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Abstract. We study the dynamical behavior of a microcantilever-sample system that forms the basis for the
operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation.
The interaction between the sample and the cantilever is modeled by a Lennard—Jones potential which consists
of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the
dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the
Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined.
In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the
parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of
dynamical interaction.
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1. Introduction

In 1986, Calvin Quate, Christopher Gerber and G. Binnig built the Atomic Force Microscope
which revolutionized microscopy [1]. With its advent, images of surfaces of materials, con-
ducting or not, at the atomic scale were obtained with relative ease. Since then, the basic
operating principle of the atomic force microscope has been used for measuring various phys-
ical properties of materials other than the surface force profile. It has had a significant impact
on the semiconductor industry where it is routinely employed to measure the roughness of
silicon wafers [2, 3]. It is widely used by biologists to image DNA strands [4] and monitoring
RNA activity [5]. Recently, atomic force microscopy principles have been used to obtain
thermal profiles of samples with subkelvin resolution [6]. Other applications where similar
techniques have yielded considerable dividends, are in measuring magnetic fields [7, 8] and
in measuring electrical properties of materials [9, 10]. The operating principles of the various
applications mentioned are given in [11]. All of these methods share the basic mechanism of
a microcantilever interacting with a sample.

A schematic representation of the atomic force microscope is shown in Figure 1. A typical
AFM consists of a microcantilever, a sample positioner, a detection system and a control sys-
tem. A laser incident on the top surface of the cantilever which is reflected into a photodiode
array is used to detect the motion of the cantilever. When the sample is close enough to the
cantilever, it exerts a large enough force to deflect the microcantilever and causes a detectable
signal to be registered at the photodiode array. The control system decides the position of the
sample based on the photodiode output.
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Figure 1. Schematic representation of the atomic force microscope setup.

In one of the most popular modes of imaging, thpping modethe cantilever is vibrated
near its resonant frequency by a dither piezo (see Figure 1). The behavior of the cantilever un-
der such a forcing depends on the sample surface and material characteristics. By monitoring
the vibration of the cantilever, information on the sample is obtained.

As is evident, the cantilever is central to the operation of the atomic force microscope.
Imperative to the correct interpretation of data and for enhancing the performance of an atomic
force microscope is a thorough analysis of the cantilever and its interaction with the sample.
The cantilever-sample interaction, as will be demonstrated, is highly nonlinear. Standard tech-
niques of using a linear model fail to describe the behavior of the cantilever iappéng
modeoperation because, in this mode, the cantilever moves through the whole range of the
nonlinear interaction force. In earlier studies [12] it has been demonstrated that even with a
simpler interaction force complex behavior of the cantilever is possible. The analytical results
are corroborated by experimental evidence (see, for example, [13]).

The impetus in the atomic force imaging technology is towards faster speeds of operation
and higher resolution. There is considerable activity in using smaller and stiffer cantilevers to
obtain faster imaging using thapping mod¢14]. This makes it essential to study the range of
parameters of the cantilever under which the cantilever detection system performs predictably.
Also, with the introduction of newer cantilevers with properties hitherto not possible, newer
modes of imaging can be devised to obtain material characteristics.

In this paper, the cantilever is modeled as a single spring-mass-damper system. A nonlinear
dynamic model is developed for the cantilever-sample interaction which has the experiment-
ally observed features of long-range attractive forces and short-range repulsive forces. This
model is derived from the Lennard—Jones potential for the interaction between two molecules.
Based on this model, the behavior of the cantilever under a sinusoidal forcing is studied. In
particular, the phase portrait of the dynamics is obtained for a range of cantilever-sample
distances. It is shown that in a relevant range of operation, the phase portrait consists of two
homoclinic orbits filled with periodic orbits. The fate of these orbits under a sinusoidal forcing
and damping is studied using the Melnikov method. This method is employed to delineate the
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Figure 2. Tip-sample model.

region in the parameter space when chaotic dynamics is present. It is shown that feedback
control can be utilized to obtain desirable behavior.

The paper is organized as follows. In Section 2, the model of the cantilever and the
cantilever-sample interaction is derived. In Section 3, the dynamics are analyzed under no
external forcing. In the next section, the Melnikov function is derived and the dynamics
are studied when there is an external sinusoidal forcing with damping present. Finally, in
Section 5, we conclude and present directions for future research.

