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Abstract. In this paper we discuss two issues related to model reduction of deterministic or stochastic processes. The first is
the relationship of the spectral properties of the dynamics on the attractor of the original, high-dimensional dynamical system
with the properties and possibilities for model reduction. We review some elements of the spectral theory of dynamical systems.
We apply this theory to obtain a decomposition of the process that utilizes spectral properties of the linear Koopman operator
associated with the asymptotic dynamics on the attractor. This allows us to extract the almost periodic part of the evolving
process. The remainder of the process has continuous spectrum. The second topic we discuss is that of model validation, where
the original, possibly high-dimensional dynamics and the dynamics of the reduced model – that can be deterministic or stochastic
– are compared in some norm. Using the “statistical Takens theorem” proven in (Mezić, I. and Banaszuk, A. Physica D, 2004)
we argue that comparison of average energy contained in the finite-dimensional projection is one in the hierarchy of functionals
of the field that need to be checked in order to assess the accuracy of the projection.
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1. Introduction

Since we now understand that – barring a “blinding new technology” – the power of computers that will
be available in the foreseeable future will not allow us to compute the details of physical interactions
in many of the current problems in biological and physical sciences, such as molecular conformation
or turbulence, the problem of model reduction has percolated to the top of the pile of open problems
in Applied Mathematics. The number of different approaches in this direction is large, with some
of the work relying on decompositions commonly used in probability theory – such as the proper
orthogonal decomposition (POD) (or Karhunen–Loeve, or singular value decomposition) [14], and other
projection methods such as the Mori–Zwanzig formalism and optimal prediction [8], the formalism
that involves replacing higher-order nonlinear terms with stochastic processes [15], scale-separation
and averaging methods, balanced truncation methods developed for linear control systems, operator-
theoretic projection methods and coarse time-stepping methods. A good summary of a number of these
is provided by Givon et al. [12].

In these approaches an analysis of how the dynamics on the attractor of the system that is being
reduced affects the reduction is seldom found although attempts have been made [5]. An exception
is the approach in [1] that uses directly the asymptotic dynamics on the attractor for projection and
methods of Dellnitz and collaborators (see e.g. [10]) that utilizes properties of the Perron–Frobenius
operator to reduce dynamics to a Markov chain. The formalism in this paper (based on our previ-
ous work in [17]) is based on the adjoint of the Perron–Frobenius operator, the so-called Koopman
operator.
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In this paper we discuss two issues important for model reduction that are directly related to the
asymptotic properties of the dynamics. The first is the relationship of the spectral properties of the
dynamics on the attractor of the original, high-dimensional dynamical system with the properties and
possibilities for model reduction. We review some specifics of the spectral theory of dynamical systems
– in the form developed in [17] – in Section 2. We apply this theory to obtain a new type of the
decomposition, that combines spectral and POD decomposition in Section 3. The second topic we
discuss – in Section 4 – is that of model validation, where the original, possibly high-dimensional
dynamics and the dynamics of the reduced model – that can be deterministic or stochastic – are compared
in some norm. In the Appendix we review the notion of phase–space partitions.

2. Spectral Theory of Dynamical Systems

2.1. PRELIMINARIES

We consider a dynamical system in discrete time defined by

xi+1 = T (xi ), (1)

where i ∈ Z, xi ∈ M , a compact Riemannian manifold endowed with the Borel sigma algebra and a
measure ν. We assume that T : M → M is measurable map. Let f be a real or complex function on M.
We call the function f ∗ the time average of a function f under T if

f ∗(x) = lim
n→∞

1

n

n−1∑

i=0

f (T i x),

almost everywhere (a.e.) with respect to the measure ν on M. The time average f ∗ is a function of the
initial state x. A good reference for the foregoing definitions is [16]. Note that by Birkhoff’s pointwise
ergodic theorem [19], if T is measure-preserving, f ∗ exists for every function f ∈ L2

ν(M) (in fact this is
true for any f ∈ L1

ν(M), but we are going to need Hilbert space properties later). The whole formalism
that we develop is valid for B-regular systems [17]: those for which f ∗ exists for every continuous f.
This clearly includes systems that preserve a smooth invariant measure such as Hamiltonian systems,
but also includes systems that possess a physical measure [31]. A physical measure of the system
T : M → M is a measure µ on M such that, for every continuous φ : M → R, for almost every m ∈ M
with respect to ν (the original measure on M!)

lim
n→∞

1

n

n−1∑

j−0

φ(T j (m)) =
∫

M
φ(m) dµ(m).

Note that this can also stand as the definition of ergodicity of the measure µ if we replace the condition
“for almost every m ∈ M with respect to ν” with “for almost every m ∈ M with respect to µ”. In the
case when M is a positive Lebesgue measure subset of R

n, ν is typically chosen to be the restriction of
the Lebesgue measure to that subset. In the case when M is a smooth manifold endowed with a volume
form, ν is usually taken to be the volume of a set. From this point on we assume that µ is an invariant
measure of a B-regular system. The consideration of the original measure ν on M is done here only to
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insure that the results are valid for almost every initial condition we are interested in (and thus with
respect to an a-priori measure ν).

