on T
1 is calculated as follows:

‖fi‖1 =
∫ +π

−π

∣∣fi(δi)
∣∣dδi

= EiE1

∫ π

−π

∣∣Gi1 cos(δi − δ1) + Bi1 sin(δi − δ1)
∣∣dδi

= EiE1

∫ π

−π

∣∣(Gi1 cos δ1 − Bi1 sin δ1) cos δi

+ (Gi1 sin δ1 + Bi1 cos δ1) sin δi

∣∣dδi

= EiE1
{
(Gi1 cos δ1 − Bi1 sin δ1)

2

+ (Gi1 sin δ1 + Bi1 cos δ1)
2}1/2

∫ +π

−π

∣
∣sin(δi + αi)

∣
∣dδi

= EiE1
{
(Gi1 cos δ1 − Bi1 sin δ1)

2

+ (Gi1 sin δ1 + Bi1 cos δ1)
2}1/2 · 2, (57)

where

tanαi = Gi1 cos δ1 − Bi1 sin δ1

Gi1 sin δ1 + Bi1 cos δ1
. (58)
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Eisenhower, B., Mezić, I.: Actuation requirements of high dimensional oscillator systems. In: Proceedings
of the 2008 American Control Conference, Seattle, USA, June, pp. 177–182 (2008)
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