2. Model Description

The achievable sensitivity and resolution of an AFM are largely determined by the cantilever.
In most AFM imaging, the cantilever is modeled as a spring-mass-damper system. In this
work, the model employed is described by Figure 2, where the tip is modeled as a sphere of
radiusR and massz, suspended by a spring of stiffnessThe cantilever-sample distance is
characterized by which is the distance between the equilibrium position of the cantilever
and the sample when only the gravity is acting on it. The cantilever position is given by
measured from the equilibrium position. This model is similar to the one used in [16].

The parameters of the cantilever model (stiffness, mass and damping) can be found in a
straightforward manner by the methods indicated in [17]. The cantilever-sample interaction
model is based on the Lennard—Jones potential [18] between two molecules, which is given

by

c1 co o\12 o\b6
wr) = 5 — 5 =4 [ ; ; (1)
wherer is the distance between the two molecutess the molecular diametes; andc, are

interaction constants, andg is the minimum of the potential (see Figure 3). Typical values
of o andp are 0.3 A and 2& 1021 J, respectively. We now evaluate the interaction potential
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between a single molecule placed at a distaintem the sample (see Figure 4). Suppose the
sample hag, molecules per unit volume and suppose the spherephawlecules per unit
volume. The net number of molecules in an annular region in the sample of thicknassl d
width dx at a distance is given by Zrp,y dx dy. Thus, the interaction energy is given by

w(z) = // npzy((z a < )dydx

+398  (x%+y?)3
xX=zy

00 00 ydy 00 00 ydy
= zanCl[ dX/m-Zﬂpoz[ dX/(

X2 + y2)3
y=0

(2)

We now compute the sphere-surface interaction energy. As shown in Figure 5, all of the
molecules that are at a distance- D,, from the surface lie in a circular section of ares

2
and thickness .l The number of molecules in this sectionpigr y? dx = p17 (2R — x)x dx
Using Equation (2), the interaction energy is given by

x=2R
27 pocy 27 p2C2
W(D,,) = 2R — -
(Dss) / pr (2R — x)x (90<Dss+x>9 12<Dss+x>3>
x=0

In the atomic force microscope applications that we are consideRing, D,, as explained in
[16]. A typical value ofR is 1500A, while the tip equilibrium position allows values around

120A. Under this assumptionR2 > x2 and only small values of (x ~ Dj,) contribute to
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Figure 5. Sphere-flat surface interaction.

the integral. Thus, we can write
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whereA; = m2p1poc1 and A, = m2p1poc, are the Hamacker constants for the repulsive and
attractive potentials, respectively.

Thus, the tip-sample interaction is modeled by an interaction potential given by

A1R A2R 1
1 _ 2 + —kx2

1260Z +x)" 6(Z+x) 2
The net energy of the system scaled by the effective mastthe cantilever is denoted by
H(x,x,Z), where

Vx,Z) = (4)

. 1, 1,, Dw? oDw?
H(x,X,Z) = =x° + Zwix® — Z1 0 +210(Z+x)7’

2 2
with w; = /k/m andD = A,R/6k. Note thatH is the Hamiltonian of the system. Alsé#,
is a constant of the dynamics (invariant of motion) since there is no dissipation. Wedet
andx, = x. The dynamics of the tip-sample system derived from the above Hamiltonian is
given below §; = 0 H/0x, andx, = —(0H/9x1))

(5)

).Cl = X2, (6)
iy = —a)le— Da)f 06Da)f '
5 (Z4+x)? T 30(Z 4 x)8

The actual system is both damped and forced and therefore it is not Hamiltonian. We view
the damping and external forcing as perturbations to the Hamiltonian system. The trajectories
of the Hamiltonian system will be used to study the behavior of the perturbed system.

We now define variables which facilitate the study of the qualitative behavior of the system.
We letT = w;t (timescale) and divide the left and right-hand sides of Equations (6) and (7)
by the distanc&Z, = (3/2)(2D)Y? (see [12] for a motivation) to get

(7)

& = &, (8)
d »6q
; = — - + ) 9
R N RN ®)
where

X1 X2 4 V4 o

= —, =— d=——, =— and ¥ =—.

1= = 27 YT 7 Z.

