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Abstract— Understanding mechanisms for conformation
change in large networks of biological oscillators leads to
comprehension of robustness notions in generic large inter-
connected dynamical systems. Biological systems are known
to be extremely robust to most environmental perturbation
while in certain situations they embrace external influence to
carry out a particular task. In light of this, the connection with
networked or distributed control systems becomes clear. In this
paper, we study the dynamical properties of energy transfer
through a macromolecule undergoing conformation change.
We use a series of dynamical systems tools to identify energy

pathways in the system that enable conformation change.
We find that during internal resonance, a certain funneling
structure appears which channels energy in a manner that
enables this conformation change to occur.

I. INTRODUCTION

Networks of nonlinear systems often have different path-

ways for energy transfer and the degree to which their

resistance differs often defines the robustness of the system.

A system in which all conduits for energy transfer experi-

ence the same resistance are relatively robust to a specific

perturbation. On the other hand, systems which have one (or

a few) paths in which energy transfer is much easier than the

average resistance are deemed non-robust because a specific

perturbation on this path will dominate its response. In this

paper we call these perturbations structured as their shape

(or direction in phase space) are tuned to the path where the

resistance to energy transfer is least (linguistically known as

the sweet spot, or weak link, etc.). These perturbations may

result in either desirable or unwanted responses.

In this paper we study a model of a biological macro-

molecule (DNA-inspired), wherein it is known that the

double helix opens and closes as a normal function in certain

environmental situations and that the structure of DNA is

impervious to most other environmental perturbation. This

is a case where a specific perturbation is applied and energy

is transferred through the structure of the system effectively

to accomplish a particular desired task. As a second example

consider the network of nonlinear systems that make up

regional power grids. Clearly, it is desired that these systems

are impervious to any perturbation, while it is found in some

situations that specific perturbation effects the system in a

major and malicious way (i.e. a tree branch fault resulting

in major grid failure).

The mechanism that is essential for energy transfer in

networked systems is resonance between the individual units.
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In linear oscillatory systems, when natural frequencies are

near each other, energy transfer is periodic with frequency

proportional to the separation in frequencies. In nonlinear

systems on the other hand, since frequency and amplitude

are dependent, once energy is transferred (and amplitudes

change) frequencies are altered and energy may remain in a

sink resulting in a nonreversible transfer of energy. This pro-

cess is termed energy pumping or funneling and is becoming

a popular replacement for linear for passive vibration control

(see [1], [2], [3], and [4]). This nonlinear process is facilitated

by resonance capture [5] wherein different portions of the

phase space have different behavior with respect to energy

transfer.

A second mechanism that is often attributed to conforma-

tion change in coupled oscillator or molecular systems is that

of existence of discrete or multi-breathers. In this context,

spatially localized time periodic solutions initiate global

response in the network (see [6]). The excitation of these

breathers is commonly known as Targeted Energy Transfer.

Great progress has been made in this context to understand

the conditions needed for this to occur even in biological

systems ([7] and [8]). In this paper we are investigating a

different response where localized perturbation leads to large

(global) coherent motions. In engineering terms, the multi-

breather approach seeks traveling wave solutions while we

are looking into standing wave behavior.

Below we begin by setting up a case study in terms of

its biological background including the discussion of basic

dynamical properties of macromolecules (specifically DNA).

We then outline the particular model and its derivation.

Following this we perform two different canonical transfor-

mations to the model in order to illuminate energy transfer

mechanisms. We conclude by summarizing the results.

II. BIOLOGICAL BACKGROUND

The basic construction the DNA helix consists of two

linear polymers, each polymer has monomeric units of

nucleotides which are connected by Hydrogen bonds. These

nucleotides contain sugar, phosphase and a heterocyclic base

(can be either A/G: purine, or T/C: pyrimidines). In its

physical setting, DNA is typically super-coiled which means

that two strands are wound like a helix, connected end to

end and then further looped and coiled. Coiling is needed

for packing into cells, making the strand more active, or

accumulation of energy [9].

The mechanics of DNA evolve on timescales on the order

of femtoseconds to seconds. On the nano-second scale (of

which we are most interested) we have solid-like motions of
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sugars, phosphates and bases including: conformation tran-

sitions, gene regulation, DNA-protein recognition, and DNA

denaturation. This mobility can be caused by many factors

including properties of the thermal bath, collisions, influence

of local proteins, ion concentration, ph, solvent polarity, or

presence of ligands. DNA reacts with drugs, carcinogens,

mutants and dyes. As an example of this by stretching and

unwinding the double helix, drugs can permeate the DNA

structure alternating its properties.

