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Abstract 

I n  this paper we study controllability of a class of 
discrete-time systems arising in Hamiltonian dynam- 
ics. I n  particular, we consider a two-dimensional 
integrable twist map with time-dependent (control) 
perturbation. I n  contrast to  the time independent- 
perturbation case of the Kolmogorov-Arnold-Moser the- 
orem, no invariant structure survives i f  the perturba- 
tion is made a function of time. Using results f rom 
ergodic theory, we show that global controllability is ob- 
tained using arbitrary small control input. 

1 Introduction 

Control of Hamiltonian systems is a topic that has re- 
ceived a lot of attention lately [ll]. Besides the intrinsic 
beauty of the subject, this is due to  a number of excit- 
ing applications such as satellite control 151, quantum 
control [6, 71, and control of mixing [8, 121. 

In this paper we combine the control-theoretical and 
dynamical systems point of view to study a class of 
systems that are well understood from the dynamical 
systems perspective: perturbations of integrable planar 
twist maps [16]. These two-dimensional maps defined 
on an annulus arise from discretization of continuous- 
time Hamiltonian systems. Integrable twist maps on an 
annulus have very simple dynamics given by (z, y )  + 

(z + G(y), y), G’(y) > 0, where z and y are the usual 
Cartesian coordinates on the plane and 5 is considered 
mod 1. 

Thus, all the initial conditions stay at the same y for all 
time and y = const. is an invariant manifold for the dy- 
namics. One of the most famous results in dynamical 
systems, the Kolmogorov- Arnold-Moser (KAM) the- 
orem [l] (in Moser’s version [16]) considers a time- 
independent perturbation of an integrable twist map. 
Under the condition that every curve y = const. inter- 
sects its image under the perturbation, KAM theorem 
states that the majority of initial conditions stay on 1- 
dimensional invariant curves close to  the unperturbed 
invariant curves on which G ( y )  satisfies the Diophan- 

tine condition (strong irrationality). It is commonly 
stated that unperturbed invariant curves that have suf- 
ficiently irrational dynamics “persist” under perturba- 
tion. The question that we ask here is, how does this 
change if we allow (bounded) time-dependence of the 
perturbation? We prove under weak conditions that, 
for arbitrarily small time-dependent perturbations, ev- 
ery unperturbed invariant curve disappears and global 
controllability is achieved. This is in marked contrast 
with the KAM result. 

This paper is organized as follows. In Section 2 we 
discuss the dynamics of twist maps. Section 3 consists 
of basic definitions. Main results follow in Section 4, 
simulation results in Section 5, and the conclusions is 
in Section 6 .  

2 Dynamics of twist maps 

In this section we study the two dimensional integrable 

and its perturbation. Here S’ := RI2 := [0, 1) denotes 
the circle. R/Z is an equivalence class with z G y if 
z - y E Z. A twist map F : A -+ A is called integrable 
if it is of the form 

twist map F defined on an annulus A := S1 x [ c u , ~ ]  

F ( z ,  2) = (x + G(z) ,  21, (1) 

where x $ S1 = R/Z, z E   CY,^] with 0 < CY 5 y 5 
p, and G ( z )  > 0. Given any initial state or initial 
condition (z, z )  E S’ x [CY, p], the map F tells us where 
this initial state will be in the next iterate which is 
F ( z ,  z) .  Similarly F ( F ( z ,  z ) )  = F2(x, z )  tells us where 
F ( z , z )  will be in the next iterate, and so on. Under 
the action of this map, each point x E S1 is rotated by 
a monotone function G and point z E   CY,^] is mapped 
onto itself. From the dynamics of the map, it is clear 
that, for any given 2 E   CY,^], the circle of the form 
S’ x { z }  is invariant under the action of the map; i.e., 
for any (z, 2) E S1 x { z } ,  F ( z ,  z)  E S1 x { z }  . 
There are two different types of dynamics are possible 
on each of these invariant circles. For each rational 
value of G(2) = $, where p and q are integers, the 
invariant circle S’ x ( 2 )  consists of q periodic orbits. As 
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a matter of fact, if we denote by FQ, the composition 
of F q times, then it is easy to see that FQ(z,E) = 
(z + q:,2) = (z,E). However, for irrational values of 
G(.Z), iterates of any initial condition (z,.Z) E A are 
never mapped again to  the same point; therefore for all 
irrational values of G(2) these invariant circles consist 
of dense orbits. 