Typical values ofZ, are around 100A. The prime denotes the derivative with respekt to
The Hamiltonian of the system in the nondimensionalized coordinates is given by

d N 64
(@+&) 210 +&)7

1 1
H@@zm=§§+§ﬁ— (10)

3. The Unforced System

In this section, we study the cantilever sample system when there is no other external forcing
on the cantilever. The results of this section will be utilized later to analyze the dynamics
when the cantilever is subjected to a sinusoidal forcing in the presence of damping. The
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cantilever in the presence of the sample is subjected to three different kinds of forces, namely,
the spring force, the vdW attractive force which is proportional to the inverse square power
of the distance between the tip and the sample, and the repulsive force which is proportional
to the inverse eighth power of the distance between the tip and the sample. We define the
Lennard—Jones (LJ) force as the sum of the attractive and repulsive forces. It is given by

d »8d
F =— + , 11
DD = e T 30 1 &) ()
whereas the spring force is given ki (¢§;) = —£&;. Equating the right-hand sides of
Equations (8) and (9) to zero, we have
»°d
n°(n—a) +dn° ——= =0 and &=0, (12)

30

wheren := a + &; is a redefined distance. Solutions to these equations give the fixed points
of the cantilever sample dynamics.

We now study the LJ force shown in Figure 6. In particular, we will find the points at
which — F; is zero, maximum or has a minimum slope. The minimum slope Bf; will
give a critical value of2 which splits the analysis into three different cases as we will see in
the sequel. Setting Equation (11) equal to zero and solving, fgields

1/6
£0 = (%> (Z) —a = 0.567% —a. (13)

Note that the zero of the LJ forc;o is very close to the sample singés very small. Typical
values ofx are 0.03-0.1. Setting the derivative of Equation (11) equal to zero and solving for
&1 gives the point at which- F| ; is maximum, namely,

2\ 1/6

&jp = (—) ¥ —a=0715% — . (14)
15

The difference betweef;, and§;;o is 0.148% indicating the large increase of the slope of

—F; as we move frong;;, to &;o. The increase is large i is relatively small which is the

typical case. Next, we find the point at which the slope of the LJ force is minimum. The zero

of the second derivative of Equation (11) is given by

&js = (042 — o = 0.858% — a. (15)

The first derivative of-F ; at&;, is equal to—(4d /3+/0.4%3). Therefore, the slope 6f F,
atg;, is equal to—1 if and only if

Ad 1/3

We denote byx; the value(4d/3+/0.4)Y/3 = 0.678. SinceX = o¢/Z, ando is small, at
Y = X, Z, is also small (of the same order a3. Thus, X will be equal toX, if the
cantilever is very stiff sinc&; is proportional to the inverse third power bf Also note that
the minimum slope of the negative of the LJ force is less thanf ¥ < X, and vice versa.
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Figure 6. The Lennard-Jones (LJ) force . The positions at which the force is zero and maximép areds;; ,,

respectively. The force has a minimum slope at the pgintand slope equal te-1 at the pointss;;1 and§;;»
when¥ < Xj.

At the point&;, = &, the LJ force is given by

FLaCjs) = — d >+ 1 d 5 = u % (17)
(@ +&)° 12 (@+&;) 12 (@ +&;)
At the equilibrium pointsF, = — F| 3, that is, the following condition must be satisfied
d »°d

—& = (18)

(@+E)2 30+ &8

3.1. THECASEX < X4

Figure 7 shows the interaction fordg; for various values of the parameterassuming that
¥ is a given fixed value belo;. As ¥ < X, the slope of-F; at§;, is less than-1 for
anya. Thus, the slope is equal tel at some poing; = &1 € (&;,, &j5). Also, there exists
a = ay at which the spring forcé’; becomes tangent te F; at the point&;;;. In addition,
we know that the slope of F ; is equal to—1 at some poink, = &2 € (&, 0). Also, there
existsa = oy, < oy at which the spring forcé’; becomes tangent te Fy ; at the point;;,
(see Figure 7). The number of intersection points of the cuFyemd— F|_; and therefore the
dynamical behavior of the system depend on the value tfa < oy, then there is only one
intersection poing.; as shown in Figure 7. Linearizing the system (8) and (9), we get

&1\ _ 0 &1
(éé)_( + 9 0)(552)' (19)

Since&, € (&0, &j5), the linearized system has purely imaginary eigenvalugs at &.
Therefore, the fixed point,,;, 0) is a center. The corresponding phase portrait of the system
is shown in Figure 8. Away from the surface, the net force on the tip is always in the downward
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direction causing the tip to accelerate towards the sample until it passes thé&peing,,,
where the repulsive force plus the spring force becomes larger than the vdW force, the tip is
forced away from the sample. When= «;,, another fixed point appears. This is the point
(¢;2) at which the spring force is tangent to the negative of the LJ force.