Another important mechanical behavior of DNA is tran-

scription from DNA to RNA. In this process the DNA helix

bonds are broken and the chain unzips allowing the RNA

polymerase enzyme to bind to one strand of the original

DNA helix. This process traverses the length of the strand

reading information along the way while opening and closing

the Hydrogen Bonds [10].

Mechanically, the separation of the double Helix (unwind-

ing, opening, melting, denaturation, etc.) occurs due to two

reasons 1) rotation of the bases, 2) transverse displacements

in the strands. Both of these processes result in a relative

displacement between the Hydrogen bonds resulting in the

separation. In this study we investigate the first mechanism

for separation, specifically the separation process and its

robustness to external perturbation.

III. THE MODEL

In this section we outline the modeling approach for

our particular representation of the DNA strand. There are

various ways to model DNA each lending themselves to

different physical behavior. A comprehensive review of dif-

ferent modeling approaches can be found in [10]. For our

purposes we model coarse grained characteristics including

a strong backbone with periodic end conditions and pen-

dula describing the Hydrogen bonds between the two DNA

strands. The Hamiltonian is composed of harmonic terms

due to torsional coupling between base pairs and anharmonic

contributions through a Morse Potential contribution that

captures the effect of Hydrogen Bonds between the strand

of interest and an its partner strand. To study the dynamical

properties of the opening and closing process it is assumed

that the partner strand is immobilized.

This model is very similar to the popular Peyrard and

Bishop model [11] while their model describes translational

motion by way of stretching the Hydrogen bonds and

our model considers rotation on the backbone. The model

described in this paper is exactly the same as in [12].A

schematic of the model can be found in Figure 1 (note that

the periodic boundary conditions of the backbone are not in

this figure while in the equations of motion).

A. Fundamental Equations of Motion

The nonlinear forces on each pendula are from inter-

molecular forces between the mobilized and free strand. It is

assumed that these nonlinear molecular forces only act from

a single free pendula to its immobilized counterpart, cross

coupling forces are only included through linear torsional
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Fig. 1. Schematic representation of the DNA model, two equilibria exist
for each pendulum at small angles on either side of the downward position.

contribution along the backbone. The impact of both of these

potentials is described below.

The nonlinear force between Hydrogen pairs is not known

exactly because its complexity and challenge for experimen-

tal verification. Some attempts have been made using AFM

and pull tests (see [13] for example) and a common potential

used for this type of model is the Morse potential. This

potential is used because its nonlinear characteristic captures

both the attraction from the hydrogen bonds and repulsion

from the phosphate groups [14]. The Morse potential is:

Vm(y) = D
(

e−ay − 1
)2

(1)

Where D is the dissociation energy, a is a decay constant,

and y is the distance function between interacting molecules.

The distance function used in this model is:

y = h (1 − cos θk) − x0 (2)

where k ∈ (0, N − 1), N being the number of pendula in

the model and θk is the angle that the kth pendulum makes

with respect to the downward position, x0 is a equilibrium

constant, and h is the length of the pendulum. The coupling

of the pendula arises along the backbone through linear

torsional effects with the following potential:

Vc(θk) = S
1

2
(θk−1 − θk)

2
(3)

where S is a constant relating to the torsional stiffness of the

backbone. The resulting total potential energy for the system

is V = Vm + Vc. Considering m as the mass at the tip of

the pendulum, from Newtons Laws we have:

mh2θ̈k = −∂V (θk)
∂θk

= S (θk−1 − 2θk + θk+1) . . .

+2ahDea(cos(θk)h−h+x0)
(

ea(cos(θk)h−h+x0) − 1
)

sin(θk)
(4)

To simplify the model we rearrange the equation by scal-

ing to absorb mh2

S
into the time variable, and denoting 2ahD

S

as 1
L2 . Note that when L is large we have predominately

linear dynamics (i.e. 1
L2 ∼ ε). With this we have the
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equations of motion:

θ̇k = pk

ṗk = 1
L2 ea(cos(θk)h−h+x0)

(

−1 + ea(cos(θk)h−h+x0)
)

sin(θk)
+ (θk−1 − 2θk + θk+1)

(5)

where pk is angular velocity. Using the parameters {L =
10, h = 10, a = 0.7, x0 = 3}, for the remainder of

this document we reference system of equations (5) as the

nominal model.