Since G ( z )  is a monotone function, map F can be sim- 
plified by defining a new coordinate y = G(z ) .  Af- 
t,er the coordinate transformation we get a new map 
F : A + A defined as 

where a = G ( a )  5 y 5 G(P) = b. We are interested 
in studying the dynamics of this map subjected to  ar- 
bitrary small time-dependent perturbations. Since we 
want to  study the controllability property of the per- 
turbed twist map T, we will write it T : A x U -+ A as 
a discrete time system in the following form: 

where z E S1, y E [a,b] with 0 < a 5 y 5 b, and 
u E U = [-1,1] . Instead of making f and g ex- 
plicit functions of time, we introduce the time depen- 
dence in the form of u(t) .  We assume that f and g 
are at least C' (differentiable function with continuous 
derivative) and periodic in z i.e., f (z + 1, y) = f (2, y) 
and g ( z  + 1, y) = g ( z ,  y) and g satisfies following reg- 
ularity condition. There exists 6 > 0 and .9 > 0 such 
that 

p{x : Ih(z,y)I > 6 )  > 6 for any fixed y E [a,  b] (4) 

This map is thoroughly studied in reference [16] for the 
case of time-independent perturbations where f and 
g are analytic and periodic in x. It has been proved 
that for time-independent perturbations some invariant 
curves of the form y = d(z) = q5(z + 1) will survive, if 
the perturbed map satisfies the intersection property. 
The map is said to  satisfy the intersection property 
if a curve y =constant intersects its image curve un- 
der the action of the map. We will show that if the 
perturbation is made a function of time, not only no 
invariant curve survives, but global controllability can 
be obtained. In other words, a sequence of control in- 
puts {u t}  exists which can steer the system from any 
given initial state to  any final state. As in [16], we also 
assume that the map satisfies the intersection property, 
but the global controllability results hold true even if 
the map does not satisfy it. The intersection property 
on the map is imposed by assuming that g($(y) ,  y) = 0 
for some smooth function $ : (a ,  b) --+ R. 

3 Basic definitions 

For a discrete time map, the time t takes integer values 
, t E Z. Since f and g are assumed to  be C', the 
map T : A x U + A is of class C'. To be precise, 
we mean that there exists a C' extension of T to an 
open neighborhood of Ax U .  For each fixed ti, the map 
Tc : A --+ A is defined as 

TE(~, Y) = T(z, Y, U). 
In particular, if we consider the map Tu associated with 
the map T in (3), we can prove that, for E sufficiently 
small such that E .  max(lg1, 1 ~ 1 , I ~ l )  < 1, the 
map T is invertible for each fixed U. This can be ver- 
ified as follows. For, each fi?ed,u, we have Tu(zt,  y t )  7 
(Zt+l, Yt+l). Let Tub, Y, 2 7 Y ) := Z(z2 Y) - (z 7 Y 1 
then fu(Zt,Yt,zt+l,Yt+l) = 0. If det l&l # 0, then 
by implicit function theorem we kpow that there ex- 
ists an open neighborhood N of (z , y ) = (zt+l, yt+l) 
apd a upiyue ,fu?ction T; : A + A such that 
T,(T;(z ,y),z , y )  = 0. So, we need to  verify that 

det I & #  0 

aTu 
det I- 

Y) 
af as as 
ax a y  ax 

= 1 +€U@)(- + - - -) + O ( 2 )  # 0. 

So for sufficiently small E map T is invertible. Since 
for each fixed U, Tu is invertible we can associate an 
inverse time map with equation 

The maps Tu and T; can be considered as one-step 
-forward and one-stepbackward maps, respectively. 
The composition of these maps obtained by applying 
sequence of control inputs u ~ , . . u k  is denoted respec- 
tively by 

and 

T&,..?U0 = TG o .. o.TG. 

