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Systems	of	Systems	(SoS)

the cell. So, indeed, here the NF!B modules acts as a
controller of the apoptotic pathway. Our decomposition
technique accurately captures this information. Again,
without the control module, the MPU produces over-
abundantly the output signal in a relatively fast way.
The long feed-forward edge from x16 to x27 may acceler-
ate the control in this case.

Circadian clock in Drosophila
Circadian clock exists in many different organisms ran-
ging from bacteria to human. The regulation pathway

adopted from [43] and displayed in Figure 7 models the
Drosophila circadian clock which mainly contains two
interlocked loops. The notations are explained in
Table 2. The TIM and PER protein in the first loop may
bind to each other in the cytosol or nucleus, but they
enter the nucleus separately. They down-regulate their
own expression by inhibiting the transcription factor
CLK-CYC. The association of TIM and PER in the cyto-
plasm is mediated by FBM and the dissociation is cata-
lyzed by SM which is generated by the constitutive
entering of PER into the nucleus. In the second loop,
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Figure 4 The TNFa model. Network representation of the Survival and apoptotic pathways initiated by TNF-a.

Lan and Mezić BMC Systems Biology 2011, 5:37
http://www.biomedcentral.com/1752-0509/5/37
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Now that we have shown thatW is a category, we show that (⊕, 0) is a monoidal
structure on W. Let X,X ′, X ′′ ∈ ObW be boxes. We readily observe the follow-
ing canonical isomorphisms.

X ⊕ 0 = X = 0⊕X (unity)

(X ⊕X ′)⊕X ′′ = X ⊕ (X ′ ⊕X ′′) (associativity)

X ⊕X ′ = X ′ ⊕X (commutativity)

Hence the monoidal product ⊕ is well behaved on objects. It is similarly easy,
and hence will be omitted, to show that ⊕ is functorial. This completes the proof
that (W,⊕, 0) is a symmetric monoidal category. !

Having established that (W,⊕, 0) is an SMC, we can now speak about the
operad OW of wiring diagrams. In particular, we can draw operadic pictures,
such as the one in our motivating example in Figure 1, to which we now return.

Example 3.12. Figure 7 depicts an OW wiring diagram Φ : X1, X2 → Y , which
we may formally denote by the tuple Φ = (X1, X2;Y ;ϕ). Reading directly from
Figure 7, we have the boxes:

X1 =
(
{X in

1a, X
in
1b}, {X

out
1a }

)

X2 =
(
{X in

2a, X
in
2b}, {X

out
2a , Xout

2b }
)

Y =
(
{Y in

a , Y in
b }, {Y out

a }
)

The wiring diagram Φ is visualized by nesting the domain boxes X1, X2 within
the codomain box Y , and drawing the wires prescribed by ϕ, as recorded below
in Table 3.

w ∈ X in + Y out X in
1a X in

1b X in
2a X in

2b Y out
a

ϕ(w) ∈ Xout + Y in Y in
b Xout

2b Y in
a Xout

1a Xout
2a

Table 3

Y

Y in
a

Y in
b

Y out
a

X1X in
1a

X in
1b

Xout
1a

X2X in
2a

X in
2b

Xout
2a

Xout
2b

Figure 7. A wiring diagram Φ : X1, X2 → Y in OW.

§ Systems	of	Systems	(SoS)
§ Submodules	wired	together	(composed)	to	

form	more	complex	systems

§ SOS	examples	come	from:
§ Engineered	mechanical/electrical	systems
§ Networks

§ Chemical-Biological
§ Information

§ Analysis	and	Prediction	of	SoS behavior	can	be	
hard	with	traditional	tools
§ Geometric	methods	restricted	to	low-

dimensions
§ Simulation	memory	requirements	can	be	

intractable

§ Tools	needed	to	analyze	behavior	of	observables	on	
composed	systems	without	simulation	
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Decomposition	of	system	into	cascade	structure

§ Many	systems	(engineered	and	natural)	exhibit	a	structure	of	a	forward	production	unit	with	
slower	feedback	loops
§ A	number	of	algorithms	have	been	proposed	to	decompose	into	interconnected	

components	(&	analyze)
§ Callier et	al,	1976
§ Pichai,	et	al,	1983	(Graph	theoretic	Hierarchical	decomposition)
§ Mezic,	2004	(Horizontal-Vertical	decomposition)
§ Mesbahi,	Haeri,	2015	(Block	triangular,	Block	diagonal	form)

§ Forward	production	unit	has	a	cascade	structure
§ Downstream	systems	do	not	affect	upstream	systems

§ Goal	is	to	understand	the	behavior	of	the	forward	production	unit	(cascade	structure)
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Koopman	principal	eigenfunctions

§ Spectral	analysis	of	the	Koopman	operator	indicates	how	observables	on	a	system	behave
§ Principal	eigenvalues	generate	the	entire	point	spectrum	of	the	operator

x(t+ 1) = Ax(t) +N(x(t))

Avi = �ivi hvi, wji = �i,j

§ Principal	eigenfunctions Principal	eigenvalue

 j(x) = hx,wji

§ Generate	new	eigenfunctions Product	of	eigenvalues

�(x) =  1(x)
k1 · · · n(x)

kn

How	do	these	fundamental	objects	change	when	systems	are	wired	together?

�i

�k1
1 · · ·�kn

n
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Koopman	Spectrum	for	Cascaded	Systems

Outline

1. Asymptotic	equivalence	and	zero	relative	error	between	linear	cascade	and	nominal	
system

2. Conservation	of	principal	eigenvalues,	modification	of	principal	eigenfunctions

3. Push	results	for	cascades	of	linear	systems	with	linear	connections	to	cascades	of	
nonlinear	systems
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(Chained)	Linear	cascade	and	nominal	systems
Remark. Each subalgebra A

i

for the component system i is embedded in A. The embedding is given by the
map

f 7! 1⌦ · · ·⌦ 1| {z }
i � 1 times

⌦f ⌦ 1⌦ · · ·⌦ 1| {z }
n � i times

,

where the f on the right hand side is in the i-th position. Furthermore, if each A
i

is generated by the
principal eigenfunctions  

i,1, . . . , i,di , then A is generated by the principal eigenfunctions { (0,...,0,si,0,...,0) |
8i 2 {1, . . . , n}, 8s

i

2 {1, . . . , d
i

}}.

2 Main results

Consider the special case of the nonlinear and linear cascades (eq.’s (1) and (2), respectively) where system
i is only affected by system i� 1 (see Fig. 2). This corresponds to the situation where C

i,j

is non-zero if and
only if j = i� 1 and N

i

(x1, . . . , xi

) = N

i

(x

i�1, xi

):

x1(t+ 1) = L1x1(t) +N1(x1(t))

x

i

(t+ 1) = L

i

x

i

(t) + C

i,i�1xi�1(t) +N

i

(x

i�1(t), xi

(t)) (i = 2, . . . , n).

(33)

and
x1(t+ 1) = L1x1(t)

x

i

(t+ 1) = L

i

x

i

(t) + C

i,i�1xi�1(t) (i = 2, . . . , n).

(34)

We will call cascades having the form (33) and (34) chained cascades.

Figure 2: Chained cascade system

Condition 2.1. The following conditions will be in force for all following results:

(i) L

i

is invertible and diagonalizable for all i = 1, . . . , n,

L

i

V

i

= V

i

⇤

i

. (35)

(ii) (Disjoint spectrums) The spectrums of each layer are pairwise disjoint. That is for i, j 2 {1, . . . , n}
satisfying i 6= j

�(L

i

) \ �(L
j

) = ;. (36)

(iii) kL1k < kL2k < · · · < kL
n

k  1.

Remark. Condition (iii) requires that the response times of upstream systems are faster than the downstream
systems they feed into.
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(Chained	)	Linear	Cascaded	system	(Lin) Nominal	system	(Nom)

Ci,j = 0

the orbit passing through initial condition (x1, . . . , xi

). For i = 1, . . . , n, define N �0
i

= ICdi
, where ICdi

is
the identity operator on Cdi . Then, for all i � 1 and t 2 N, these operators satisfy

N �t
i

(x1, . . . , xi

) = ⇧

i

� NonLin�t(x1, . . . , xn

)

=

⇣
L

i

�⇧
i

+

� i�1X

j=1

C

i,j

�⇧
j

�
+N

i

� (⇧1, . . . ,⇧i

)

⌘
(NonLin

�t
(x1, . . . , xn

)).

(7)

For t = 1 we denote NonLin

�1 ⌘ NonLin. For i  j, define the (i, j)-slice of NonLin as

NonLin

�t
i:j(x1, . . . , xn

) = (⇧

i

,⇧

i+1, . . . ,⇧j

)(NonLin

�t
(x1, . . . , xn

))

= (⇧

i

� NonLin�t,⇧
i+1 � NonLin�t, . . . ,⇧j

� NonLin�t)(x1, . . . , xn

).

(8)

If i = j, we will denote NonLin

i:j as NonLin

i

.
The orbit for the linear cascade (2) is defined as

Lin

�t
(x1, . . . , xn

) = (L�t
1 (x1),L�t

2 (x1, x2), . . . ,L�t
n

(x1, . . . , xn

))

(9)

where {L�t
i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi}
t2N0

is the family of solution operators for system i which satisfy

L�t
i

(x1, . . . , xi

) = ⇧

i

� Lin�t(x1, . . . , xn

)

=

⇣
L

i

�⇧
i

+

i�1X

j=1

C

i,j

�⇧
j

⌘
(Lin

�t
(x1, . . . , xn

)).