2.2. SPECTRAL DECOMPOSITION OF THE KOOPMAN OPERATOR

We now introduce the Koopman operator U : L2
µ → L2

µ (and from this point on we drop the dependence
of the function space on µ from the notation), which is defined by

U f (x) = f ◦ T (x),

Note that f ∗ is an eigenfunction corresponding to eigenvalue 1 of the Koopman operator as f ∗ is
constant on orbits i.e. U f ∗(x) = f ∗(x). Since U is unitary [19], its spectrum is restricted to the unit
circle in the complex plane. U admits a unique decomposition into its singular and regular parts [20],

U = Us + Ur ,

where Us is defined on H1 ⊂ L2(M) and Ur on its orthogonal complement, H2. Moreover, Us has a
pure discrete spectrum, determined by the eigenvalues of U, and Ur has a continuous spectrum. In fact,

Us =
∑

i

λi Pλi , (2)

where λi are eigenvalues, and Pλi the projection operators to the eigenspace associated with the eigen-
value λi . Also,

Ur =
∫

S1
ei2πθd E(θ ), (3)

where the spectral measure dE(θ ) is continuous.

2.3. INVARIANT PARTITIONS AND EIGENFUNCTIONS OF THE KOOPMAN OPERATOR

Throughout the paper we will assume that T is ergodic with respect to µ since that restriction is easily
removed by considering the notion of the ergodic partition [16, 18]. It is important to notice that notion
of ergodicity here is meant in the sense of existence of a physical measure (see (2.1) and the comment
after that equation) and thus in particular systems that are dissipative with respect to ν can be ergodic
with respect to µ (Example: x ′ = −λx with |λ| < 1, defined on the interval I = [0, 1], where ν is the
Lebesgue measure on I and µ is the Dirac delta measure at 0).

Since T is ergodic with respect to µ, every eigenvalue of U is simple [26]. The operator PT : L2 → L2

such that PT ( f ) = f ∗ is called the time-averaging operator. It can be considered as a member of a
family of operators Pω

T ,

[
Pω

T ( f )
]
(x) = f ∗

ω (x) = lim
n→∞

1

n

n−1∑

j=0

ei2π jω f (T j (x)),

where ω ∈ [−0.5, 0.5). Note that PT = P0
T . Note that f (T j (x)) is the time series of the observable f on

the trajectory of the system T starting at the point x at time 0. Thus, for fixed x, f ∗
ω (x) is just the Fourier

transform of this time series, and it is simple to calculate using FFT.
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Like the time-averages, the functions f ∗
ω also play an important role in the spectral analysis of U:

they are the eigenfunctions associated with eigenvalues e−i2πω [19]:

U f ∗
ω (x) = lim

n→∞
1

n

n−1∑

j=0

ei2π jω f (T j+1(x))

= e−i2πω lim
n→∞

1

n

n−1∑

j=0

ei2π ( j+1)ω f (T j+1(x)) = e−i2πω f ∗
ω (x).

Eigenfunctions of U (and thus of Us) can only be of the form f ∗
ω : in fact a nonzero Pω

T is the orthogonal
projection operator onto the eigenspace of U associated with the eigenvalue e−i2πω (see the first remark
on p. 215 in [30]). It is easy to deduce using methods in [29] that existence of these averages is true
for all B-regular T ’s, as the existence of harmonic averages depends only on the existence of certain
autocorrelations which in turn depends on the existence of time-averages of functions. Pω

T is nonzero
only on at most a countable set of ω’s (Lemma in Section 4 of [29]). But, when it is nonzero, it can
provide substantial new information about the process that we are studying. As an application we
consider how eigenfunctions of U are related to invariant partitions of the system. Clearly, the level sets
of eigenfunctions at eigenvalue 1 – the time averages – produce partition of the phase space into invariant
sets [18]. Consider an eigenfunction ofU, f ∗

ω associated with the eigenvalue e−i2πω withω �= 0. Consider
the partition ζ f ∗

ω
of the phase space into the level sets of f ∗

ω , consisting of sets Bc = ( f ∗
ω )−1(c), c ∈ S1.

Then T −1(Bc) = Bei2πωc, i.e. the dynamical system leaves the partition ζ f ∗
ω

invariant.1

Before we go on to describe an example, we note that the case of P0
T = PT the theory of invariant

measures provides a connection of objects defined on the phase space M with the properties of PT .
Such a connection for Pω

T was developed in [17] by showing that it is associated with certain complex
measures on M.