Let St(z) be the set of points attainable from z in k 
forward steps and S+(z) the set of points attainable 
from z in any positive number of forward steps. Let 
S;(z) be the set of points controllable to z in k for- 
ward steps and s - ( ~ )  be the set of points controllable 
to  x in any positive number of steps. 

Definition 3.1 The system is  said to  be controllable 
i f  for any given initial state (z~,yo) and any final 
state (zf, yf) there ezists a sequence of control inputs 
UO, ..,uk such that Tuk,..,uO(zO,YO) = (zf,Yf). 
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Definition 3.2 The system is  backward accessible 
from x i f  the set of points controllable to  x (i.e., S - ( x ) )  
has a nonempty interior. The system is  said to  be 
backward accessible i f  it is backward accessible from all 
points. 

Proof :We will prove the sufficient part first. We will 
show that if the condition in the theorem is satisfied, 
then the system is controllable. To prove this, we will 
make use of two lemmas: 

Lemma 4.3 The invertible twist map (3) is  backward 
accessible 

4 Main result 

Theorem 4.1 The invertible twist map (3) with f and 
g C' functions satisfying the intersection property and 
g satisfying the regularity condition (4) is globally con- 
trollable for  arbitrary small E i f  and only i f  every in- 
variant manifold of the unperturbed map (E = 0 )  is  not 
invariant for  the perturbed map (E # 0). 

Proof : We will prove the necessary part first. As- 
sume that the condition in the theorem is not satisfied 
i.e., there exists an invariant manifold M of the unper- 
turbed map which remains invariant for the perturbed 
map. Consider any initial state (z0,yo)  E M ,  then 
Tuk,..,uo(xo, yo) E M for any sequence of control inputs 
{ut}  by definition of invariant manifold. Hence, any 
initial state ( x ,  y )  E M is uncontrollable. 

To prove the sufficient condition, we will use the fol- 
lowing proposition. 

Proposition 4.2 The invertible twist map (3) satisfy- 
ing the intersection property is  globally controllable for  
arbitrary small E i f  and only i f  the following controlla- 
bility conditions are satisfied. 

1. For any given fixed y E [a, b], g does not vanish 
identically. 

2. For all Y Q \ ~  E Q \ Z: 

If g(z ,yQ\z)  = 0, then let A k ( Z )  = {xk  : x k  = 
Z+kyQ\Z+cu(k--1)f ( ~ ~ - I , Y Q \ z ) } .  Ak(5) is  the 
set of all points which can be reached from a: on 
kth iterate with &ed y = Y Q \ ~ .  W e  assume that 
there exists an,integer ki E Z+ such that x' E 
Ah; (5)  and g(x , y ~ \ z )  # 0 for the first time. 

3. For all y z  E Z: 

f and g does not vanish simultaneously; i.e., 
if f ( X 1 , Y Z )  = 0 and g ( z 2 , y z )  = 0, then 
2 1  # 2 2 .  

AND 
If g (Z ,  y z )  = 0, then let Bk(ii) = { x k  : x k  = 
3 + ~ u ( k  - 1 )  f ( x k - 1 ,  y z ) } ,  we assume that 
ttere exists an  integ:r k2 E Z+ such that 
x E Ilk;(?) and g ( x  , y z )  # 0 for  the first 
time. 

Proof / Consider any point ( x f  , y f )  E A. We have to 
show that the set of all point controllable to ( x f , y f )  
contains an open set. Let 

= T,-,,,,(Xf,Yf) = T,-, O T , - , ( " f , Y f ) ,  (5) 

so 

Hence, by the implicit function theorem, there exists an 
open neighborhood 0 of (UO, u1) = (0,O) and unique 
functions @ I  and @2 defined on 0 and taking values in 
R such that 

f 1 ( ~ 1 ( ~ 0 , ~ 1 ) , @ 2 ( ~ 0 , ~ 1 ~ , ~ 0 ~ ~ 1 ~  = 0 (9) 

f2(@1(~0,~1),@2(~0,~1),~0,~1) = 0 (10)  

for all (uo, " 1 )  E 0. This proves that the inverse image 
of ( x f ,  y f )  contains an open set. 