(10)

The orbit for the full nominal system is

Nom

�t
(x1, . . . , xn

) = (L

t

1(x1), L
t

2(x2), . . . , L
t

n

(x

n

))

(11)

where L

i

is the same as in (2). We will define the (i, j)-slices of Lin and Nom analogous to (8).

1.3 Asymptotic equivalence.

The main results of this paper rely on the concept of asymptotic proportionality and asymptotic equivalence
between the component systems of the linear cascade and the corresponding nominal component system.
First we define the norm for a cascaded system

Definition 1.1. Let k·kCdi be a norm for Cdi . Define a norm on Cd1 ⇥ · · ·⇥ Cdn by

k(x1, . . . , xn

)k⇥ =

nX

i=1

kx
i

kCdi . (12)

For linear maps and operators from one vector space to another, we will denote their induced norm as
k·k. The norms used in the definition of the induced norm will be clear from the context.

Definition 1.2. We say that Lin is asymptotically equivalent to Nom if there exists a perturbation function
pert : Cd1⇥· · ·⇥Cdn ! Cd1⇥· · ·⇥Cdn such that for all i = 1, . . . , n and all x = (x1, . . . , xn

) 2 Cd1⇥· · ·⇥Cdn ,

lim

t!1
k⇧

i

� Lin�t(x)�⇧

i

� Nom�t
(pert(x))kCdi = 0. (13)

We say that system i has 0 asymptotic relative error if

lim

t!1

k⇧
i

� Lin�t(x)�⇧

i

� Nom�t
(pert(x))kCdi

kNom
i

kt
= 0. (14)

A related concept is the asymptotic proportionality of two solution operators. It is the easier of the two
to satisfy:
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Assumptions

Remark. Each subalgebra A
i

for the component system i is embedded in A. The embedding is given by the
map

f 7! 1⌦ · · ·⌦ 1| {z }
i � 1 times

⌦f ⌦ 1⌦ · · ·⌦ 1| {z }
n � i times

,

where the f on the right hand side is in the i-th position. Furthermore, if each A
i

is generated by the
principal eigenfunctions  

i,1, . . . , i,di , then A is generated by the principal eigenfunctions { (0,...,0,si,0,...,0) |
8i 2 {1, . . . , n}, 8s

i

2 {1, . . . , d
i

}}.

2 Main results

Consider the special case of the nonlinear and linear cascades (eq.’s (1) and (2), respectively) where system
i is only affected by system i� 1 (see Fig. 2). This corresponds to the situation where C

i,j

is non-zero if and
only if j = i� 1 and N

i

(x1, . . . , xi

) = N

i

(x

i�1, xi

):

x1(t+ 1) = L1x1(t) +N1(x1(t))

x

i

(t+ 1) = L

i

x

i

(t) + C

i,i�1xi�1(t) +N

i

(x

i�1(t), xi

(t)) (i = 2, . . . , n).

(33)

and
x1(t+ 1) = L1x1(t)

x

i

(t+ 1) = L

i

x

i

(t) + C

i,i�1xi�1(t) (i = 2, . . . , n).

(34)

We will call cascades having the form (33) and (34) chained cascades.

Figure 2: Chained cascade system

Condition 2.1. The following conditions will be in force for all following results:

(i) L

i

is invertible and diagonalizable for all i = 1, . . . , n,

L

i

V

i

= V

i

⇤

i

. (35)

(ii) (Disjoint spectrums) The spectrums of each layer are pairwise disjoint. That is for i, j 2 {1, . . . , n}
satisfying i 6= j

�(L

i

) \ �(L
j

) = ;. (36)

(iii) kL1k < kL2k < · · · < kL
n

k  1.

Remark. Condition (iii) requires that the response times of upstream systems are faster than the downstream
systems they feed into.
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(t) + C
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We will call cascades having the form (33) and (34) chained cascades.

Figure 2: Chained cascade system

Condition 2.1. The following conditions will be in force for all following results:

(i) L

i

is invertible and diagonalizable for all i = 1, . . . , n,

L

i

V

i

= V

i

⇤

i

. (35)

(ii) (Disjoint spectrums) The spectrums of each layer are pairwise disjoint. That is for i, j 2 {1, . . . , n}
satisfying i 6= j

�(L

i

) \ �(L
j

) = ;. (36)

(iii) kL1k < kL2k < · · · < kL
n

k  1.

Remark. Condition (iii) requires that the response times of upstream systems are faster than the downstream
systems they feed into.

7



All information on this page is proprietary to Aimdyn, Inc.

7

Solutions	of	the	cascade	system

xi(t) = ⇧i � Lin�t(x1, . . . , xn) = L

t
iperti(x1, . . . , xi) +

i�1X

j=1

(�1)i�j
Di,jL

t
jpertj(x1, . . . , xj)

The	orbit	in	the	ith system	is

Proof:	By	induction
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Solutions	of	the	cascade	system

xi(t) = ⇧i � Lin�t(x1, . . . , xn) = L

t
iperti(x1, . . . , xi) +

i�1X

j=1

(�1)i�j
Di,jL

t
jpertj(x1, . . . , xj)

The	orbit	in	the	ith system	is

Initial	condition	in	the	cascaded	linear	
system
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Solutions	of	the	cascade	system

xi(t) = ⇧i � Lin�t(x1, . . . , xn) = L

t
iperti(x1, . . . , xi) +

i�1X

j=1

(�1)i�j
Di,jL

t
jpertj(x1, . . . , xj)

The	orbit	in	the	ith system	is

Therefore,
"⇣ t�1X

k=0

⇤

�k

i

B⇤

k

j

⌘#

`,m

=

t�1X

k=0

[⇤

�k

i

B⇤

k

j

]

`,m

= [

˜

B]

`,m

� [

˜

B]

`,m

✓
�

j,m

�

i,`

◆
t

= [

˜

B]

`,m

� [⇤

�t

i

˜

B⇤

t

j

]

`,m

= [

˜

B � ⇤

�t

i

˜

B⇤

t

j

]

`,m

This is equivalent to (57).

Lemma 3.3. For each i = 2, . . . , n, the solution of (34) is

⇧

i

� Lin�t(x1, . . . , xn

) =

iX

j=1

(�1)

i�j

D

i,j

L

t

j

pert

j

(x1, . . . , xj

), (60)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (61)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (62)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (63)

The perturbation functions pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
are multilinear maps defined inductively by

pert1(x1) = x1 (64)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (65)

Proof. We prove the result using induction. First note that the solution for ⇧1 � Lin

�t
(x1, . . . , xn

) can be
written as

x1(t) = ⇧1 � Lin�t(x1, . . . , xn

) = L

t

1x1 ⌘ D1,1L
t

1pert1(x1). (66)

(Seed step): Consider x2(t) = ⇧2 � Lin�t(x1, . . . , xn

). By lemma 3.1, eq. (56), this is

x2(t) = L

t

2x2 + L

t�1
2 V2

t�1X

k=0

⇤

�k

2 V

�1
2 C2,1x1(k)

= L

t

2x2 + L

t�1
2 V2

t�1X

k=0

⇤

�k

2 V

�1
2 C2,1D1,1L

k

1pert1(x1) (67)

where in the second line we have replaced x1(k) with (66) for t = k. Using L

k

1 = V1⇤
k

1V
�1
1 in the

second linear gives

x2(t) = L

t

2x2 + L

t�1
2 V2

 
t�1X

k=0

⇤

�k

2 V

�1
2 C2,1D1,1V1⇤

k

1

!
V

�1
1 pert1(x1) (68)

By lemma 3.2, (57), with B ⌘ V

�1
2 C2,1D1,1V1 gives that

 
t�1X

k=0

⇤

�k

2 V

�1
2 C2,1D1,1V1⇤

k

1

!
=

˜

C2,1 � ⇤

�t

2
˜

C2,1⇤
t

1 (69)
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Therefore,
"⇣ t�1X

k=0

⇤

�k

i

B⇤

k

j

⌘#

`,m

=

t�1X

k=0

[⇤

�k

i

B⇤

k

j

]

`,m

= [

˜

B]

`,m

� [

˜

B]

`,m

✓
�

j,m

�

i,`

◆
t

= [

˜

B]

`,m

� [⇤

�t

i

˜

B⇤

t

j

]

`,m

= [

˜

B � ⇤

�t

i

˜

B⇤

t

j

]

`,m

This is equivalent to (57).

Lemma 3.3. For each i = 2, . . . , n, the solution of (34) is

⇧

i

� Lin�t(x1, . . . , xn

) =

iX

j=1

(�1)

i�j

D

i,j

L

t

j

pert

j

(x1, . . . , xj

), (60)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (61)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (62)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (63)

The perturbation functions pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
are multilinear maps defined inductively by

pert1(x1) = x1 (64)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (65)

Proof. We prove the result using induction. First note that the solution for ⇧1 � Lin

�t
(x1, . . . , xn

) can be
written as

x1(t) = ⇧1 � Lin�t(x1, . . . , xn

) = L

t

1x1 ⌘ D1,1L
t

1pert1(x1). (66)

(Seed step): Consider x2(t) = ⇧2 � Lin�t(x1, . . . , xn

). By lemma 3.1, eq. (56), this is

x2(t) = L

t

2x2 + L

t�1
2 V2

t�1X

k=0

⇤

�k

2 V

�1
2 C2,1x1(k)

= L

t

2x2 + L

t�1
2 V2

t�1X

k=0

⇤

�k

2 V

�1
2 C2,1D1,1L

k

1pert1(x1) (67)

where in the second line we have replaced x1(k) with (66) for t = k. Using L

k

1 = V1⇤
k

1V
�1
1 in the

second linear gives

x2(t) = L

t

2x2 + L

t�1
2 V2

 
t�1X

k=0

⇤

�k

2 V

�1
2 C2,1D1,1V1⇤

k

1

!
V

�1
1 pert1(x1) (68)

By lemma 3.2, (57), with B ⌘ V

�1
2 C2,1D1,1V1 gives that

 
t�1X

k=0

⇤

�k

2 V

�1
2 C2,1D1,1V1⇤

k

1

!
=

˜

C2,1 � ⇤

�t

2
˜

C2,1⇤
t

1 (69)
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2.1 Theorems

Theorem 2.2 (0 asymptotic relative error for chained, linear cascades). Assume Condition 2.1 is in effect.