We now consider the most important case, namely, (., o). As shown in Figure 9,
there are three fixed (intersection) poi&ts &,, andé,,. Itis evident that the linearized system
(19) has purely imaginary eigenvalues at the pofats &, andé, = &.,, whereas it has real
eigenvalues with equal magnitude and opposite signs at the goint &,. Therefore, the
fixed points(¢.;, 0) and(&..,, 0) are centers whilé,,, 0) is a saddle. The corresponding phase
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Figure 10. Phase portrait for the cage < X1 andagy < a1 < ayj.

portrait of the system is shown in Figure 10. There are two homoclinic orbits each connected
to itself at the point&,,, 0). The homoclinic orbit which is away from the surface is similar to

the one obtained in [12] in the absence of the repulsive force. Each homoclinic orbit is filled
with periodic orbits around the centdig,, 0) and(&.,, 0). Outside the two homoclinic orbits

there are also periodic orbits. Points that are initialized on these orbits accelerate towards the
sample and when they get close enough to it they are pushed back strongly by the repulsive
force. The tip oscillates if it is initialized close enough to either center.
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Whena = «y, the two pointst,; andé&,, become equal. This is the value @fat which
the spring force becomes tangent to the LJ forcg at &1 = &, = &,. In this case, the
homaoclinic orbits no longer exist since the spring force becomes large enough to force the tip
away from the surface towards the pojét,, 0). If « > «y,;, we loose the fixed points; and
&, and the only fixed point of the system(&.,, 0). We thus loose both homoclinic orbits
and the phase portrait consists only of periodic orbits arqgnd0) as shown in Figure 11.

This is similar to the simple harmonic oscillator since the spring force becomes dominant for
most of the motion. Very close to the sample the repulsive and spring forces pull the tip away
from the sample. This effect is clear in Figure 11.

We now describe how to compute the valuesegfand oy, for a givenX < ;. The
computation of these two values is similar, and so we give it onlyxfee «, and discuss
briefly the casex = «,,. We know that whemr = «; the spring and LJ forces are equal at
& = &;1. Since the spring and LJ forces are equad;at= &;1 we can finde,; by solving
—Fy(&j1) = —§;1 and—(dFy/dé1)(§;1) = —1. For numerical purposes, it is very useful
to trap the value ofi,; in some interval. Fortunately, this can be done here as we show next.
Setting the derivative of F| ; equal to—1 leads to

157° — 30dn® + 4x% = 0, (20)
whereas- F| ;(&;) = —&; yields
307° — 30wn® 4 30dn® — =8 = 0. (21)

As we mentioned above, Equations (20) and (21) are both satisfigd=fon;;; anda = ;.
Adding these two equations and rearranging the terms, we get

0.1x%
oy =15y + —5—. (22)

Ij1
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Figure 12. «5; as a function ofX. This was obtained using the bisection method to solve for the root of
Equation (21) withy = n;;1.

Using Equations (14) and (15), we obtain
2
M1 € [(1—5>1/GE, (0.4)1/62} :

From here, the lower and upper boundsdgrcan be obtained as
0.1d

_ 1/6
ag = 1.50.47°% + (0.2)7352 (23)
and
2 0.14
slu — 1.5(— 1/62 y 24
Qg (15) + (1%)4/322 (24)

respectively, wher& < X;. Relations (20), (21), (23) and (24) together with the bisection
method can be used to locatg which is only a function of2. Using this technique the results
are plotted in Figure 12. Note tha, is a decreasing function &. SinceX is proportional to
k3, we can think of smalk as a soft spring and large as a stiff spring and the qualitative
behavior of Figure 12 can be physically interpreted. For a softer spring the sample must be
farther from the equilibrium position of the tip to allow the spring force to be equal to the LJ
force at the poing; = &;1.