Lemma 4.4 Given any initial state ( X O ,  yo) E d, there 
exists a finite sequence of control inputs {uo, .., Ue-1) 
such that ye is  irrational and arbitrarily close to  yo, 
where ( z e , Y e )  = Tu, -,,..., uo(xo, Y O ) .  

Proof: If yo is irrational, then e = 0. If yo is rational, 
then we can consider two different cases: g(x0,  yo) = 0 
and g(x0,  Y O )  # 0. 
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e When g(z0, YO) # 0, then YI = yo+Eu(O)g(zo, YO) 
can be chosen to  be irrational by properly select- 
ing the value of u(0). Since irrational numbers are 
dense in [0, l), y1 can be made arbitrarily close to  
yo by making u(0) sufficiently small. So for this 
case e = 1. 

0 When yo is rational and g(z0,yo) = 0, we can 
again consider two different cases : yo E Q \ Z 
and yo E Z. 

- When yo E Q \ Z and g(z0, yo) = 0, then we 
know that t+ exists an integef k; E Z+ 
such that z E Ak;(zo)  and g(z ,YQ\Z) # 
0 for the first time. Since k; is such that 
g(zk;, yQ\z) # 0 ,for the first time yk; = yo. 
With s ( z , ; , y~ \z )  # 0, Y ~ ; + ~  can be made 
irrational with proper choice of U ( & )  since 

Yk;+l  = Yk; + Eu(k;)g(zk; 7 YQ\z). 

yk;+l can be made arbitrarily close to  yo 

by making u(ki) sufficiently small and hence 
e = k; + 1 for this case. 

- When yo E Z and g(z0,yo) = 0, then we 
know that f and g do not vanish si,multa- 
neously and there exists an integer k2 E Z+ 
and z E Bk;(z0) such that g(z ,yz) # 0. 
With g(zk;,yo) # 0 and yk; can be made 
irrational with proper choice of u ( k ; )  

Yk;+l = Yki + Eu(kb)g(zk; , Yo) 

where ykt +1 can be made arbitrarily close to 
yo = ykt by making U ( & )  sufficiently small. 
SO t = k2 + 1. 

2 

2 ,  

W 

The control strategy consists of turning on the input 
(either positive or negative depending upon whether 

whenever 1g(z, y)I > 6 until Yk belongs to small neigh- 
borhood of yf . Once Yk is steered to  the neighborhood 
of yf input will be made zero till z k  is steered to neigh- 
borhood of xf. 

Proof of the Proposition 4.2 : Let (20, yo) and (zf, yf) 
be the initial and final state, respectively. Since the 
system is backward accessible by Lemma 4.3, the set 
of points U controllable to  (z f ,yf )  contains an open 
set; hence there exists an open rectangle 1, c U. Let 
r l ( V )  = V, and r2(V) = U, where x is the projection 
map and ri(z1, z2) = zi for i = 1,2. We will show 
that there exists a sequence of inputs { u t }  such that 

Yo < Yf or YO > Yf and g(z,y) > 0 or g(z,y) < 0)  

m(TUL,..,U1 (50 ,  YO)) E V, and r2(TuL,..,ul b o ,  YO)) E V,. 
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Starting with initial state (20, yo), we know by Lemma 
4.4 that there exists an integer e such that Ye is ir- 
rational. Let E V ,  be such that 5 - yt =: p 
is a rational number and let m E Z+ be such that 
2 = CY E (-d, € 1 9 ) .  With yt irrational the orbit of the 
rotation map given by 
m 

is dense in [0, 1) for yt = ye; hence, there exists an inte- 
ger kl - 1 such that lg(ze+kl-l, yt+kl-l)l > 6 since the 
set of points {z : Ig(z,y)l > 6}  is of positive measure 
by Lemma 4.4. With Ig(Ze+kl-l,yt+kl-l)l > 6 input 
u ( t  + k1 - 1) can be chosen so that 

Yt+kl  = Yt+kl-l + a = yt + a. 