Then (34) has 0 asymptotically relative error in the sense of (14). In particular, for all i � 1

‡
and all t � 0,

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k 
i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)k (37)



0

@
i�1X

j=1

kD
i,j

kkpert
j

(x1, . . . , xj

)k

1

A kL
i

kt (38)

and for all i � 1

lim

t!1

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt
= 0. (39)

The perturbation function for the initial condition, pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn
, is defined

as

pert(x1, . . . , xn

) = (pert1 �⇧1, pert2 � (⇧1,⇧2), . . . , pert
n�1 � (⇧1, . . . ,⇧n�1), pert

n

)(x1, . . . , xn

) (40)

and the perturbations for each system i, pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
, are defined recursively by

pert1(x1) = x1 (41)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (42)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (43)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (44)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (45)

Remark. The requirement that the eigenvalues of L
i

and L

j

(i 6= j) form disjoint sets is due to the form
of the entries of the coupling matrix ˜

C

i,j

. If any pair of eigenvalues from L

i

and L

j

were equal, ˜

C

i,j

would
not be well-defined since its matrix elements have a term of the form (1� �

j,m

/�

i,`

)

�1. The requirement of
disjoint-ness can be thought of as a non-resonance condition.

Proof of Theorem 2.2. Equations (38) and (39) follow from corollary 3.4. The expressions for the perturba-
tion terms pert

j

and the coupling matrices D

i,j

and ˜

C

i,j

are derived in the proof of lemma 3.3.

Corollary 2.3 (Asymptotic equivalence for chained, linear cascades).

lim

t!1
kLin�t(x1, . . . , xn

)� Nom

�t
(pert(x1, . . . , xn

))k⇥ = 0. (46)

Theorem 2.4 (Perturbation of principal eigenfunctions). Assume Condition 2.1 is in effect. For any i � 1,

s

i

2 {1, . . . , d
i

}, and t 2 N
���U�t

Lin

 (0,...,0,si,0,...,0)

�
(x1, . . . , xn

)�
�
U�t
Nom

 (0,...,0,si,0,...,0)

�
� pert(x1, . . . , xn

)

��

 k 
i,sik

i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)kCdj . (47)

‡
We take the empty sum

P0
j=1 to be 0.

8

Lower	triangular	structure	(e.g.	3	layer	cascade)

pert1

pert2

pert3

pert(x1, x2, x3) =

2

4
pert1(x1)

pert2(x1, x2)
pert3(x1, x2, x3)

3

5 =

2

4
I1

0 I2

�D3,1 D3,2 I3

3

5

2

4
I1

D2,1 I2

0 0 I3

3

5

2

4
I1

0 I2

0 0 I3

3

5

2

4
x1

x2

x3

3

5

Perturbed	initial	conditions	for	nominal	system
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Solutions	of	the	cascade	system

xi(t) = ⇧i � Lin�t(x1, . . . , xn) = L

t
iperti(x1, . . . , xi) +

i�1X

j=1

(�1)i�j
Di,jL

t
jpertj(x1, . . . , xj)

The	orbit	in	the	ith system	is

Evolution	of	perturbed	i.c.	due	
to	nominal	system
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Solutions	of	the	cascade	system

xi(t) = ⇧i � Lin�t(x1, . . . , xn) = L

t
iperti(x1, . . . , xi) +

i�1X

j=1

(�1)i�j
Di,jL

t
jpertj(x1, . . . , xj)

The	orbit	in	the	ith system	is

Map	jth nominal	system	orbit	
into	ith system	

2.1 Theorems

Theorem 2.2 (0 asymptotic relative error for chained, linear cascades). Assume Condition 2.1 is in effect.

Then (34) has 0 asymptotically relative error in the sense of (14). In particular, for all i � 1

‡
and all t � 0,

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k 
i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)k (37)



0

@
i�1X

j=1

kD
i,j

kkpert
j

(x1, . . . , xj

)k

1

A kL
i

kt (38)

and for all i � 1

lim

t!1

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt
= 0. (39)

The perturbation function for the initial condition, pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn
, is defined

as

pert(x1, . . . , xn

) = (pert1 �⇧1, pert2 � (⇧1,⇧2), . . . , pert
n�1 � (⇧1, . . . ,⇧n�1), pert

n

)(x1, . . . , xn

) (40)

and the perturbations for each system i, pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
, are defined recursively by

pert1(x1) = x1 (41)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (42)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (43)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (44)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (45)

Remark. The requirement that the eigenvalues of L
i

and L

j

(i 6= j) form disjoint sets is due to the form
of the entries of the coupling matrix ˜

C

i,j

. If any pair of eigenvalues from L

i

and L

j

were equal, ˜

C

i,j

would
not be well-defined since its matrix elements have a term of the form (1� �

j,m

/�

i,`

)

�1. The requirement of
disjoint-ness can be thought of as a non-resonance condition.

Proof of Theorem 2.2. Equations (38) and (39) follow from corollary 3.4. The expressions for the perturba-
tion terms pert

j

and the coupling matrices D

i,j

and ˜

C

i,j

are derived in the proof of lemma 3.3.

Corollary 2.3 (Asymptotic equivalence for chained, linear cascades).

lim

t!1
kLin�t(x1, . . . , xn

)� Nom

�t
(pert(x1, . . . , xn

))k⇥ = 0. (46)

Theorem 2.4 (Perturbation of principal eigenfunctions). Assume Condition 2.1 is in effect. For any i � 1,

s

i

2 {1, . . . , d
i

}, and t 2 N
���U�t

Lin

 (0,...,0,si,0,...,0)

�
(x1, . . . , xn

)�
�
U�t
Nom

 (0,...,0,si,0,...,0)

�
� pert(x1, . . . , xn

)

��

 k 
i,sik

i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)kCdj . (47)

‡
We take the empty sum

P0
j=1 to be 0.
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Nominal	system	
matrix

Eigenvector	matrices

2.1 Theorems

Theorem 2.2 (0 asymptotic relative error for chained, linear cascades). Assume Condition 2.1 is in effect.

Then (34) has 0 asymptotically relative error in the sense of (14). In particular, for all i � 1

‡
and all t � 0,

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k 
i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)k (37)



0

@
i�1X

j=1

kD
i,j

kkpert
j

(x1, . . . , xj

)k

1

A kL
i

kt (38)

and for all i � 1

lim

t!1

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt
= 0. (39)

The perturbation function for the initial condition, pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn
, is defined

as

pert(x1, . . . , xn

) = (pert1 �⇧1, pert2 � (⇧1,⇧2), . . . , pert
n�1 � (⇧1, . . . ,⇧n�1), pert

n

)(x1, . . . , xn

) (40)

and the perturbations for each system i, pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
, are defined recursively by

pert1(x1) = x1 (41)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (42)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (43)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (44)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (45)

Remark. The requirement that the eigenvalues of L
i

and L

j

(i 6= j) form disjoint sets is due to the form
of the entries of the coupling matrix ˜

C

i,j

. If any pair of eigenvalues from L

i

and L

j

were equal, ˜

C

i,j

would
not be well-defined since its matrix elements have a term of the form (1� �

j,m

/�

i,`

)

�1. The requirement of
disjoint-ness can be thought of as a non-resonance condition.

Proof of Theorem 2.2. Equations (38) and (39) follow from corollary 3.4. The expressions for the perturba-
tion terms pert

j

and the coupling matrices D

i,j

and ˜

C

i,j

are derived in the proof of lemma 3.3.

Corollary 2.3 (Asymptotic equivalence for chained, linear cascades).

lim

t!1
kLin�t(x1, . . . , xn

)� Nom

�t
(pert(x1, . . . , xn

))k⇥ = 0. (46)

Theorem 2.4 (Perturbation of principal eigenfunctions). Assume Condition 2.1 is in effect. For any i � 1,

s

i

2 {1, . . . , d
i

}, and t 2 N
���U�t

Lin

 (0,...,0,si,0,...,0)

�
(x1, . . . , xn

)�
�
U�t
Nom

 (0,...,0,si,0,...,0)

�
� pert(x1, . . . , xn

)

��

 k 
i,sik

i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)kCdj . (47)

‡
We take the empty sum

P0
j=1 to be 0.

8

The	reason	the	disjoint	spectrums	
assumption	is	needed

Given	coupling	matrix	for	
cascade
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Solutions	of	the	cascade	system

x1 x2 x3

x1 x3pert2

x1 pert2 pert3

x1 pert2 pert3

Linear	Cascade

Nominal	system	
with	perturbed	
initial	conditions
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Asymptotic	equivalence	and	zero	asymptotic	relative	error

Asymptotic	equivalence

2.1 Theorems

Theorem 2.2 (0 asymptotic relative error for chained, linear cascades). Assume Condition 2.1 is in effect.