Consider the standard map on a torus, given by

I ′ = I + ε sin(2πθ ), mod 1
(4)

θ ′ = θ + I + ε sin(2πθ ), mod 1

Physically, this can be derived as a Poincaré map of a plane pendulum kicked periodically with an
impulsive force. In the Figure 1a we show the contour plot visualizing the level sets of the finite
harmonic average of the function cos(x + y) for ω = 1/2. In the Figure 1b we show the trajectories of
the map for the same parameter value, ε = 0.15. It is clear that the harmonic average selects the chain
of sets of period 2. What is meant by this is that the level sets are sets in an invariant partition, with
the system “jumping” between different sets in this partition. The system comes back to the set in the
partition it started from in the second iterate. A partition with this property is called “periodic” (see the
Appendix).

2.4. RANDOM DYNAMICAL SYSTEMS

Now we consider spectral theory for random dynamical systems [3]. We will work with the Discrete
Random Dynamical System (DRDS) defined by

xi+1 = T (xi , ξi ), (5)

ξi+1 = S(ξi ), (6)

1 For the definition of an invariant partition, and of a periodic partition, see the Appendix.
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Figure 1. (a) Contour plot showing the level sets of cos(x + y)∗1/2. The parameter ε = 0.15. (b) Phase space plot of the standard
map for 10,000 initial conditions on a regular 100 × 100 grid. The parameter ε = 0.15.

where i ∈ Z, x ∈ M a compact Riemannian manifold, ξ = {. . . , ξ−1, ξ 0, ξ 1, . . .} ∈ N Z, i.e. ξ j ∈ N ,
where N is a compact Riemannian manifold endowed with a probability measure p that is absolutely
continuous with respect to the Lebesgue measure on N . The product space N Z is endowed with the stan-
dard product measure 
. S is the shift transformation S{. . . , ξ−1, ξ 0, ξ 1, . . .} = {. . . , ξ 0, ξ 1, ξ 2, . . .}.
We consider observables f : M → R or C, f ∈ L1(M). We denote T i

ξ (x) = Tξ i−1 ◦ · · · ◦ Tξ 0 where
Tξ j (x) = T (x, ξ j ). We assume that Tξ (x) is Cr , r ≥ 1 in x for every ξ ∈ N . With some abuse of
notation, we will call the above DRDS T (note that T denotes a family of transformations indexed over
ξ , rather than any particular superposition). A probabilistic measure µ on M endowed with the Borel
sigma algebra is invariant for measurable T iff

E[µ(T −1(B, ξ ))] = µ(B)

for every measurable B where E[µ(T −1(B, ξ ))] = ∫
N Z µ(T −1(B, ξ )) d
(ξ ). The analogue of the

Koopman operator is the stochastic Koopman operator Ust defined by

Ust f (x) = E[ f ◦ T (x, ξ )],

where E[ f ◦ T (x, ξ )] = ∫
N Z f ◦ T (x, ξ ) d
(ξ ). The expectation of the time-average of f under T is

given by

E f ∗(x) = lim
n→∞

1

n

n−1∑

i=0

U i
st f (x). (7)

The partition of M into level sets of E f ∗ is denoted by ζ f . An ergodic measure on M is an invariant
measure µ such that E f ∗(x) = ∫

M f (x) dµ(x) a.e. on M for every f ∈ L1(M).
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Figure 2. The map considered in Example 1.

The family of operators EPω
T ,

EPω
T ( f ) ≡ E f ∗

ω = lim
n→∞

1

n

n−1∑

j=0

ei2π jωU i
st f,

plays the role analogous to the family Pω
T in the deterministic case. In particular, a nonzero EPω

T is the
orthogonal projection operator onto the eigenspace of Ust associated with the eigenvalue e−i2πω.

Example 1. Consider a map T on the interval I = [−1, 1] such that T = −(2x) mod [−1, 1] (see
Figure 2). At every step, every point in [0, 1] is mapped into [−1, 0] and vice versa. If we could only
measure the observable Re(F) : I → R which is defined by

F(x) = 1, for x ∈ [0, 1) (8)

F(x) = −1, for x ∈ [−1, 0] (9)

the behavior we would measure would be pure cycling from −1 to 1. Note that F is clearly an eigen-
function of the Koopman operator U at ω = 1/2, since F(T x) = e−iπ F(x) = −1 · F(x).

Now consider the random dynamical system

Tξ : x ′ = [x] + ξ,

where

[x] = −0.5, for x ∈ [0, 1) (10)

[x] = 0.5, for x ∈ [−1, 0] (11)

and ξ is a random variable uniformly distributed on [0, 1]. We have

Us F(x) = E[F ◦ T (x, ξ )] = e−iπ F(x),

and thus F(x) is an eigenfunction for Ust at eigenvalue λ = −1. There are no other eigenvalues for
either U or Ust . Thus, the Koopman operator of the random dynamical system Tξ has the same point
spectrum as the Koopman operator of T .
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3. Spectral Decomposition for Evolution Equations