The constant Hamiltonian for this system is:

H =

N
∑

k=1

p2
k

2
+

(

e−ad(h(1−cos(θk))−x0) − 1
)2

2adhL2
+

1

2
(θk−1 − θk)

2

(6)

At this point, to partially familiarize ourself with the

nonlinear aspects of the nominal model we plot contours

of constant Hamiltonian in the figure below (Figure 2).
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Fig. 2. Energy surface contours for a single pendulum which models a
single Hydrogen Bond

The horizontal aspect of the phase space is modular 2π,

and we also observe the bistability with two clearly visible

potential wells. This bistability is the key feature of the

model that facilitates conformation change. That is, we define

the two conformations of the system as when all pendula are

in one or the other potential well.

Equilibrium analysis of the nominal model illuminates that

in fact there exist different equilibria which arise from both

the nonlinear and linear potentials. For the nonlinear potential

there are four equilibria θeq = {0, π,±acos(1 − x0
h

)} the

first two are unstable while the last two are linearly stable.

The energy associated with these equilibria are {0.03668×
N, 0.000714×N, 0, 0}. For the linear potential one equilib-

rium condition is to have all pendula in a straight line. In

summary, the linearly stable equilibria for the entire system

is when all pendula are are aligned and at one of the two

locations ±acos(1 − x0
h

).
It is interesting to note the equilibria condition due to the

linear forces, can also be achieved for integer twists of the

strand. The dynamics of this system have been investigated to

some extent and it has been found that the conclusions from

the untwisted model are qualitatively similar to those with a

twist, scaled by a constant potential energy. This finding is

identical to the conclusion relating to the increase in potential

energy barrier for unzipping due to the helical twisting as

described in [13].

We note here that model derived above is a set of de-

terministic nonlinear Ordinary Differential Equations. There

are various approaches to include the stochastic nature that

is unquestionably present in actual molecular setting includ-

ing temperature themostatting and Langevin arrangements.

These aspects have been studied to some extent with this

model while we include none of this analysis in this doc-

ument. The remainder of this paper investigates particular

aspects of the nominal model and canonical variants to it.

Most of the analysis is performed numerically while driven

by analytical insight.

IV. PRELIMINARY NUMERICAL RESULTS

In this section we present numerical simulations and

analysis of the nominal model (5) with N = 30 molecules.

The focus is on the amount of energy vs. the structure of a

perturbation to achieve a conformation change. The condition

used to determine if the strand has re-conformed, is when

the average of the angles exceeds π (straight up in Figure 1).

Since this is an unstable equilibrium (saddle), once exceeding

this value the strand as a whole is attracted to the second

equilibrium.

Because of the scales of concern, conservation of energy

is extremely important in simulation of molecular systems.

To address the well known problem of numerical dissipation

from standard variable step solvers we use geometric integra-

tors which exploit the symplectic structure of the equations

of motion. In particular, we use the Verlet method in the

Matlab package of Hairer [15].

A. Energy Analysis

In order to determine the sensitivity to structured perturba-

tion, various spatial perturbations were imposed as an initial

condition for the position variables, while momenta were

set to zero. In particular, perturbation in the structure of

spatial Fourier Modes was selected (the reason for this will

be made clear later). The amplitude of these perturbations

was increased until the DNA strand reconforms and the

potential energy of this threshold is recorded. The results

of this experiment are presented in Figure 3. An example

with a random perturbation is also included for reference.

It is clear from the Figure 3 that with increasing the

wavelength of the perturbation more energy is needed to

achieve conformation change. We also note that perturbation

in a random manner falls within the range of structured

perturbation at approximately half of the energy needed

for a perturbation of N
2 wave number. This makes sense

as the random perturbation spreads energy roughly equally

throughout all wavelengths possible.

V. MODAL PROJECTION AND REDUCTION

Due to the spatial invariance (symmetry) and periodic

boundary conditions, the empirical eigenfunctions for this
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Fig. 3. Energy needed for conformation change as a function of structured
perturbation (Fourier Mode)

system are best captured by Fourier Modes. In addition, as

we have shown, the energy needed to achieve conformation

change is clearly related to the mode shape of the initial

perturbation. As such, to get a better understanding of

the dynamics, we project the nominal model onto a basis

of Fourier Modes using the normalized Discrete Fourier

Transform (DFT).