Then (34) has 0 asymptotically relative error in the sense of (14). In particular, for all i � 1

‡
and all t � 0,

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k 
i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)k (37)



0

@
i�1X

j=1

kD
i,j

kkpert
j

(x1, . . . , xj

)k

1

A kL
i

kt (38)

and for all i � 1

lim

t!1

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt
= 0. (39)

The perturbation function for the initial condition, pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn
, is defined

as

pert(x1, . . . , xn

) = (pert1 �⇧1, pert2 � (⇧1,⇧2), . . . , pert
n�1 � (⇧1, . . . ,⇧n�1), pert

n

)(x1, . . . , xn

) (40)

and the perturbations for each system i, pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
, are defined recursively by

pert1(x1) = x1 (41)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (42)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (43)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (44)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (45)

Remark. The requirement that the eigenvalues of L
i

and L

j

(i 6= j) form disjoint sets is due to the form
of the entries of the coupling matrix ˜

C

i,j

. If any pair of eigenvalues from L

i

and L

j

were equal, ˜

C

i,j

would
not be well-defined since its matrix elements have a term of the form (1� �

j,m

/�

i,`

)

�1. The requirement of
disjoint-ness can be thought of as a non-resonance condition.

Proof of Theorem 2.2. Equations (38) and (39) follow from corollary 3.4. The expressions for the perturba-
tion terms pert

j

and the coupling matrices D

i,j

and ˜

C

i,j

are derived in the proof of lemma 3.3.

Corollary 2.3 (Asymptotic equivalence for chained, linear cascades).

lim

t!1
kLin�t(x1, . . . , xn

)� Nom

�t
(pert(x1, . . . , xn

))k⇥ = 0. (46)

Theorem 2.4 (Perturbation of principal eigenfunctions). Assume Condition 2.1 is in effect. For any i � 1,

s

i

2 {1, . . . , d
i

}, and t 2 N
���U�t

Lin

 (0,...,0,si,0,...,0)

�
(x1, . . . , xn

)�
�
U�t
Nom

 (0,...,0,si,0,...,0)

�
� pert(x1, . . . , xn

)

��

 k 
i,sik

i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)kCdj . (47)

‡
We take the empty sum

P0
j=1 to be 0.
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Zero	asymptotic	relative	error

2.1 Theorems

Theorem 2.2 (0 asymptotic relative error for chained, linear cascades). Assume Condition 2.1 is in effect.
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‡
and all t � 0,
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i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k 
i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)k (37)



0

@
i�1X

j=1

kD
i,j

kkpert
j

(x1, . . . , xj

)k

1

A kL
i

kt (38)

and for all i � 1

lim

t!1

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt
= 0. (39)

The perturbation function for the initial condition, pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn
, is defined
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pert(x1, . . . , xn
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(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j
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) 8i 2 {2, . . . , n}. (42)
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D

i,i
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di 8i 2 {1, . . . , n}, (43)

D

i,j
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�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (44)

and the matrix

˜

C

i,j
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˜

C

i,j
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`,m
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⇥
V
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i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (45)

Remark. The requirement that the eigenvalues of L
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and L
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of the entries of the coupling matrix ˜
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. If any pair of eigenvalues from L
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and L

j

were equal, ˜

C

i,j

would
not be well-defined since its matrix elements have a term of the form (1� �

j,m

/�

i,`

)

�1. The requirement of
disjoint-ness can be thought of as a non-resonance condition.

Proof of Theorem 2.2. Equations (38) and (39) follow from corollary 3.4. The expressions for the perturba-
tion terms pert

j

and the coupling matrices D

i,j

and ˜

C

i,j

are derived in the proof of lemma 3.3.

Corollary 2.3 (Asymptotic equivalence for chained, linear cascades).

lim

t!1
kLin�t(x1, . . . , xn

)� Nom

�t
(pert(x1, . . . , xn

))k⇥ = 0. (46)

Theorem 2.4 (Perturbation of principal eigenfunctions). Assume Condition 2.1 is in effect. For any i � 1,
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Remark. Each subalgebra A
i

for the component system i is embedded in A. The embedding is given by the
map

f 7! 1⌦ · · ·⌦ 1| {z }
i � 1 times

⌦f ⌦ 1⌦ · · ·⌦ 1| {z }
n � i times

,

where the f on the right hand side is in the i-th position. Furthermore, if each A
i

is generated by the
principal eigenfunctions  

i,1, . . . , i,di , then A is generated by the principal eigenfunctions { (0,...,0,si,0,...,0) |
8i 2 {1, . . . , n}, 8s

i

2 {1, . . . , d
i

}}.

2 Main results

Consider the special case of the nonlinear and linear cascades (eq.’s (1) and (2), respectively) where system
i is only affected by system i� 1 (see Fig. 2). This corresponds to the situation where C

i,j

is non-zero if and
only if j = i� 1 and N

i

(x1, . . . , xi

) = N

i

(x

i�1, xi

):

x1(t+ 1) = L1x1(t) +N1(x1(t))

x

i

(t+ 1) = L

i

x

i

(t) + C

i,i�1xi�1(t) +N

i

(x

i�1(t), xi

(t)) (i = 2, . . . , n).

(33)

and
x1(t+ 1) = L1x1(t)

x

i

(t+ 1) = L

i

x

i

(t) + C

i,i�1xi�1(t) (i = 2, . . . , n).

(34)

We will call cascades having the form (33) and (34) chained cascades.

Figure 2: Chained cascade system

Condition 2.1. The following conditions will be in force for all following results:

(i) L

i

is invertible and diagonalizable for all i = 1, . . . , n,

L

i

V

i

= V

i

⇤

i

. (35)

(ii) (Disjoint spectrums) The spectrums of each layer are pairwise disjoint. That is for i, j 2 {1, . . . , n}
satisfying i 6= j

�(L

i

) \ �(L
j

) = ;. (36)

(iii) kL1k < kL2k < · · · < kL
n

k  1.

Remark. Condition (iii) requires that the response times of upstream systems are faster than the downstream
systems they feed into.

7
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Example:	7-layer	cascade
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Zero	asymptotic	relative	error
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Proof. See section 3.3 for the proof.

Remark. Recall that Nom is the nominal decoupled linear system and ⌧ is a map from the linear to the
nonlinear system. Then ⌧ �Nom � ⌧�1 is a map on the same state space as the nonlinear system NonLin and
can be thought of as the nominal nonlinear system. Furthermore, since pert is the perturbation function for
the initial conditions of the linear system, then ⌧ � pert � ⌧�1 is the perturbation function for the nonlinear
system’s initial conditions.

Theorem 2.8 (Perturbation of eigenfunctions for nonlinear cascades). Let the conditions of Theorem 2.7

be satisfied. For any ~y = (y1, . . . , yn) 2 Cd1 ⇥ · · ·⇥ Cdn
,

lim

t!1

��U�t
NonLin

( (0,...,0,si,0,...,0) � ⌧�1
)(~y)� U�t

⌧�Nom�⌧�1( (0,...,0,si,0,...,0) � ⌧�1
)((⌧ � pert � ⌧�1

)(~y))

��

kL
i

kt
= 0. (54)

Proof. See section 3.4.

Remark. It was shown in [2] that if  was an eigenfunction corresponding to the Koopman operator associated
with the linearized system and ⌧ was a topological conjugacy from the linear to the nonlinear system, then
 � ⌧�1 was an eigenfunction of the Koopman operator associated with the nonlinear system. Recall that
 (0,...,0,si,0,...,0) is a principal eigenfunction for the Koopman operator U

Nom

associated with the nominal
linear system. Then  (0,...,0,si,0,...,0) � ⌧�1 is a principal eigenfunction for the Koopman operator U

⌧�Nom�⌧�1

associated with the nonlinear nominal system ⌧ � Nom � ⌧�1.
Remark. Theorem 2.8 says that the action of the Koopman operator associated with the nonlinear cascade
NonLin on the observable  (0,...,0,si,0,...,0) � ⌧�1 is asymptotically equivalent to the action of the Koopman
operator associated with ⌧ � Nom � ⌧�1 (the nominal nonlinear system) on  (0,...,0,si,0,...,0) � ⌧�1 but at a
perturbed initial condition, but when evaluated at a perturbed initial condition (⌧ � pert � ⌧�1

)(~y).
Remark. While the preceding results are proved for chained cascades, they should be easily extensible to the
general cascade systems. The difference should only be in the exact form of the perturbation functions and
the bounds. The asymptotic results should remain the same.

2.2 Numerical experiments.

The results of theorem 2.2 were confirmed with simulation. The simulation consisted of 7-layer§ linear
chained, cascaded system with randomly generated dimensions for each system i. System matrices L

i

were
randomly generated with entries uniformly in the interval [�1, 1] and then scaled to have kL

i

k = (0.9)

8�i for
i = 1, . . . , 7. The coupling matrices C

i,i�1 were also randomly generated with entries uniformly in [�1, 1].
Initial conditions for each system i were randomly generated and scaled to have kx

i

k = 1.
Figures 3 and 4 show the log absolute error and log relative errors of a typical run of the simulation.