Recall that in the absence of the repulsive force, we baye- «; = 1. This is the case of
> — 0 where the LJ force is purely attractive. For larger valueX dhe negative of the LJ
force becomes smaller and has a larger derivative. Therefgr@éeeds to be less than 1 for
the spring force to be tangent toF ; at the pointt;, = &;,. Furthermore, a& increases, the
value ofay, decreases. The upper bound 4Qy is thus equal to 1 and the lower bound is the
value ofa,, whenX = X; and is equal to 0.9828, as given later in Section 4.2. Hence, with
these bounds ar¥l;; replaced by, the above procedure using the bisection method can be
applied to findw,,. The results are shown in Figure 13. Bsapproache&; from beloway,
ando,, approach 0.9828 from above.
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Figure 13. a5y as a function ofx. This was obtained using the bisection method to solve for the root of
Equation (21) withy = n; ;2.

4. Dynamics of the Forced System

In most AFMs, the cantilever motion is damped due to the surrounding air. In addition, the
cantilever is forced by a sinusoidal sigmaf coswt, where w takes values around the natural
frequencyw; of the cantilever. The differential equations for the system can be written as

X1 = X2, (25)
. 2 Dw% 06Da)f
Xy = —wiX1—
(Z4+x)2  30(Z+x)8
where we have assumed that the damping force per unit mass.i§iven a small enough,

we lety and$ be such thaty = f andeé = u. Letting the time to be a new state variable,
¢, we have

+ f coswt — puxo, (26)

).Cl = X2, (27)
Dw? o8Dw?
. 2 1 1
2 = O s T gz s T EY 0080~ ox2), )
¢ = o, (29)
whereg (1) = wt + ¢o. Define
0
g(x1, x2, ) = <ycos¢_5x2>. (30)

In the nondimensionalized coordinates, the perturbed system and its suspended version are
given by
& = &, (31)
d N %8
(@ +£1)2  30(c +£1)8

& = —& + & (I cosQT — A&) (32)
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Figure 14. Homoclinic orbits of the system.
and
& = &, (33)
d 64
L = —& — + + ¢ (I"' cosg, — A&, 34
& = 6 e T30 1age T (T Cosh — A (34)
¢, = Q, (35)
where
y 1) w
F: 2 9 A:_’ Q:_ and ¢n:QT+¢no:a)t+¢o:¢
wiZy w1 w1

The equations in the nondimensionalized coordinates have no explicit dependehcandn

w1, wheread™ andA are functions ofD andw;. In other words, the equations have no explicit
dependence on the material properties and the dimensions of the cantilever and tip. The next
step is to study the dynamics of the perturbed system. To achieve this goal, we will study the
Melnikov function for the perturbed system.

4.1. MELNIKOV FUNCTION

The discussion in this subsection is limited to the ca@se: X; anda,, < o < «y. Since

the system that we are considering is a time-periodic perturbation of a Hamiltonian system,
Melnikov’s method can be used to describe how the homaoclinic orbits break up in the presence
of the perturbation. The homoclinic orbits of the system are shown in Figure 14. We will use
the subscript$ andv to denote the left and right homoclinic orbits, respectively. Denote the
solutions that start at the end poins,, 0) and (§,,, 0) (see Figure 14) at the time origin

To by (€1(T — To), &2 (T — Tp)) and (14 (T — To), &2 (T — To)), respectively. If we let

t =T — Ty, it can be verified that,,; () andé,,, (7) are odd functions of.
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The Melnikov function is defined by

M (T, ¢o) = / DH (&1, (7), &21 (7)) G (614 (T), 21 (T), ¢ (T + Tp)) dr,
where

DH(&1,82) = (% %
with

oH d »6d oH

I _ d — =

o6 ot ara? 3atar M oa

(Ew (1), E21(7)) s either(§1u (v), &2 (7)) OF (§110 (), §200(7)), @nd

6616200 = ( 1 ogyy Asz> .
Therefore,

M(To, o) = / &2, (1) (I cOS QT + QTp + o) — Az (7)) dr
= —A / £2.(t)dt + T coSQTo + ¢o) / £, (7) cOSQT dt

— I'sin(QTy + ¢o) / &op(T) SinQT dr

—00

= —ZA/gzzh(r)dr — 2 sin(QT, + ¢0)/$2h(r)sin§2r dr.
0 0

The last equality holds becausg () is an odd function ot. By defining

Ay = —2/522h(r)dr and A, = —2/52;,(r)sinszr dr,
0 0

we get
M, (To, po) = AgA + AT SIN(QT, + ¢o).