The projection matrix for this procedure and denoted M
and can be found in [16]. This matrix is a N × N matrix

carrying modal information to wavelength N
2 . As defined, M

is an linear orthogonal matrix which is a symplectic mapping

between the original variables and the modal coordinates.

The transformed coordinates become (the variables in bold

are vectors throughout this document):

(

θ̂, p̂
)

= (Mθ,Mp) (7)

With this transformation, we have a decomposed (albeit

coupled) system starting with the zeroth mode (the average of

all original pendula angles) and modes of increasing spatial

wavelength. With an abuse of notation, the general form of

the system is:

˙̂
θ = f̂

(

θ̂, p̂
)

˙̂p = ĝ
(

θ̂, p̂
) (8)

In Figure 4 we present the the results of a numerical

simulation of the system in modal coordinates. The initial

conditions are such that all modes greater than zero are

perturbed while the zeroth mode remains at equilibrium. The

upper-most trace is the response of the zeroth mode vs time,

while the phase space of the modes of increasing wavelength

are presented from left to right below it. It is evident from

this figure that the nonzero modal coordinates experience a

nearly linear oscillation. We will find that it is the energy

in these modes that eventually is transmitted to the zeroth

mode provoking the conformation change.

Because the transformations are canonical, we can remove

modes from the system while preserving the Hamiltonian

structure. By doing this reduction we will have a more
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Fig. 4. Response of system in modal coordinates, the first coordinate is
highly nonlinear (upper plot, vs. time) while all other coordinates are nearly
linear (all other phase space plots).

tractable system of equations. We have analyzed the qual-

itative differences between the full order model and lower

order truncations (starting with highest mode first) and have

found good agreement (see also [16]). Since the qualitative

nature of the model is preserved under reduction, we will use

a lower dimensional model for the remainder of the study

(the dimension of this reduced model will be denoted M ).

VI. ACTION - ANGLE COORDINATES

To gain further insight into energy transmission char-

acteristics in the model we perform a second canonical

transformation to obtain the system in action-angle coordi-

nates. Note that the zeroth mode is already in action-angle

coordinates and with this in mind the new system adheres to

the following transformation rules:

θ̂0 → φ0 p̂1 → J0

θ̂1 →
√

2J1

ω1

sin φ1 p̂1 →
√

2J1ω1 cosφ1

...
...

θ̂M̃ →
√

2J
M̃

ω
M̃

sin φM̃ p̂M̃ →
√

2JM̃ωM̃ cosφM̃

(9)

where M̃ = M − 1, ωk =

√

‖ d(ĝk(θ̂k,p̂k,ǫ=0))

dθ̂k

‖, the kth

frequency of the linear system, and M is the number of

retained modes. The function ĝk is obtained from Equation

(8). We note at this point that the independent linear natural

frequencies (ωk) for each mode are not rationally commen-

surate. That is to say, the purely linear portion of the model

contains no resonance terms (however, this is not to say that

the system never goes into resonance). The resulting form of

the system in action-angle coordinates becomes:

φ̇0 = J0

J̇0 = 0 + εg0(J , φ, ε)
,

φ̇k = ωk + εfk(J , φ, ε)

J̇k = 0 + εgk(J , φ, ε)
(10)
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where (Jk, φk) ∈ R × R are the kth action and angle for

k = 1, . . . , M and ωk ∈ R is the rotation number or angular

frequency.

Notice that the angle coordinates for all modes with

nonzero wavelength have a predominately linear periodic re-

sponse and the action equations in linear limit are stationary.

A. Numerical Experiments in Action-Angle Coordinates

To illustrate exchange of energy during a targeted initial

condition response, we simulate system (10) using a specific

initial perturbation. In this case, we simulate a reduced

system with seven modes (M = 7) with an initial condition

on the first mode of J1(0) = 0.3 which is sufficient for

conformation change. Figure 5 illustrates the response to this

initial perturbation. Only two of the action variables are pre-

sented because the others are near zero receiving no energy

from the lower order modes throughout the simulation.
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Fig. 5. Time simulations illustrating exchange of action leading up to
conformation change

Notice in this figure, that the action behaves stepwise;

remaining constant for long periods of time and then at

certain times changing abruptly to a different value. This

behavior occurs due to internal resonance in the system. That

is, at these times the phase space variable of zeroth mode

becomes close to one of its equilibria and the system enters

a resonance zone which enables the energy transfer.