The black asterisks in fig. 3 are the predicted upper bound (38). The colored lines in each plot correspond
to the log of the absolute error, log

�
k⇧

i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
�
, between the

linear and the nominal systems. Figure 4 shows the log of the relative error

log

✓
k⇧

i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt

◆
. (55)

As can be seen, the log absolute error and log relative error decrease linearly, confirming that the absolute
error and relative error decrease exponentially fast to zero.

3 Proofs of the main results

3.1 Asymptotic equivalence of linear, chained cascades.

The first lemma gives the general solution for the i-th level of the chained linear cascade system
§
The choice of 7 layers was made merely for display purposes. Results for larger cascades have been confirmed as well.
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Koopman	operator	and	space	of	observables
Component	and	Cascade	systems

Definition 1.3. We say that Lin is asymptotically proportional to Nom if there exist a perturbation function
pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn and functions ⇣

i

: Cd1 ⇥ · · · ⇥ Cdi�1 ! R+ such that for all
x = (x1, . . . , xn

) 2 Cd1 ⇥ · · ·⇥ Cdn and all i 2 {2, . . . , n},

lim

t!1

k⇧
i

� Lin�t(x)�⇧

i

� Nom�t
(pert(x))kCdi

kNom
i

kt
 ⇣

i

(x1, . . . , xi�1). (15)

For the linear cascade, a perturbation function pert : Cd1 ⇥ · · ·⇥ Cdn ! Cd1 ⇥ · · ·⇥ Cdn will itself have
a cascade structure

pert(x1, . . . , xn

) =

�
pert1(x1), pert2(x1, x2), . . . , pert

n

(x1, . . . , xn

)

�
. (16)

Remark. By (9) and (11), equations (13), (14), and (15) can be rewritten as

lim

t!1
kL�t

i

(x1, . . . , xi

)� L

t

i

(pert

i

(x1, . . . , xi

))kCdi = 0 (17)

lim

t!1

kL�t
i

(x1, . . . , xi

)� L

t

i

(pert

i

(x1, . . . , xi

))kCdi

kL
i

kt
= 0 (18)

and
lim

t!1

kL�t
i

(x1, . . . , xi

)� L

t

i

(pert

i

(x1, . . . , xi

))kCdi

kL
i

kt
 ⇣

i

(x1, . . . , xi�1) (19)

Clearly, for kNom
i

k < 1, zero asymptotic relative error implies the other two.

1.4 The Koopman operator.

Let A
i

be a sub-algebra of C(Cdi
,C), the set of continuous complex-valued functions on Cdi , where algebra

addition is given by normal function addition, (f+g)(x

i

) = f(x

i

)+g(x

i

), and algebra multiplication is given
by pointwise multiplication of functions, (f · g)(x

i

) = f(x

i

)g(x

i

).
Denote the Koopman operator associated with the i-th nominal component system (3) as

U
Nomi : Ai

! A
i

(U�t
Nomi

f)(x

i

) = f(Nom

�t
i

(x

i

)) = f(L

t

i

x

i

).

(20)

1.4.1 Principal eigenfunctions of component systems.

In [14, 15], the principal eigenfunctions of Koopman operator were defined with respect to the linearized
system. Assume that L

i

is diagonalizable

L

i

= V

i

⇤

i

V

�1
i

, (21)

with the columns of V
i

being the eigenvectors of L
i

and ⇤

i

= diag(�

i,1, . . . ,�i,di) being a diagonal matrix
containing the eigenvalues of L

i

. Define the s-th principal eigenfunction of the i-th system as

 

i,s

(x

i

) = (ê

⇤
di,s

V

�1
i

)x

i

, (s = 1, . . . , d

i

) (22)

where ê

di,s is the s-th canonical basis vector of Cdi and ê

⇤
di,s

is its conjugate transpose†. The function
 

i,s

is the s-th coordinate functional corresponding to the eigenbasis of the i-th system. These are indeed
eigenfunctions of U

Nomi at eigenvalue �
i,s

as shown by the following calculation: for any s 2 {1, . . . , d
i

}

(U
Nomi i,s

)(x) =  

i,s

(L

i

x) = (ê

⇤
di,s

V

�1
i

)(L

i

x) = ê

⇤
di,s

⇤

i

V

�1
i

x = �

i,s

(ê

⇤
di,s

V

�1
i

)x = �

i,s

 

i,s

(x). (23)

For all i 2 {1, . . . , n}, we define  
i,0(x) = 1 so that  

i,0 is an eigenfunction at 1:

(U
Nomi i,0)(x) = 1 =  

i,0(x). (24)
†
Note that wi,s := (ê⇤i,sV

�1
i )⇤ = (V �1

i )⇤êi,s is the s-th dual basis vector in system i; that is hvi,t , wi,siCdi = w

⇤
i,svi,t = �s,t,

where vi,t is the t-th eigenvector of Li
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�
. (16)
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k < 1, zero asymptotic relative error implies the other two.

1.4 The Koopman operator.

Let A
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be a sub-algebra of C(Cdi
,C), the set of continuous complex-valued functions on Cdi , where algebra

addition is given by normal function addition, (f+g)(x
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) = f(x

i

)+g(x

i

), and algebra multiplication is given
by pointwise multiplication of functions, (f · g)(x
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) = f(x

i

)g(x
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).
Denote the Koopman operator associated with the i-th nominal component system (3) as
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1.4.1 Principal eigenfunctions of component systems.

In [14, 15], the principal eigenfunctions of Koopman operator were defined with respect to the linearized
system. Assume that L
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is diagonalizable
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⇤
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V
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, (21)

with the columns of V
i

being the eigenvectors of L
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and ⇤
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= diag(�

i,1, . . . ,�i,di) being a diagonal matrix
containing the eigenvalues of L
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. Define the s-th principal eigenfunction of the i-th system as
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) = (ê
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di,s
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i

, (s = 1, . . . , d

i

) (22)

where ê

di,s is the s-th canonical basis vector of Cdi and ê
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di,s

is its conjugate transpose†. The function
 

i,s

is the s-th coordinate functional corresponding to the eigenbasis of the i-th system. These are indeed
eigenfunctions of U

Nomi at eigenvalue �
i,s

as shown by the following calculation: for any s 2 {1, . . . , d
i

}

(U
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)(x) =  

i,s
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x) = (ê

⇤
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i
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i
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⇤
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(ê

⇤
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�1
i

)x = �
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i,s
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For all i 2 {1, . . . , n}, we define  
i,0(x) = 1 so that  

i,0 is an eigenfunction at 1:

(U
Nomi i,0)(x) = 1 =  

i,0(x). (24)
†
Note that wi,s := (ê⇤i,sV

�1
i )⇤ = (V �1

i )⇤êi,s is the s-th dual basis vector in system i; that is hvi,t , wi,siCdi = w

⇤
i,svi,t = �s,t,

where vi,t is the t-th eigenvector of Li
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A	principal	eigenfunction	for	ith system	

1.4.2 Koopman operators and principal eigenfunctions for cascaded systems

We use the algebra of observables A
i

on Cdi to build a space of observables A for the cascade system. Let
A = A1 ⌦ · · ·⌦A

n

and denote U
Nom

: A ! A and U
Lin

: A ! A as the Koopman operators associated with
the solution operators Nom and Lin, respectively. Recall that a tensor product f1 ⌦ · · ·⌦ f

n

2 A1 ⌦ · · ·⌦A
n

acts on multilinear functionals on A1 ⇥ · · · ⇥ A
n

(see [17]). Let �(x1,...,xn) : A1 ⇥ · · · ⇥ A
n

! C be the
evaluation functional defined as

�(x1,...,xn)(f1, . . . , fn) = f1(x1) · · · fn(xn

), (25)

where the dots on the right side indicate multiplication in C. The tensor product is defined as

(f1 ⌦ · · ·⌦ f

n

)(�(x1,...,xn)) = �(x1,...,xn)(f1, . . . , fn). (26)

Due to this, there is no confusion in writing

(f1 ⌦ · · ·⌦ f

n

)(x1, . . . , xn

) ⌘ f1(x1) · · · fn(xn

) (27)

and we can consider f1 ⌦ · · ·⌦ f

n

as a function on the cascaded system’s state space Cd1 ⇥ · · ·⇥ Cdn .
Principal eigenfunctions for U

Nom

: A ! A can be defined from the component systems’ principal eigen-
functions (22) by a trivially extending their domain from the component system’s state space Cdi to the
cascaded system’s state space Cd1 ⇥ · · · ⇥ Cdn . To this end, for each i 2 {1, . . . , n} and s

i

2 {1, . . . , d
i

},
define a principal eigenfunction for U

Nom

as

 (0,...,0,si,0,...,0)(x1, . . . , xn

) = ( 

i,si �⇧i

)(x1, . . . , xn

) ⌘  

i,si(xi

). (28)

Often we will write  
siên,i ⌘  (0,...,0,si,0,...,0). Since by convention  

i,0 ⌘ 1 for all i, this principal eigenfunc-
tion for U

Nom

can be written as a tensor product of principal eigenfunctions from the component systems,

 (0,...,0,si,0,...,0)(x1, . . . , xn

) =  

i,si(xi

)

⌘ (1⌦ · · ·⌦ 1⌦  

i,si ⌦ 1⌦ · · ·⌦ 1)(x1, . . . , xn

)

= ( 1,0 ⌦ · · ·⌦  

i�1,0 ⌦  

i,si ⌦  

i+1,0 ⌦ · · ·⌦  

n,0)(x1, . . . , xn

).