3.1. EVOLUTION EQUATIONS AND KOOPMAN OPERATOR

Consider a discrete-time evolution equation on an infinitely-dimensional Hilbert space H of square-
integrable vector functions on a set A given by

vn+1(x) = N (vn(x), p), (12)

where vi : A → R
l , l ≥ 1, x ∈ A, i ∈ Z, N : H → H a nonlinear operator and p ∈ P , a parameter

space. To keep an example in mind, N could be a time-discretization of the flow (meant in dynamical
systems sense, not fluid mechanical sense here) induced by incompressible Navier–Stokes equations
defined on a 2-dimensional bounded domain A in which caseH is the space of square-integrable volume-
preserving vector fields on A. For equations arising from mathematical physics (and in particular for the
aforementioned incompressible Navier–Stokes equations) it is often the case that the attractor dimension
is bounded so that the essential dynamics is finite-dimensional [27]. Let us denote the attractor by M ,
and let m denote a point on the attractor. The dynamics of (12) restricted to M will be denoted by

mn+1 = T (mn, p), (13)

The original evolution variable v can be considered a vector-valued function of the phase space point
m and x, v(x, m). Thus v(x, ·) ≡ vx represents a family of observables on M parametrized by x . Note
that

vn(x, v0) = v(x, mn), (14)

where v0 = v(x, m0).

Example 2. Consider the discrete nonlinear wave equation

vn+1(x) = F1(vn(x + p)),

where x ∈ S1, v is a real, zero-mean periodic function in L2(S1), F is a Fourier-space defined operator,
such that if

f (x) =
∞∑

j=−∞
j �=0

a j exp(i2π j x),

then

F1 f (x) =
∞∑

j=−∞
j �=0

0.5a j (1 + 1/|a j |)
j2

exp(i2π j x),

It is then easy to see that the attractor consists of a set of functions defined in Fourier space by |a1| =
|a−1| = 1. Since v is real we have ā1 = a−1. Thus the attractor is a circle. Any point on the attractor is
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of the form

g(x) = a1 exp(i2πx) + a−1 exp(−i2πx)

= exp(i2πθ1) exp(i2πx) + exp(i2πθ−1) exp(−i2πx)

= exp(i2πθ1) exp(i2πx) + exp(−i2πθ1) exp(−i2πx)

= v(x, θ1)

(due to ā1 = a1, θ−1 = −θ1). The first iterate of g reads

g′(x) = a1 exp(i2π (x + p)) + a−1 exp(−i2π (x + p))

= exp(i2π (θ1 + p)) exp(i2πx) + exp(−i2π (θ1 + p)) exp(−i2πx),

and the dynamics on the attractor is given by

mn+1 = T (m, p) = mn + p,

(cf. Equation (13)). Also, taking the initial condition on the attractor to be θ1, the n-th iterate of g
becomes

gn(x) = exp(i2π (θ1 + np)) exp(i2πx) + exp(−i2π (θ1 + np)) exp(−i2πx) = v(x, mn),

(cf. Equation (14)). If p is irrational, the Haar measure on S1 is an invariant ergodic measure for T .

Consider now the finite-dimensional dynamical system (13). We assume that there is an ergodic
invariant measure on the attractor M, denoted by µ. The observables vx are continuous on the compact
space M, and thus vx ∈ L2(M). As discussed in the previous section, the dynamical system T induces
a linear unitary operator U on M. Note that

U nvx (m0) = vx ◦ T n(m0) = vx (mn) = vn(x, v0),

thus linking the evolution equation (12) and iteration of the Koopman operator U.

3.2. ALMOST PERIODIC MEAN OF THE PROCESS

We note that if f is an eigenfunction of U with eigenvalue λ, then so is f̄ , with eigenvalue λ̄. If f1, f2

are unit norm eigenfunctions of U associated with eigenvalues ei2πω1 , ei2πω2 , ω1 �= ω2, then they are
orthonormal since

∫

M
f1 f̄ 2 dµ =

∫

M
U f1U f̄ 2 dµ = ei2π (ω1−ω2)

∫

M
f1 f̄ 2 dµ,

where f̄ 2 is the complex-conjugate of f2. Thus,
∫

M f1 f̄ 2dµ = 0. Let { f j }, j = 1, . . . , k (where k is
possibly infinity) be an orthonormal set of eigenfunctions of U, spanning H1 and exp(i2πω j ) = λ j the
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associated eigenvalues. Recalling (2) and (3), for a continuous g(x, m),

Ug(x, m) = Us g(x, m) + Ur g(x, m)

= Us

(
g∗(x) +

k∑

j=1

f j (m)
∫

M
g(x, m) f̄ j (m) dµ(m)

)

+
∫ 1

0
exp(i2πα)d E(α)g(x, m)

= g∗(x) +
k∑

j=1

λ j f j (m)g j (x) +
∫ 1

0
exp(i2πα)d E(α)g(x, m).

where E is a complex continuous spectral measure on L2. We have

vn
x (m) = U n

s vx (m) = v∗(x) +
k∑

j=1

λn
j f j (m)s j (x) +

∫ 1

0
exp(i2πα) d E(α)v(x, m), (15)

where

s j (x) =
∫

M
v(x, m) f̄ j (m) dµ(m).