(36)

(37)

(38)

We will write M; , since the Melnikov function has the same form for both homoclinic orbits

of the system. The Melnikov function is a signed measure of the distance between the stable
and unstable manifolds for the perturbed system. The stable and unstable manifolds intersect if
the Melnikov function has simple zeros. The intersection of manifolds establishes the presence
of chaos [19]. The Melnikov function given in Equation (36) will have zeros if and only if

A | A,
— <

r = |Ag

(39)
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Define

(F).=1%
r)., |As

Thus, M (Ty, ¢g) has no zeros if and only ih/T" > (A/T")q. Every zero of the Melnikov
function corresponds to an intersection of the stable and unstable manifolds [19]. Note that if
A/T < (A/T)g then the two manifolds intersect at an infinite number of points for every
bo.

The nondimensionalized system is the same as the dimensionalized on# refpteced
by «a, D byd, w; by 1, ando by X. Hence, all of the previous analysis applies to the original
system with the appropriate factors. The Melnikov function in the original coordinates is

: (40)

M; ,(to, po) = aqad + ayy Sin(wty + ¢o),

where
o0 o0
ag = —2/x§h(r) dr and a, = —Z/XZh(r) sinwt dr.
0 0

X2, 1S the second component of the homoclinic solution in the dimensionalized coordinates.
Define the critical value of/y as(8/y )¢ = las/ay|. Itis clear that

(S) N wllzs (%) (41)

For the homoclinic orbit on the right and in the absence of the repulsive fAGEL ),
was computed numerically in [12] for a range of values of valueg of 1 and2 around 1.

As we mentioned earlier, this is a good approximation since the right homoclinic orbit is away
from the sample. However, in the presence of the repulsive foreexifa,, the saddle point

is lost resulting in no homoclinic orbits and, hence, the Melnikov theory cannot be applied.
Figure 15 shows théA / TN, surface for the right homoclinic orbit witlk = 0.03.

For the homoclinic orbit on the left, the results are plotted as shown in Figure 16. Note that
for different values ofz we have different Melnikov surfaces due to the change of structure
of the left homoclinic orbit (see Figure 17). If the material properties and dimensions of the
cantilever and tip are given, then we first comp#teand w, and then, with the appropriate
scaling, transform Figure 16 to a Figure wthy, Z, andw as coordinates.

Intersection of the stable and the unstable manifolds occurs for points which lie below
the Melnikov surface. A® increases, the system tends to the spring-mass-damper system
behavior.

A very interesting question arises here: can chaos exist for one of the homoclinic orbits but
not for the other? By looking at Figure 18 the answer is ‘yes’ since &el')., surfaces for
the left and right homoclinic orbits do not coincide. We observe the following four regions:

1. The region of no chaos for both homoclinic orbits. This occurs when the valag bfis
large enough.

2. The region of no chaos for the left homoclinic orbit and chaos for the right homoclinic
orbit. This is the region between the Melnikov surfaces for the two homoclinic orbits of
the system for small enoudh.
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Q ' a

Figure 15. (A / T')¢r surface for the right homoclinic orbit with = 0.03.

Q ' a

Figure 16. (A /T")¢r surface that corresponds to the left homoclinic orbit ¥or= 0.03. The region below the
surface is the region where chaos exists in the system. The region above the surface is the region of no chaos.

3. The region of chaos for the left homoclinic orbit and no chaos for the right homoclinic
orbit. This is the region between the Melnikov surfaces for the two homoclinic orbits of
the system for large enoudgh.

4. The region of chaos for both homoclinic orbits. This occurs when the value/df is
small enough.

4.1.1. State Feedback Control

In most AFMs, the state variablg (position) is measured and the state variablévelocity)

can be estimated. For the discussion here, we will assume that the velocity is available for
measurement. This allows us to apply a force of the form k,x; + kx> to the tip. In this

case, the state equations of the system are written as

X1 = Xa,
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0.2

Q ' o
Figure 17. (A /T')¢r surfaces that correspond to the left homoclinic orbit for different values.ofhe bottom

surface corresponds 0 = 0.03, the middle surface corresponds3o= 0.1, and the top surface corresponds
¥ =0.3.