Since control input u(t)  = 0 for t = t ,  . . ,e + kl - 1, it 
follows that ye+kl-l = ye. Now ye+kl is still irrational 
because ye+kl-l is irrational and CY is rational. So again 
the orbit of the rotation map given by 

is dense in [0, 1); hence, there exists an integer k p  such 
that kdz!+kl+k2-l, Yt+kl+k2-i)l > 29 and, with proper 
choice of U(! + kl + kz - l), we have 

Yt+kl+k2 is still irrational; hence the above procedure 
can be repeated m - 2 times to  get 

where K = e + ELl IC*. Now y~ = y E V,  is also 
irrational. With YK irrational, the orbit of the rotation 
map given by 

is dense in [0, 1) and hence there exists an integer n such 
that z ~ + ~  E V,. With z~+,, E V ,  and y ~ + ~  = y~ E 
V,, ( z ~ + ~ , y ~ + ~ )  E V c U. Since all the points of U 
are controllable to (zf, yf), the system is controllable. 

Now we will show that the conditions in the proposition 
are also necessary for the controllability. Assume that 
the Condition 1 is not true; i.e., there exists a i j  E [a, b] 
such that g(z, i j )  = 0 for all z E S'. Consider any initial 
state which is of the form (z0,yo) = (zo,c). Then 



Tu,,..,u,(xo,ij) = ( x k + l , i j )  for any sequence of control 
inputs since 

xk+1 = xk -k 5 -k € u ( k ) f ( x k ,  5) (11) 
Yk+l = Y. 

Hence, any initial condition (xo,&) with xo E S’ is 
uncontrollable. 

Now assume that the condition 2 is not satisfied; i.e., 
there exists an i j  E Q I\ Z and 5 E S’ for whjch there 
exists no k E Z+ and x E Ak(5) such that g(a: , i j )  # 0. 
Then the initial state of the form (20, yo) = (5,i j) is 
uncontrollable because yk = G for all k .  

Assume that the condition 3(a) is not true; i.e., there 
exists Z E S’ and i j  E Z such that f (2 ,  ij) = g ( Z ,  i j )  = 0; 
then 

x1 = 5 + 5 + ~ u ( O ) f ( 5 ,  ij)(mod 1) = Z (12) 
y1 = 5 + €u(o)g(5 ,  5 )  = 5. 

So (5,i j) is a fixed point of the map and the system is 
uncontrollable from (5,G). 

Assume that the condition 3(a) is true but condition 
3(b) is not true; i.e., f and g do not vanish simultane- 
ously but there eTists an 5 E S’ for which there exists 
no k E Z+ and x E Bk;(E) such that g ( x  , i j )  # 0. So 
yk = & for all k and the system is uncontrollable from 

Proof of the main Theorem 4.1 cont. : To prove the 
sufficient part we need to show that if no invariant 
manifold for the unperturbed map is invariant for the 

proposition 4.2 we know that system is controllable if 
and only if controllability conditions are satisfied. So 
the sufficient part of the main theorem is equivalent 
to proving that if the controllability conditions are not 
satisfied then there exists an invariant manifold for the 
perturbed map. 

(20, Yo) = (.,Y). 

perturbed map then the system is controllable. By 

By proposition 4.2, we know that if the condition 1 is 
not satisfied then all initial states of the form (20, yo) = 
(x,ij) are uncontrollable, where x E S 1  and i j  is such 
that g(x,ij) = 0 for all z E S’. Hence there exists an 
invariant manifold of the form {i}  x S’. 

If Condition 2 in proposition 4.2 is not satisfied, then 
there exists a i j  k Q \ Z and d E S’ for which 
there exist no k E Z+ and x’ E Ak(5)  such that 
g(x’,G) # 0. Hence, yk = ij for all k and there ex- 
ists an invariant manifold of the form { i j }  x N I ,  where 
NI = UE1Ak(d). When condition 3(a) is not satis- 
fied, then there exists a fixed point which is an invari- 
ant manifold of dimension zero. When condition 3(b) 
is not satisfied, then there exists 5 E Z and 5 E S’ 
for which there exists no k E Z+ and x’ E Bk(5) such 
that g(x’, 6) # 0. Hence, Yk  = 5 for all k and there ex- 

ists an invariant manifold of the form { i j }  x N2, where 
N2 = Ad?). 