(29)

The multiplication operation in each algebra A
i

is given by pointwise products of functions. We can define
a multiplication operation for the tensor product, • : (A1 ⌦ · · ·⌦A

n

)⇥ (A1 ⌦ · · ·⌦A
n

) ! (A1 ⌦ · · ·⌦A
n

),
as

(f1 ⌦ · · ·⌦ f

n

) • (g1 ⌦ · · ·⌦ g

n

) = (f1 · g1)⌦ · · ·⌦ (f

n

· g
n

) (30)
Products of principal eigenfunctions of the form (29) give eigenfunctions of U

Nom

. Denote  (s1,...,sn) 2 A as

 (s1,...,sn)(x1, . . . , xn

) = ( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

). (31)

where (s1, . . . , sn) 2 {0, . . . d1} ⇥ · · · ⇥ {0, · · · , d
n

}. It is clear that this observable can be constructed as a
•-product of principal eigenfunctions of the form (29); namely

 (s1,...,sn) =  (s1,0,...,0) •  (0,s2,0,...,0) • · · · •  (0,...,0,sn). (32)

Equation (31) is an eigenfunction at �1,s1 · · ·�n,sn as shown by the following computation:

(U
Nom

 (s1,...,sn))(x1, . . . , xn

) =  (s1,...,sn)(Nom(x1, . . . , xn

))

=  (s1,...,sn)(L1x1, . . . , Ln

x

n

)

= ( 1,s1 ⌦ · · ·⌦  

n,sn)(L1x1, . . . , Ln

x

n

)

=  1,s1(L1x1) · · · n,sn(Ln

x

n

)

= (U
Nom1 1,s1)(x1) · · · (UNomn n,sn)(xn

)

= (�1,s1 1,s1)(x1) · · · (�n,sn n,sn)(xn

)

= (�1,s1 · · ·�n,sn)( 1,s1(x1) · · · n,sn(xn

))

= (�1,s1 · · ·�n,sn)( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

)

= (�1,s1 · · ·�n,sn) (s1,...,sn)(x1, . . . , xn

).

The preceding work is an example of the more general result that eigenfunctions of the Koopman operator
form a semigroup under pointwise multiplication of functions, as pointed out in [2].
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theorems is supplied as well. Section 3 collects the proofs of the main theorems in its subsections.

1.1 Cascaded systems.

Given x

i

(t) 2 Cdi for i = 1, . . . , n, an n-level cascaded system is defined to have generators N
i

: Cd1 ⇥ · · ·⇥
Cdi ! Cdi of the form

x1(t+ 1) = L1x1(t) +N1(x1(t))

x

i

(t+ 1) = L

i

x

i

(t) +

i�1X

j=1

C

i,j

x

j

(t) +N

i

(x1(t), . . . , xi

(t)), (i = 2, . . . , n),

(1)

where L

i

: Cdi ! Cdi and C

i,j

: Cdj ! Cdi are linear operators and N

i

: Cd1 ⇥ · · ·⇥Cdi ! Cdi are nonlinear
operators (see Fig. 1). Each generator N

i

is called the component system of the nonlinear cascade. For
any fixed j 2 {1, . . . , n}, if i < j, then N

i

is called an upstream system to N
j

and if k > j, we call N
k

a
downstream system to N

j

. Each component system N
i

depends only upon itself and its upstream systems.
In proving our results, it will be beneficial to analyze the linearized system,

x1(t+ 1) = L1x1(t)

x

i

(t+ 1) = L

i

x

i

(t) +

i�1X

j=1

C

i,j

x

j

(t), (i = 2, . . . , n)

(2)

and the associated nominal linear system which is obtained by setting the linear coupling terms C

i,j

to 0:

x

i

(t+ 1) = L

i

x

i

(t), (i = 1, . . . , n). (3)

Figure 1: n-level cascade system

1.2 Solution operators.

For i = 1, . . . , n, let ⇧

i

: Cd1 ⇥ · · ·⇥ Cdn ! Cdi denote the canonical projections

⇧

i

(x1, . . . , xn

) = x

i

. (4)

The orbit NonLin : Cd1 ⇥ · · ·⇥ Cdn ! Cd1 ⇥ · · ·⇥ Cdn for the nonlinear cascaded system (1) is denoted as⇤

NonLin

�t
(x1, . . . , xn

) = (N �t
1 (x1),N �t

2 (x1, x2), . . . ,N �t
n

(x1, . . . , xn

)) (5)
= (N �t

1 �⇧1,N �t
2 � (⇧1,⇧2), . . . ,N �t

n

� (⇧1, . . . ,⇧n

))(x1, . . . , xn

). (6)

where for each i = 1, . . . , n, {N �t
i

: Cd1 ⇥ · · · ⇥ Cdi ! Cdi}
t2N0

is the family of solution operators for the
i-th system. That is, given (x1, . . . , xn

), N �t
i

(x1, . . . , xi

) ⌘ x

i

(t) is the value in the i-th system at time t of
⇤
In (6) and later, we are using the notation that if we have a collection of maps fi : X ! Xi, (i = 1, . . . , n), the vector-valued

map f : X ! X1 ⇥ · · ·⇥Xn defined by f(x) := (f1(x), . . . , fn(x)) is written as f(x) ⌘ (f1, . . . , fn)(x).

3

Space	of	observables	for	linear	cascade

1.4.2 Koopman operators and principal eigenfunctions for cascaded systems

We use the algebra of observables A
i

on Cdi to build a space of observables A for the cascade system. Let
A = A1 ⌦ · · ·⌦A

n

and denote U
Nom

: A ! A and U
Lin

: A ! A as the Koopman operators associated with
the solution operators Nom and Lin, respectively. Recall that a tensor product f1 ⌦ · · ·⌦ f

n

2 A1 ⌦ · · ·⌦A
n

acts on multilinear functionals on A1 ⇥ · · · ⇥ A
n

(see [17]). Let �(x1,...,xn) : A1 ⇥ · · · ⇥ A
n

! C be the
evaluation functional defined as

�(x1,...,xn)(f1, . . . , fn) = f1(x1) · · · fn(xn

), (25)

where the dots on the right side indicate multiplication in C. The tensor product is defined as

(f1 ⌦ · · ·⌦ f

n

)(�(x1,...,xn)) = �(x1,...,xn)(f1, . . . , fn). (26)

Due to this, there is no confusion in writing

(f1 ⌦ · · ·⌦ f

n

)(x1, . . . , xn

) ⌘ f1(x1) · · · fn(xn

) (27)

and we can consider f1 ⌦ · · ·⌦ f

n

as a function on the cascaded system’s state space Cd1 ⇥ · · ·⇥ Cdn .
Principal eigenfunctions for U

Nom

: A ! A can be defined from the component systems’ principal eigen-
functions (22) by a trivially extending their domain from the component system’s state space Cdi to the
cascaded system’s state space Cd1 ⇥ · · · ⇥ Cdn . To this end, for each i 2 {1, . . . , n} and s

i

2 {1, . . . , d
i

},
define a principal eigenfunction for U

Nom

as

 (0,...,0,si,0,...,0)(x1, . . . , xn

) = ( 

i,si �⇧i

)(x1, . . . , xn

) ⌘  

i,si(xi

). (28)

Often we will write  
siên,i ⌘  (0,...,0,si,0,...,0). Since by convention  

i,0 ⌘ 1 for all i, this principal eigenfunc-
tion for U

Nom

can be written as a tensor product of principal eigenfunctions from the component systems,

 (0,...,0,si,0,...,0)(x1, . . . , xn

) =  

i,si(xi

)

⌘ (1⌦ · · ·⌦ 1⌦  

i,si ⌦ 1⌦ · · ·⌦ 1)(x1, . . . , xn

)

= ( 1,0 ⌦ · · ·⌦  

i�1,0 ⌦  

i,si ⌦  

i+1,0 ⌦ · · ·⌦  

n,0)(x1, . . . , xn

).

(29)

The multiplication operation in each algebra A
i

is given by pointwise products of functions. We can define
a multiplication operation for the tensor product, • : (A1 ⌦ · · ·⌦A

n

)⇥ (A1 ⌦ · · ·⌦A
n

) ! (A1 ⌦ · · ·⌦A
n

),
as

(f1 ⌦ · · ·⌦ f

n

) • (g1 ⌦ · · ·⌦ g

n

) = (f1 · g1)⌦ · · ·⌦ (f

n

· g
n

) (30)
Products of principal eigenfunctions of the form (29) give eigenfunctions of U

Nom

. Denote  (s1,...,sn) 2 A as

 (s1,...,sn)(x1, . . . , xn

) = ( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

). (31)

where (s1, . . . , sn) 2 {0, . . . d1} ⇥ · · · ⇥ {0, · · · , d
n

}. It is clear that this observable can be constructed as a
•-product of principal eigenfunctions of the form (29); namely

 (s1,...,sn) =  (s1,0,...,0) •  (0,s2,0,...,0) • · · · •  (0,...,0,sn). (32)

Equation (31) is an eigenfunction at �1,s1 · · ·�n,sn as shown by the following computation:

(U
Nom

 (s1,...,sn))(x1, . . . , xn

) =  (s1,...,sn)(Nom(x1, . . . , xn

))

=  (s1,...,sn)(L1x1, . . . , Ln

x

n

)

= ( 1,s1 ⌦ · · ·⌦  

n,sn)(L1x1, . . . , Ln

x

n

)

=  1,s1(L1x1) · · · n,sn(Ln

x

n

)

= (U
Nom1 1,s1)(x1) · · · (UNomn n,sn)(xn

)

= (�1,s1 1,s1)(x1) · · · (�n,sn n,sn)(xn

)

= (�1,s1 · · ·�n,sn)( 1,s1(x1) · · · n,sn(xn

))

= (�1,s1 · · ·�n,sn)( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

)

= (�1,s1 · · ·�n,sn) (s1,...,sn)(x1, . . . , xn

).