o

N

Q ' a

Figure 18. (A /T')¢r surfaces for the left and right homoclinic orbits with= 0.3.
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ko AR 1k,
(Cl)nl)2=—1 with ki =k —k,, D1=— and é=6———.
m k1 em

We can see that using, andk,, we can change the parametérsind§ of the system
independently. We will restrict our analysis to the case when 0 ands; > 0. Sincek, and
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Figure 19. The range of allowable . Note that the homoclinic orbits persist forlp < pmax

oco=1, 9.0:1, Eo=o,o3_ (A/r)o___o_3

0.9

o7} chaos : no chaos

06| : 4

01} : 1

Figure 20. A/ T'(p) (dashed curve) an@A /T")¢r(p) for the left homoclinic orbit (solid curve). The two curves
intersect transversely at= 1.79. This implies that chaos exists in the system for valugs srhaller than 1.79.
If o > 1.79 chaotic motion is not possible.

8, are independent, we will discuss the effect of changing each one separately. We have seen in
the previous subsection that one can determine the presence of chaotic dynamics by comparing
A/ T with (%)c,(oz, Q, X). InFigure 17, we plotA / T') (o, 2, X) that correspond to the left
homoclinic orbit for different values at. If A/ T is below the surface then chaotic dynamics

is present.
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Figure 21. A/T'(p) (dashed curve) and\ / T')cr(p) for the left homoclinic orbit (solid curve). Chaotic motion is
not possible for the whole range pfsinceA /T (p) > (A/T)cr(p).

At this point, we will consider the case of position feedback. WexgiQ2g, (A/T")o and
> represent nominal values ef 2, (A /I') andX that correspond tb = kg ands = §g. The
nominal pointeg is chosen to be greater thaf), and smaller tham,,. Further assume that
only the stiffness is being changed accordingtg by varyingp. As p increases, both and
¥ will increase as a function g'/3. As we discussed earlier, as longeais less thany,; the
homoclinic orbits persist. In addition, recall that@screases the upper boung decreases,
see Figure 12. Therefore, we will allowto increase only up to the maximum valpgax that
guarantees the persistence of the homaoclinic orbits; thatissgreater than 1 and less than
Pmax S€e Figure 19. Far = pko,

A A A
(_> (@, Q2,%) = (—) (0Y3aq, p~Y%Q0, p¥3%) = (-) (p)
/e I'J e I' o

and

AL ue(A
r(p)-—p (F>o’

We will call the plot of p¥/6(A / T)q as a function ofp a control curve. In Figures 20 and 21,

we plot(A /T (p) for the left homoclinic orbit and a control curve. Note that in Figure 20 for

o < 1.79, chaos is present in the system. For valugsgrieater than 1.79, chaotic behavior of

the cantilever is not possible in the sense of Melnikov. In this case, the possibility of chaos can
be eliminated by position feedback control. In Figure 21 chaos is not possible for the whole
range ofp.

Now, we are going to show that the operating point of the tip-sample system can be moved
from certain regions to other regions via state feedback control (the regions are described in
the previous subsection). Figures 22 and 23 show the control curves (position control only)
along with the(A / T")¢(p) curves for both the right and left homoclinic orbits. In Figure 22,
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a0=1 .003, QO=1, ZO=0.1
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Figure 22. Using position feedback control to move the operating point from region 4 to region 2 and region 2
to region 1. The curve with the markes'‘is (A/T)cr(p, ag, R0, Zg) for the right homoclinic orbit, the solid
curve is(A/D)er(p, g, R0, o) for the left homoclinic orbit, and the dashed curves are the control curves. The
boundaries of the different regions are tiae/ I')¢r surfaces for the right and left homoclinic orbits.

note that the operating point can be moved between regions 4 and 2 which means that the
possibility of chaos can be eliminated for the left homoclinic orbit while the right homoclinic
orbit still exhibits chaotic behavior. It is also possible to eliminate the possibility of chaos for
both homoclinic orbits if it exists witlk = 0. As we can see in the case of Figure 22, this
possibility is eliminated for the left homoclinic orbit before the right homoclinic orbit as the
value of p increases. In addition, as in [12], the possibility of chaos can be eliminated for
the right homoclinic orbit using position feedback control. This is represented by the control
curves that cross from region 2 to region 1.