Clearly, s j (x) could be considered as shape functions. The amplitudes λn
j = exp(i2πnω j ) oscillate in

time. Note that the m dependence in the formulas above is due to the initial conditions m on the attractor.
Since the spectrum of Ur is continuous, the part vx |H1 could be considered as the deterministic part of
the field vx , while vx |H2 could be modeled by a stochastic process.

The functions s j (x) can in principle be determined from the foregoing discussion by determining U
from the evolution equation (12) and finding its eigenvalues. However, this would be hard given that
numerical solutions of (12) can be expensive and finding eigenvalues would generally require starting
the simulation from various initial conditions on the attractor M. Another problem is that we would
like to extract vx |H1 from experimental data as well, but preparing experiments with various initial
conditions on the attractor is all but impossible. Fortunately, there is a more direct way of obtaining this
information, starting from the observation that the projection of the function vx on the j-th eigenspace
can be obtained as [17]

P
ω j

T (vx (m)) = lim
n→∞

1

n

n−1∑

k=0

ei2πkω j vx (T k(m)) = z(x) f j (m). (16)

Now,

∫

M
vx (m) f̄ j (m) dµ(m) =

∫

M
z(x) f j f̄ j dµ = z(x) = s j (x),

where the fact that the modulus of f j is 1 was used. Since in applications we will not know f j (m) we
can take the whole projection obtained in (16) and orthonormalize the resulting set.

Note that the decomposition (15) of the field vn
x is reminiscent of the so-called “triple decomposi-

tion” [22], where a turbulent flow field is decomposed into its “mean”, “periodic” and “fluctuating”
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component. The periodic component is extracted using the so-called “phase averaging” process. Define
the following periodic mean of the sequence vn(x, m):

vp(n, x, k, m) = lim
N→∞

1

N

N−1∑

j=0

vn+ jk(x, m).

Clearly, vp(n, x, k, m) is periodic in time with period k. Thus,

vp(n, x, k, m) =
k∑

j=−k

v
j
k (x, m)ei2πnj/k,

where

vt
k(x, m) =

k∑

l=−k

vp(l, x, k, m)ei2π tl/k

=
k∑

l=−k

lim
N→∞

1

N

N−1∑

j=0

vl+ jk(x, m)ei2π tl/k

= lim
N→∞

1

N

N−1∑

j=0

k∑

l=−k

vl+ jk(x, m)ei2π tl/k

= lim
N→∞

1

N

N−1∑

j=0

k∑

l=−k

vl+ jk(x, m)ei2π t(l+ jk)/k

= lim
N→∞

1

N

N−1∑

j=0

v j (x, m)ei2π j t/k = v∗
t/k(x, m) (17)

The above calculation shows that the computation of the so-called “periodic mean” with period k is
equivalent to computing part of the field that corresponds to frequencies j/k, j ∈ {−k, k}/{0}:

vp(n, x, k, m) =
k∑

j=−k

v∗
j/k(x, m)ei2πnj/k .

Thus, vp(n, x, k) is the part of the field that oscillates in time with period k. This motivates a more
general definition:

vp(n, x, ω, m) =
∞∑

j=−∞
j �=0

v∗
jω(x, m)ei2πnjω,

where ω is an arbitrary number between [0, 1] and we subtracted the j = 0 part, since that corresponds
to the time average and we include it separately in the next subsection. Since there is only a countable
number of ω’s for which vp(n, x, ω, m) �= 0,2 arranging the ω’s for which vp(n, x, ω, m) �= 0 in a

2 This is the consequence of the fact that, for measure-preserving transformations, the harmonic averages (16) can only be
nonzero for a countable set of ω [29].
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sequence {ω j , j ∈ Z}, we define

vap(n, x, m) =
∑

ω j �=0

vp(n, x, ω j , m).

It should be clear that the zero-mean field vap(n, x, m) is almost periodic in the sense of Bohr in the
variable n [2]. Thus, we can call vap(n, x, m) the almost periodic mean of the field v.

The dependence of vap(n, x, m) on m indicates that while a process might be ergodic, it could still
retain some memory of the initial condition through the “phase” of the almost periodic part.

3.3. DYNAMICS ON THE ATTRACTOR AND THE ALMOST PERIODIC MEAN

Now we can relate vap(n, x, m) to the phase–space properties on the attractor of the dynamical system
(12). Recall that existence of a factor S : B → B of T on A ⊂ M is established by proving that there
is a measurable factor map F : A → B such that F ◦ T = S ◦ F a.e. and µ(F−1(E)) = ν(E) for
all measurable E ⊂ B, and measures µ, ν, where T preserves µ and S preserves ν [19]. We have the
following [17]:

Proposition 3. Let hω : A → C be a non-constant eigenfunction of U associated with the eigenvalue
e−i2πω. The hω is a factor map and T has a factor that is a rotation on a circle by angle 2πω. Conversely,
if T admits a factor map to rotation on the circle by angle 2πω then there is an eigenfunction of U
associated with eigenvalue e−i2πω.