The preceding work is an example of the more general result that eigenfunctions of the Koopman operator
form a semigroup under pointwise multiplication of functions, as pointed out in [2].
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1.4.2 Koopman operators and principal eigenfunctions for cascaded systems

We use the algebra of observables A
i

on Cdi to build a space of observables A for the cascade system. Let
A = A1 ⌦ · · ·⌦A

n

and denote U
Nom

: A ! A and U
Lin

: A ! A as the Koopman operators associated with
the solution operators Nom and Lin, respectively. Recall that a tensor product f1 ⌦ · · ·⌦ f

n

2 A1 ⌦ · · ·⌦A
n

acts on multilinear functionals on A1 ⇥ · · · ⇥ A
n

(see [17]). Let �(x1,...,xn) : A1 ⇥ · · · ⇥ A
n

! C be the
evaluation functional defined as

�(x1,...,xn)(f1, . . . , fn) = f1(x1) · · · fn(xn

), (25)

where the dots on the right side indicate multiplication in C. The tensor product is defined as

(f1 ⌦ · · ·⌦ f

n

)(�(x1,...,xn)) = �(x1,...,xn)(f1, . . . , fn). (26)

Due to this, there is no confusion in writing

(f1 ⌦ · · ·⌦ f

n

)(x1, . . . , xn

) ⌘ f1(x1) · · · fn(xn

) (27)

and we can consider f1 ⌦ · · ·⌦ f

n

as a function on the cascaded system’s state space Cd1 ⇥ · · ·⇥ Cdn .
Principal eigenfunctions for U

Nom

: A ! A can be defined from the component systems’ principal eigen-
functions (22) by a trivially extending their domain from the component system’s state space Cdi to the
cascaded system’s state space Cd1 ⇥ · · · ⇥ Cdn . To this end, for each i 2 {1, . . . , n} and s

i

2 {1, . . . , d
i

},
define a principal eigenfunction for U

Nom

as

 (0,...,0,si,0,...,0)(x1, . . . , xn

) = ( 

i,si �⇧i

)(x1, . . . , xn

) ⌘  

i,si(xi

). (28)

Often we will write  
siên,i ⌘  (0,...,0,si,0,...,0). Since by convention  

i,0 ⌘ 1 for all i, this principal eigenfunc-
tion for U

Nom

can be written as a tensor product of principal eigenfunctions from the component systems,

 (0,...,0,si,0,...,0)(x1, . . . , xn

) =  

i,si(xi

)

⌘ (1⌦ · · ·⌦ 1⌦  

i,si ⌦ 1⌦ · · ·⌦ 1)(x1, . . . , xn

)

= ( 1,0 ⌦ · · ·⌦  

i�1,0 ⌦  

i,si ⌦  

i+1,0 ⌦ · · ·⌦  

n,0)(x1, . . . , xn

).

(29)

The multiplication operation in each algebra A
i

is given by pointwise products of functions. We can define
a multiplication operation for the tensor product, • : (A1 ⌦ · · ·⌦A

n

)⇥ (A1 ⌦ · · ·⌦A
n

) ! (A1 ⌦ · · ·⌦A
n

),
as

(f1 ⌦ · · ·⌦ f

n

) • (g1 ⌦ · · ·⌦ g

n

) = (f1 · g1)⌦ · · ·⌦ (f

n

· g
n

) (30)
Products of principal eigenfunctions of the form (29) give eigenfunctions of U

Nom

. Denote  (s1,...,sn) 2 A as

 (s1,...,sn)(x1, . . . , xn

) = ( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

). (31)

where (s1, . . . , sn) 2 {0, . . . d1} ⇥ · · · ⇥ {0, · · · , d
n

}. It is clear that this observable can be constructed as a
•-product of principal eigenfunctions of the form (29); namely

 (s1,...,sn) =  (s1,0,...,0) •  (0,s2,0,...,0) • · · · •  (0,...,0,sn). (32)

Equation (31) is an eigenfunction at �1,s1 · · ·�n,sn as shown by the following computation:

(U
Nom

 (s1,...,sn))(x1, . . . , xn

) =  (s1,...,sn)(Nom(x1, . . . , xn

))

=  (s1,...,sn)(L1x1, . . . , Ln

x

n

)

= ( 1,s1 ⌦ · · ·⌦  

n,sn)(L1x1, . . . , Ln

x

n

)

=  1,s1(L1x1) · · · n,sn(Ln

x

n

)

= (U
Nom1 1,s1)(x1) · · · (UNomn n,sn)(xn

)

= (�1,s1 1,s1)(x1) · · · (�n,sn n,sn)(xn

)

= (�1,s1 · · ·�n,sn)( 1,s1(x1) · · · n,sn(xn

))

= (�1,s1 · · ·�n,sn)( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

)

= (�1,s1 · · ·�n,sn) (s1,...,sn)(x1, . . . , xn

).

The preceding work is an example of the more general result that eigenfunctions of the Koopman operator
form a semigroup under pointwise multiplication of functions, as pointed out in [2].
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Embed	component	principal	eigenfunctions	into	tensor	product

1.4.2 Koopman operators and principal eigenfunctions for cascaded systems

We use the algebra of observables A
i

on Cdi to build a space of observables A for the cascade system. Let
A = A1 ⌦ · · ·⌦A

n

and denote U
Nom

: A ! A and U
Lin

: A ! A as the Koopman operators associated with
the solution operators Nom and Lin, respectively. Recall that a tensor product f1 ⌦ · · ·⌦ f

n

2 A1 ⌦ · · ·⌦A
n

acts on multilinear functionals on A1 ⇥ · · · ⇥ A
n

(see [17]). Let �(x1,...,xn) : A1 ⇥ · · · ⇥ A
n

! C be the
evaluation functional defined as

�(x1,...,xn)(f1, . . . , fn) = f1(x1) · · · fn(xn

), (25)

where the dots on the right side indicate multiplication in C. The tensor product is defined as

(f1 ⌦ · · ·⌦ f

n

)(�(x1,...,xn)) = �(x1,...,xn)(f1, . . . , fn). (26)

Due to this, there is no confusion in writing

(f1 ⌦ · · ·⌦ f

n

)(x1, . . . , xn

) ⌘ f1(x1) · · · fn(xn

) (27)

and we can consider f1 ⌦ · · ·⌦ f

n

as a function on the cascaded system’s state space Cd1 ⇥ · · ·⇥ Cdn .
Principal eigenfunctions for U

Nom

: A ! A can be defined from the component systems’ principal eigen-
functions (22) by a trivially extending their domain from the component system’s state space Cdi to the
cascaded system’s state space Cd1 ⇥ · · · ⇥ Cdn . To this end, for each i 2 {1, . . . , n} and s

i

2 {1, . . . , d
i

},
define a principal eigenfunction for U

Nom

as

 (0,...,0,si,0,...,0)(x1, . . . , xn

) = ( 

i,si �⇧i

)(x1, . . . , xn

) ⌘  

i,si(xi

). (28)

Often we will write  
siên,i ⌘  (0,...,0,si,0,...,0). Since by convention  

i,0 ⌘ 1 for all i, this principal eigenfunc-
tion for U

Nom

can be written as a tensor product of principal eigenfunctions from the component systems,

 (0,...,0,si,0,...,0)(x1, . . . , xn

) =  

i,si(xi

)

⌘ (1⌦ · · ·⌦ 1⌦  

i,si ⌦ 1⌦ · · ·⌦ 1)(x1, . . . , xn

)

= ( 1,0 ⌦ · · ·⌦  

i�1,0 ⌦  

i,si ⌦  

i+1,0 ⌦ · · ·⌦  

n,0)(x1, . . . , xn

).

(29)

The multiplication operation in each algebra A
i

is given by pointwise products of functions. We can define
a multiplication operation for the tensor product, • : (A1 ⌦ · · ·⌦A

n

)⇥ (A1 ⌦ · · ·⌦A
n

) ! (A1 ⌦ · · ·⌦A
n

),
as

(f1 ⌦ · · ·⌦ f

n

) • (g1 ⌦ · · ·⌦ g

n

) = (f1 · g1)⌦ · · ·⌦ (f

n

· g
n

) (30)
Products of principal eigenfunctions of the form (29) give eigenfunctions of U

Nom

. Denote  (s1,...,sn) 2 A as

 (s1,...,sn)(x1, . . . , xn

) = ( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

). (31)

where (s1, . . . , sn) 2 {0, . . . d1} ⇥ · · · ⇥ {0, · · · , d
n

}. It is clear that this observable can be constructed as a
•-product of principal eigenfunctions of the form (29); namely

 (s1,...,sn) =  (s1,0,...,0) •  (0,s2,0,...,0) • · · · •  (0,...,0,sn). (32)

Equation (31) is an eigenfunction at �1,s1 · · ·�n,sn as shown by the following computation:

(U
Nom

 (s1,...,sn))(x1, . . . , xn

) =  (s1,...,sn)(Nom(x1, . . . , xn

))

=  (s1,...,sn)(L1x1, . . . , Ln

x

n

)

= ( 1,s1 ⌦ · · ·⌦  

n,sn)(L1x1, . . . , Ln

x

n

)

=  1,s1(L1x1) · · · n,sn(Ln

x

n

)

= (U
Nom1 1,s1)(x1) · · · (UNomn n,sn)(xn

)

= (�1,s1 1,s1)(x1) · · · (�n,sn n,sn)(xn

)

= (�1,s1 · · ·�n,sn)( 1,s1(x1) · · · n,sn(xn

))

= (�1,s1 · · ·�n,sn)( 1,s1 ⌦ · · ·⌦  

n,sn)(x1, . . . , xn

)

= (�1,s1 · · ·�n,sn) (s1,...,sn)(x1, . . . , xn

).