More interesting transitions between different regions take place as shown in Figure 23.
We note the following different behaviors when position feedback control is applied:

1. The transition from region 3 to region 4 then to region 2 as the valug ef k — k,
increases. This implies that if chaos exists for both homoclinic orbits, it is possible to
be eliminated for only one of the homoclinic orbits, i.e., increagingo) eliminates the
possibility of chaos for the left homoclinic orbit, whereas decreai(g) eliminates
chaos for the right homoclinic orbit.

2. The transition from region 3 to region 4, then region 4 to region 2, and then region 2
to region 1 as the value @ increases. This means that the possibility of chaos can be
eliminated for both homaclinic orbits.

3. The transition from region 3 to region 1, then region 1 to region 2, and then region 2 to
region 1 as the value df; increases. It is interesting that chaos can be eliminated from
only one homoclinic orbit while keeping the other one nonchaotic.

4. Note that there exists a control curve that will cross directly from region 3 to region 2
without passing region 1 or region 4. This means that chaos can be interchanged between
the two homaclinic orbits without passing through another dynamical behaviby.igf
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Figure 23. Using position feedback control to move the operating point from region 3 to region 4 to region 2,
region 1 to region 2 then back to region 1 and region 3 to region 1 to region 2.

large enough this control curve exits to region 1 which is the region of no chaos for both
homoclinic orbits.

5. As was shown in [12], the possibility of chaos can be eliminated for the right homoclinic
orbit through position feedback control. This is represented by the curve that crosses from
region 2 to region 1.

Now, we fixk = kg and let§ = pdg. This gives the poinfag, 20, p(A/T)g). SO varying
p causes the operating point to move in the vertiga) I') direction. It is easy to note that
changing the damping in the system does not change the vallanfl, hence, théA /)¢
surface is fixed. Thus, we can move the operating point from one side 6AthE)., surface
for a givenX to the other by changingjappropriately. As one expects, increasing the damping
in the system eliminates the possibility of chaos. For the surfaces plotted in Figure 18 as
we increase the dampirfy the corresponding vertical lines move from region 4 to region 1
passing through region 2 or region 3 or directly (if they cross the one dimensional intersection
curve of the two surfaces). The transition between regions 2 and 3 is not possible in this case.
We conclude that given a specified cantilever, it is possible to design a controller of the
formu = k,x1 + k,x» that will eliminate chaos if it exists whan= 0.

4.2. THECASEX > 3

WhenX = ¥, the slope of-F; at&; = &, is equal to—1 and is minimum. In this case,
ay = o,,. Due to the fact that we know the point at which the slope-éf ; is equal to—1,
we can compute;. The spring force must be equal to the LJ forcé,at &;;, whena = «ay.
Using this fact together with Equation (15), we have

11 d

_é;-‘[js =ay — (g + Eljs) = Em
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Table 1. Summary of the dynamical behavior of the system.

= a Fixed points Phase portrait
T <X a<agpy 1 center Figure 8

o= gy 1 center, 2 nonhyperbolic —

agy <o <ay 2centers, 1 saddle Figure 10

o = gy 1 center, 2 nonhyperbolic —

o> ag 1 center Figure 11
Y=31 <oyl 1 center -

= sy 51 1 center, 2 nonhyperbolic —

a > Oy ) 1 center -
>3 all 1 center -

Therefore,

oy, 4
O] (04) E]_ = 12 ((0'4)1/621)2'

Solving foray,, we geto,; = 0.9828.

If ¥ > ¥4, the slope of-F; at&; = &, is greater than-1 which indicates that the spring
force cannot be tangent to the negative of the LJ force. Thus, the intersection of the spring and
LJ forces is always transversal and it happens only once. This gives the position of the only
fixed point of the system which is of center type stability.

5. Conclusions

The experimental observation that the motion of the microcantilever (which is the heart of the
detection scheme employed by atomic force microscopes) can be chaotic led to the dynamical
analysis of the cantilever-sample system in the AFM. An appropriate mathematical model for
this system was needed in order to understand the dynamical behavior of the cantilever. To this
end, the cantilever-sample interaction was modeled via Lennard—-Jones potential. Using this
model, it is shown that it is possible for chaos to exist in the system depending on the extent
of damping, forcing, and equilibrium position of the cantilever. The region in the space of
physical parameters in which chaos exists was found. It was shown that state feedback control
can be used to eliminate the possibility of chaos.
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