The meaning of this result is that, whenever there is a nonzero, quasi-periodic part of the field vp(n, x, ω),
there is a periodic or quasi-periodic rotation that is part of the motion on the attractor. In fact, since
eigenfunctions define invariant partitions, this can be visualized as sets of initial conditions that are
transported by the dynamics between sets of an invariant partition (see Section 2).

The composite picture that arises from the above considerations is that the following “triple decom-
position” arises from the spectral properties of the Koopman operator:

v(n, x, m) = v∗(x) + vap(n, x, m) + vc(n, x, m),

where v∗(x) is the time-averaged part of the field, vap(n, x, m) is almost-periodic in time, and vc(n, x, m)
is the part of the field that is genuinely aperiodic (or chaotic) in time. Thus, this part could be modelled
as a stochastic process. This stochastic process can be expanded into Karhunen–Loeve modes in space
(Proper Orthogonal Decomposition (POD), see [14]). In fact, since the modal dynamics of the POD in
this case has continuous spectrum, one could expect that it might be hyperbolic. The finite-dimensional
truncations should have good structural stability properties in this case.

A direct correspondence between various types of attractors studied in dynamical systems and the
above decomposition can be drawn: quasi-periodic attractors correspond to decomposition v(n, x, m) =
v∗(x) + vap(n, x, m), skew-periodic attractors [6] correspond to decomposition v(n, x, m) = v∗(x) +
vap(n, x, m) + vc(n, x, m), while Axiom A attractors [31] correspond to decomposition v(n, x, m) =
v∗(x) + vc(n, x, m).
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Example 4. An example that nicely reveals the nature of the spectral decomposition described above
is provided by the field defined on A = {1, 2} as:

vn(1) = cos(2πωn) + ξ1(n),

vn(2) = sin(2πωn) + ξ2(n),

where ξ1(n) and ξ2(n) are possibly correlated random processes of mean zero and possibly different
variances, and ω is irrational. The correlation matrix for this field is given by

(
limn→∞ 1

n

∑n−1
j=0 v j (1)v j (1) limn→∞ 1

n

∑n−1
j=0 v j (1)v j (2)

limn→∞ 1
n

∑n−1
j=0 v j (2)v j (1) limn→∞ 1

n

∑n−1
j=0 v j (2)v j (2)

)
=

(
c1 0

0 c2

)
,

where

c1 = lim
n→∞

1

n

n−1∑

j=0

(
cos2(2πω j) + ξ 2

1 ( j)
) = 1

2
+ σ1,

c1 = lim
n→∞

1

n

n−1∑

j=0

(
sin2(2πω j) + ξ 2

2 ( j)
) = 1

2
+ σ2,

where σ1, σ2 are variances of ξ1, ξ2, respectively. Orthonormal eigenvectors of this matrix can be taken
to be (1, 0) and (0, 1). Assuming say c1 > c2, the energy contained in the first POD mode is c1. The
total energy is c1 + c2. It is easy to see that vap(n) = (cos(2πωn), sin(2πωn)). This is a “travelling
wave” mode and is not of the type f (n)φ(x), n ∈ Z, x ∈ A. In Figure 3 we show the phase portrait of
these processes, for

v(1) = cos(2πn
√

(2)) + 0.3 ∗ (u − 0.5),

v(2) = sin(2πn
√

(2)) + 0.2 ∗ (u − 0.5),

Figure 3. Evolution of the field in the Equation (18) and its projections. Scattered dots represent the evolution of the field. The
straight line at v(2) = 0 represents projection on (1, 0) (the first POD mode). The solid circle represents evolution of the almost
periodic component of the field (cos(2πωn), sin(2πωn)).
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where u is uniformly distributed on [0, 1]. The scattered dots show the evolution of the field. The
straight line at v(2) = 0 represents projection on (1, 0) (the first POD mode). The solid circle represents
evolution of the almost periodic component of the field (cos(ωn), sin(ωn)).

4. Model Validation

The fact that, of all finite-dimensional linear projections, the POD is the one that contains, on average,
most of the energy [14] is a noted and desirable property of POD. Energy is however, only one observable
on the phase space of the system. In this section, following [17] we investigate a more general question
of model validation and review some results that lead to suggestions on using energy and certain derived
quantities as a basis for comparison between the projection and the “true” system. In addition we argue
that phase information can be compared in a similar way.