As we have mentioned, internal resonance is a key mech-

anism for energy transfer in this system. In the Targeted En-

ergy Transfer framework, the system undergoes a resonance

capture where the variables reach a resonance manifold and

remain on this manifold for further time. In our case however,

we do not remain in resonance but rather have passage

through resonance where the system is only in a resonance

zone for a brief period of time. It is in this time interval that

energy transfer occurs.

The resonance conditions for a multi-frequency system are

[5]:

|(κ, ω)| <
1

c|κ|v (11)

where (κ, ω) = κ0ω0 + κ1ω1 + · · · + κM−1ωM−1, κi

are integers and c, v are positive constants. The quantity

on the left hand side of the inequality goes to zero when

frequencies become rationally commensurate. The term on

the right hand side accounts for resonance in small regions

where the frequencies are almost commensurate. In fact the

size of the resonance zone both in dimension in phase space

and time spent inside is related to this value.

To study our system while in resonance, in Figure 6

we plot a few phase variables for the same simulation

above (Figure 5). Notice that at instances where the actions

undergo their energy transfer (step changes), the difference

in frequencies approach zero which is indicative of internal

resonance. In fact, in terms of equations (10), the frequencies

are constant outside of the resonance zone (φ̇k = ωk) while

changing abruptly during resonance the nonlinear element

(f(.) of Equations (10)) become active.
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resonance

B. Analysis of Energy Transfer Mechanisms Resulting in

Conformation Change

With the system now in action-angle coordinates (which

directly relate to energy) we gain insight into the transmis-

sion paths for the modal energy in the system. In particular,

we linearize the system and investigate this time dependent

operator as the system evolves. What we find is that the

structure adheres to a funneling behavior wherein energy

from higher order modes is transmitted to modes of lower

wavelength while transmission in the other direction occurs

to a much less extent.

The equation system (10) is linearized analytically without

specifying the equilibrium location for this linearization. The

form of the resulting system is:

[

φ̇

J̇

]

=

[

J11 J12

J21 J22

] [

φ

J

]

(12)

where each Jii ∈ R is a M × M matrix.

We are interested in energy transfer and in this system this

is represented by change in action. As such, the block J22

becomes important as the change is action is only weakly

dependent on angle. Focusing on this lower right submatrix

we evaluate it using the data from the numerical experiment
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as described in Section VI-A. In Figure 7 we show time

averaged values of the J22 block which in this case for a

model with seven modes is a 7× 7 matrix. The averaging is

performed while inside and outside of the resonance zone,

and there is a clear distinction between the structure of the

system in these two regimes.
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Fig. 7. Time averaged energy transfer operator in and outside of resonance
showing a clear preference for energy transfer to lower modes

The interesting behavior of this system occurs in the

resonance zones of the phase space where the Jacobian has

a clear upper triangular structure while when the system

evolves outside, the structure is uniform and of small value.

It should be noted at this point that the data presented here

is not unique data. Many different numerical experiments

were performed with varying parameters (initial conditions

etc) with the same qualitative results.

Schematically, this process can be thought of in terms of a

directed graph structure for the transfer of energy (see Figure

8). Outside of the resonance zone all paths for energy transfer

are uniform. However, in resonance certain directed paths

become evident. That is, all high wavelength modes effect

the energy in the lower wavelength modes while these same

lower order modes do not effect their neighbors of higher

wavelength. This explains how a structured perturbation in

any mode greater than zero eventually effects the zeroth

order mode, and in our case eventually leads to conformation

change. This also agrees with the findings in [4] where

cascades of irreversible energy transfer occurred due to the

preference of modal frequency with the resonant character-

istics of the system.

Fig. 8. Schematic of energy transfer pathways during internal resonance

VII. SUMMARY

In this study we have shown that using a series of canon-

ical transformations pathways for energy transfer in a large

networked system become evident. Specifically, we find that

for a biological macromolecule (DNA), there is a preference

for energy transfer through the spatial Fourier Modes from

high wavelength towards lower wavelengths. This finding

elucidates qualities of robustness to external perturbation

for this system. These qualities are particular to the model

studied in this paper while they may also describe qualities

of other systems including networked control systems.
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