5 Conclusions 

With the combination of ergodic theory results and 
controllability results from control theory, we have 
proved the controllability of a discrete time nonlinear 
map using arbitrary small control input. The KAM re- 
sult hold true for time-independent perturbation. We 
proved that when the perturbation is made a function 
of time, under weak conditions complete controllability 
is obtained. 

The control strategy that we pursue stems from [lo], 
where natural dynamics of the system is used to achieve 
controllability on groups. Given that phase space in- 
tegrable Hamiltonian systems are foliated by lower di- 
mensional tori, these methods prove quite useful. Gen- 
eralization to n-degrees of freedom Hamiltonian sys- 
tems is being currently pursued. 

References 

[l] Arnold, V.I.; 1978. Mathematical methods of 
Classical Mechanics. Springer-Verlag: New York, Hei- 
delberg, Berlin. 

[2] Astolfi A. and Menini L.; Noninteracting control 
with stability for Hamiltonian systems. IEEE Transac- 
tions on Automatic Control 45 (8):  1470-1482 AUG. 
2000. 

[3] Bloch A.M. and Crouch P.E.; Optimal control 
and geodesic flows. Systems and Control Letters 28 

[4] Bloch A.M., Leonard N.E. and Marsden J.E.; 
Controlled Lagrangians and the stabilization of Euler- 
Poincare mechanical systems. International Journal of 
Robust and Nonlinear Control 11 (3): 191-214 MAR. 
2001. 

(2): 65-72 JUN. 24 1996. 

[5] Bloch A.M., Krishnaprasad P.S., Marsden J.E. 
and Dealvarez; Stabilization of rigid body dynamics by 
internal and external torque. Automatica 28 745-756 
1992. 

[6] Brockett, R., and Navin Khaneja. On the Con- 
trol of Quantum Ensembles.System Theory: Modeling, 
Analysis and Control. Edited by Theodore Djaferis and 
Irvin Schick. Boston: Kluwer, 1999. 

[7] D’Alessandro; On the controllability of systems 
on compact Lie groups and quantum mechanical sys- 
tems. Proceedings 39-th Conference on Decision and 
Control, Sydney, Australia, Dec. 2000. 

[8] D. D’Alessandro, M. Dahleh and I. Mezic; Con- 
trol of mixing in fluid flow: A maximum entropy ap- 

4652 



proach. IEEE Transactions on Automatic Control 1999 
Vol. 44. No. 10, pp. 1852-1863. 

[9] Fradkov A.L.; Swinging control of nonlinear oscil- 
lations. International Journal of Control 64 (6): 1189- 
1202 AUG. 1996. 

[lo] Igor Mezic; Controllability of Group Translation 
Proceedings of A C C  2001. 

[ll] Leonard N.E.; Stabilization of underwater vehicle 
dynamics with symmetry-breaking potentials. Systems 
and Control Letters 32 (1): 35-42 OCT. 26 1997. 

I121 B. R. Noack, A. Banaszuk and I. MeziC; Control- 
ling vortex motion and chaotic advection, Preprint. 

[13] Pentek A., Kadtke J.B. and Pedrizzetti G.; Dy- 
namical control for capturing vortices near bluff bod- 
ies. Physical Review E 58 (2): 1883-1898, Part A AUG. 
1998. 

[14] Pentek A., Kadtke J.B. and Toroczkai Z.; Stabi- 
lizing chaotic vortex trajectories: An example of high- 
dimensional control. Physics Letters A 224 (1-2): 85-92 
DEC. 30 1996. 

[15] Schlacher K.; Mathematical strategies common 
to mechanics and control. Zeitschrift f u r  Angewandte 
Mathematik Und Mechanik 78 (11): 723-730 1998. 

[16] Siege1 C.L. and Moser J.K.; 1971 Lectures on Ce- 
lestial Mechanics. Springer Verlag Berlin, Heidelberg. 

[17] Turinici G. and Rabitz H.; Quantum wavefunc- 
tion controllability. Chemical Physics 267 (1-3): 1-9 
JUN. 12001. 

[18] Polushin I. G.; Stabilization of invariant tori in 
Hamiltonian systems under persistently acting distur- 
bances. Int. J. Robust Nonlinear 11 (3): 253-265 MAR. 
2001. 

4653 