The following result is useful in the context of comparing projections with the full dynamics [17]:

Theorem 5. Let M be a compact Riemannian manifold of dimension m. Let l/2 > | f | and κi , i ∈ N
+

a sequence of continuous periodic functions in C([−l/2, l/2]) that is complete. Consider a countable
set of functions fi1,...,i2m+1 = κi1 ( f ) · κi2 ( f ◦ T ) · · · · · κi2m+1 ( f ◦ T 2m) (where i1, i2, . . . , i2m+1 ∈ N

+).
Then, for Cr , r ≥ 1 pairs ( f, T ) it is a generic property that the ergodic partition of a dynamical system
T on M is

ζe =
∨

i1,...,i2m+1

ζ fi1 ,...,i2m+1
.

The essence of the above result is the following. By Takens theorem, we know that we can embed the
signal f (T j ), j ∈ Z

+ of a continuous observable f of a system T into an 2m + 1 dimensional box B of
side l, where | f | < l/2. It can be shown [17] that to find the ergodic partition we only need to exhibit
a dense countable subset of continuous functions. Such a subset is going to be provided by products of
compositions of (2m + 1) – products of complete set of continuous periodic functions on R of period l
with a generic observable f , i.e. we only need to compute the time-averages of functions

κi1 ( f (x)) · κi2 ( f ◦ T (x)) · · · · · κi2m+1 ( f ◦ T 2m(x)).

Example 6. The set of products of functions sin( 2π
l ny), cos( 2π

l ky), 1
2 , y ∈ R, k, l, n ∈ N

+ is a complete
set in C(B). If m = 1 (i.e., the embedding dimension is 3), we should compute time averages of products

f1

(
2π

l
n f (T 2x)

)
f2

(
2π

l
k f (T x)

)
f3

(
2π

l
j f (x)

)
,

where fi (z) = sin(z), or cos(z) and k, n, j ∈ N
+.

Theorem 5 can be used to identify invariant sets (and ultimately the ergodic partition) of a system
without measuring all of its variables for all time. All that is needed is knowledge of initial conditions
and knowledge of a single variable time trace [17].
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According to the above description, the asymptotic dynamics partitions the phase space into invariant
sets. A sequence of numbers f ∗

i1,...,i2m+1
is associated with each set in the partition. We can use time

averages to compare systems as is done in the case of the POD. In that context, let φi (x), i = 1, . . . , k
be the first k modes of the projection and ai (n), i = 1, . . . , k the associated amplitudes. The energy
contained in the first n modes is given by

En = lim
n→∞

1

n

n−1∑

n=0

k∑

i=1

ai (n)āi (n)

is maximal with respect to all linear projections on k modes [14]. This of course does not mean that
the projection of the “real” process on the phase space of the first k modes and the truncated “time-
evolution” are the same, or even close. This is clearly indicated in Example 4 and Figure 3. However,
Theorem 5 does indicate that using a single observable, two processes can be compared by combining
that observable with a certain set of basis functions on an interval and taking finite products of the
quantities obtained. In the context of chaotic dynamical systems the probabilistic approach is often
taken and a system is described in terms of a histogram of a specific function g on the phase space. Let
b be the bin size for the histogram and z j ∈ R, j ∈ Z a sequence of numbers such that z j+1 = z j + b.
By the histogram we mean a step function, constant on every interval I j = (z j − b/2, z j + b/2]:

H T
g (I j , x) = lim

n→∞
1

n

n−1∑

i=0

κ j ◦ g(T i (x)) = κ∗
j (x),

where x ∈ M. H T
g (I j , x) tells us the proportion of time the time-series spends in the interval I j . The

function κ j is the characteristic function on the interval I j = (z j − b/2, z j + b/2], i.e. κ j (u) = 1 if
z j − b/2 < u ≤ z j + b/2 and zero otherwise. If T is ergodic, H is the same function for almost every
initial condition x. Let g(T j

1 ) being the signal of the observable g produced by the full system and g(T j
2 )

signal of the observable g produced by a finite-dimensional projection. A possible pseudometric, if
T1, T2 are ergodic, would be

d(T1, T2) =
∑

j

w j
[
H T 1

g (I j ) − H T 2

g (I j )
]2

,

where w j is the weight that we put on comparison in interval, j the sum is over some finite set of j’s.
Thus, we should take time-averages (i.e. histograms) of products of (κ j ◦ g(T i (x)) where i =

0, . . . , 2m, and include them into the pseudometric. In this context we need to determine the dimen-
sionality m of the system using the appropriate embedding theorem, say Takens. But our study in this
paper suggests that a more appropriate procedure might be to choose m = p + s where p is the number
of linearly independent frequencies in the almost periodic mean, and s the number of POD modes that
we choose to represent the part of the process with continuous spectrum. In this case, we will obtain a
process in R

p+s that will represent stochastic dynamics normal to a p-dimensional torus. In Example
4 we plotted the case p = 1, s = 1 in Figure 3 and the dynamics is seen to be stochastic around a 1-D
circle. Consider the case of a process given by

v(1) = cos(2πn
√

(2)) + 0.3(u1 − 0.5),
(18)

v(2) = sin(2πn
√

(2)) + 0.2(u2 − 0.5),
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Figure 4. Evolution of the field in the Equation (18).

where u1, u2 are independent and uniformly distributed on [0, 1]. There are 2 independent stochastic
directions (corresponding to 2 independent random variables that can be represented by 2 POD modes).
In this case, p = 1, s = 2 and the phase portrait is shown in Figure 4. We set r = 1+0.3(u1 −0.5), z =
0.2(u2 − 0.5), θ = 2πn

√
(2) and x = r cos(θ ), y = r sin(θ ).

In the case of our Example 4 we could pursue the comparison by using the Haar basis on the interval
[−1, 1]. We would compute the products of time-averages of the composition of elements of the basis
with the energy time-series in the following way:

E∗
jk = lim

n→∞
1

n

n−1∑

i=0

κ j (v
2(i)) · κk(v2(i − 1)).

If κ j = κk = 1, constant on [−1, 1], E1,1 is just the total average energy of the process. But all the
numbers E∗

jk should be considered in order to compare the process with its projections. In Example 4
the projection onto the almost periodic part of the field clearly does much better in this sense than POD.
It is interesting to note that the energy function is not generic in the sense of Takens, since only the
absolute values of the projection amplitudes matter. More generally, the phase of the process is not of
importance in calculating energy. Thus, the pseudometrics of time-averaging type are still not entirely
satisfactory, as they loose all the “timescale” information about the system. For example, all of the
irrational rotations on the circle are identified. To treat this problem, we need to extend our formalism
to include additional information, as done in [17] for the case of harmonic averages.

5. Discussion and Conclusions

There has been a substantial interest recently in improving the projection methods for obtaining low-
dimensional models of formally infinite-dimensional systems by introducing stochastic terms to account
for neglected modes [4, 7, 8, 13, 15, 21, 28]. A dynamical systems perspective on such modelling is
provided in the work of Dellnitz and collaborators [9, 10] in the context of Perron–Frobenius operator for
stochastic systems. Here we used the formalism for spectral properties of dynamical systems developed
in [17] in the context of the Koopman operator to discuss properties of finite-dimensional projections.
The key observation is that the dynamics on the attractor can be split into an almost periodic part and a
part that has continuous spectrum. The almost periodic part of the Koopman operator leads naturally to
the definition of the almost periodic mean of the process. The rest of the field has continuous spectrum.
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Such a decomposition is often sought in turbulence studies [11, 22]. The decomposition presented here
has a close relationship with the “triple decomposition” of [22]. It would be interesting to pursue ideas
along these lines using the wavelet, instead of Fourier spectrum, given the success of the decomposition
applied in [11]. These concepts might help in understanding e.g. in processes containing abundance of
oscillatory phenomena on various timescales in climate dynamics (see e.g. [25]). We tried to compare
the properties of the POD with the spectral decomposition proposed here. We argue that it is useful
to apply the spectral decomposition first, to extract the almost periodic part of the field. The rest of
the field has continuous spectrum. We speculate that applying POD to it should typically produce a
finite-dimensional, hyperbolic system. Given the robustness of statistical properties of such systems to
perturbations, finite dimensional truncations should do well in this case.

Attractors with mixed spectrum can be related to a symmetry in the system [6]. POD has been
analyzed utilizing symmetry reduction ideas from geometric mechanics in [24]. It would be interesting
to explore connections between the spectral ideas presented here and symmetry reduction further.

We have also discussed the issue of comparison of properties of finite-dimensional projections with
the properties of the process they are modeling. Using the “statistical Takens theorem” proven in [17]
we argued that comparison of average energy contained in the projection is one in the hierarchy of
functionals of the field that need to be checked in order to assess the accuracy of the projection.

Appendix: Invariant and Periodic Partitions of the Phase Space

A partition ς of M is defined to be a collection of disjoint sets Dς
α , where α is some indexing set,

such that µ(∪α Dς
α ) = µ(M) (see [23]). A product ς ∨ λ of two partitions ς, λ is a partition into sets

Dς∨λ

(α,β) = Dς
α ∩ Dλ

β i.e. sets that are intersections of elements of the two partitions. For a finite or
countable product ζ of partitions ζi , we write ζ = ∨iζi .

If T is a dynamical system on M, then ς is an invariant partition for T provided that for any set
Dα1 ∈ ς, T −1(Dα1) = Dα2, Dα2 ∈ ς .

The key object in our considerations are partitions of the phase space into sets on which harmonic
averages are constant, i.e. into level sets of f ∗

ω . In particular, let f be a continuous function on M. The
family of sets Cα, α ∈ R such that Cα = ( f ∗

ω )−1(α) is a (measurable) partition of M. We denote this
partition by ζ f ∗

ω
and call it the partition induced by f under ω. Clearly, ζ f ∗

ω
is an invariant partition for

T. An invariant partition ζ is called periodic under T with period p iff for any Cα ∈ ζ, T pCα = Cα .
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