The preceding work is an example of the more general result that eigenfunctions of the Koopman operator
form a semigroup under pointwise multiplication of functions, as pointed out in [2].
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Asymptotic	equivalence	and	relative	error

2.1 Theorems

Theorem 2.2 (0 asymptotic relative error for chained, linear cascades). Assume Condition 2.1 is in effect.

Then (34) has 0 asymptotically relative error in the sense of (14). In particular, for all i � 1

‡
and all t � 0,

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k 
i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)k (37)



0

@
i�1X

j=1

kD
i,j

kkpert
j

(x1, . . . , xj

)k

1

A kL
i

kt (38)

and for all i � 1

lim

t!1

k⇧
i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt
= 0. (39)

The perturbation function for the initial condition, pert : Cd1 ⇥ · · · ⇥ Cdn ! Cd1 ⇥ · · · ⇥ Cdn
, is defined

as

pert(x1, . . . , xn

) = (pert1 �⇧1, pert2 � (⇧1,⇧2), . . . , pert
n�1 � (⇧1, . . . ,⇧n�1), pert

n

)(x1, . . . , xn

) (40)

and the perturbations for each system i, pert

i

: Cd1 ⇥ · · ·⇥ Cdi ! Cdi
, are defined recursively by

pert1(x1) = x1 (41)

pert

i

(x1, . . . , xi

) = x

i

+

i�1X

j=1

(�1)

i�1�j

D

i,j

pert

j

(x1, . . . , xj

) 8i 2 {2, . . . , n}. (42)

where

D

i,i

= I

di 8i 2 {1, . . . , n}, (43)

D

i,j

= L

�1
i

V

i

˜

C

i,j

V

�1
j

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}, (44)

and the matrix

˜

C

i,j

2 Cdi⇥dj
has elements

[

˜

C

i,j

]

`,m

=

⇥
V

�1
i

C

i,i�1Di�1,jVj

⇤
`,m

✓
1� �

j,m

�

i,`

◆�1

8i 2 {2, . . . , n}, 8j 2 {1, . . . , i� 1}. (45)

Remark. The requirement that the eigenvalues of L
i

and L

j

(i 6= j) form disjoint sets is due to the form
of the entries of the coupling matrix ˜

C

i,j

. If any pair of eigenvalues from L

i

and L

j

were equal, ˜

C

i,j

would
not be well-defined since its matrix elements have a term of the form (1� �

j,m

/�

i,`

)

�1. The requirement of
disjoint-ness can be thought of as a non-resonance condition.

Proof of Theorem 2.2. Equations (38) and (39) follow from corollary 3.4. The expressions for the perturba-
tion terms pert

j

and the coupling matrices D

i,j

and ˜

C

i,j

are derived in the proof of lemma 3.3.

Corollary 2.3 (Asymptotic equivalence for chained, linear cascades).

lim

t!1
kLin�t(x1, . . . , xn

)� Nom

�t
(pert(x1, . . . , xn

))k⇥ = 0. (46)

Theorem 2.4 (Perturbation of principal eigenfunctions). Assume Condition 2.1 is in effect. For any i � 1,

s

i

2 {1, . . . , d
i

}, and t 2 N
���U�t

Lin

 (0,...,0,si,0,...,0)

�
(x1, . . . , xn

)�
�
U�t
Nom

 (0,...,0,si,0,...,0)

�
� pert(x1, . . . , xn

)

��

 k 
i,sik

i�1X

j=1

kD
i,j

kkLt

j

pert

j

(x1, . . . , xj

)kCdj . (47)

‡
We take the empty sum

P0
j=1 to be 0.

8Furthermore, for any i 2 {1, . . . , n}

lim

t!1

���U�t
Lin

 (0,...,0,si,0,...,0)

�
(x1, . . . , xn

)�
�
U�t
Nom

 (0,...,0,si,0,...,0)

�
� pert(x1, . . . , xn

)

��

kL
i

kt
= 0. (48)

Proof. See section 3.2 below.
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It is clear from (48), that the right-hand side converges to 0 as N ! 1.
In the general case, to project onto the � eigenspace, U
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in the above average is replaced with U
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(I�P )

where P is the projection onto the direct sum of µ-eigenspace, for µ satisfying |µ| > |�|.

Remark. It can be shown that  
siên,i � pert is an eigenfunction of U

Lin

, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.

Example 2.6. We demonstrate that the result of corollary 2.5 explicitly for a 2 layer chained cascade;

x1(t+ 1) = L1x1(t)

x2(t+ 1) = L2x2(t) + C2,1x1(t).
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It is clear from (48), that the right-hand side converges to 0 as N ! 1.
In the general case, to project onto the � eigenspace, U

Lin

in the above average is replaced with U
Lin

(I�P )

where P is the projection onto the direct sum of µ-eigenspace, for µ satisfying |µ| > |�|.

Remark. It can be shown that  
siên,i � pert is an eigenfunction of U

Lin

, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.

Example 2.6. We demonstrate that the result of corollary 2.5 explicitly for a 2 layer chained cascade;

x1(t+ 1) = L1x1(t)

x2(t+ 1) = L2x2(t) + C2,1x1(t).
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It is clear from (48), that the right-hand side converges to 0 as N ! 1.
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in the above average is replaced with U
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(I�P )
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Remark. It can be shown that  
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, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.
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Remark. It can be shown that  
siên,i � pert is an eigenfunction of U
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, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.

Example 2.6. We demonstrate that the result of corollary 2.5 explicitly for a 2 layer chained cascade;

x1(t+ 1) = L1x1(t)

x2(t+ 1) = L2x2(t) + C2,1x1(t).

Using theorem 2.2,
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in the above average is replaced with U
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where P is the projection onto the direct sum of µ-eigenspace, for µ satisfying |µ| > |�|.

Remark. It can be shown that  
siên,i � pert is an eigenfunction of U
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, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.

Example 2.6. We demonstrate that the result of corollary 2.5 explicitly for a 2 layer chained cascade;
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Lin

in the above average is replaced with U
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where P is the projection onto the direct sum of µ-eigenspace, for µ satisfying |µ| > |�|.

Remark. It can be shown that  
siên,i � pert is an eigenfunction of U
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, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.
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It is clear from (48), that the right-hand side converges to 0 as N ! 1.
In the general case, to project onto the � eigenspace, U

Lin

in the above average is replaced with U
Lin

(I�P )

where P is the projection onto the direct sum of µ-eigenspace, for µ satisfying |µ| > |�|.

Remark. It can be shown that  
siên,i � pert is an eigenfunction of U
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, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.

Example 2.6. We demonstrate that the result of corollary 2.5 explicitly for a 2 layer chained cascade;

x1(t+ 1) = L1x1(t)

x2(t+ 1) = L2x2(t) + C2,1x1(t).
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Therefore,

pert(x1, x2) =


pert1(x1)

pert2(x1, x2)

�
=


I

d1 0
D2,1 I

d2

� 
x1

x2

�
(49)

Furthermore, we have the principal eigenfunction for the second system

 (0,s2)(x1, x2) =
⇥
0 ê

⇤
d2,s2

V

�1
2

⇤ 
x1

x2

�
. (50)

By lemma 3.3

Lin

�t
(x1, x2) =


L

t

1pert1(x1)

L

t

2pert2(x1, x2)�D2,1L
t

1pert1(x1)

�
. (51)

We can write Lin

�t
(x1, x2) as

Lin

�t
(x1, x2) =


I

d1 0
�D2,1 I

d2

� 
L

t

1

L

t

2

� 
pert1(x1)

pert2(x2)

�
.

Our goal is to show that  (0,s2) � pert is an eigenfunction at eigenvalue �(0,s2) for U�t
Lin

. To this end we
compute

U�t
Lin

( (0,s2) � pert)(x1, x2) =  (0,s2) � pert � Lin
�t
(x1, x2)

=

⇥
0 ê

⇤
d2,s2

V

�1
2

⇤
| {z }

 (0,s2)


I

d1 0
D2,1 I

d2

�

| {z }
pert


I

d1 0
�D2,1 I

d2

� 
L

t

1

L

t

2

� 
pert1(x1)

pert2(x2)

�

| {z }
Lin

�t(x1,x2)

=

⇥
0 ê

⇤
d2,s2

V

�1
2

⇤ 
L

t

1

L

t

2

� 
pert1(x1)

pert2(x2)

�

= ê

⇤
d2,s2

V

�1
2 L

t

2pert2(x2)

= ê

⇤
d2,s2

⇤

t

2V
�1
2 pert2(x2)

= �

t

2,s2 ê
⇤
d2,s2

V

�1
2 pert2(x2)

= �

t

2,s2

⇥
0 ê

⇤
d2,s2

V

�1
2

⇤ 
pert1(x1)

pert2(x2)

�

= �

t

2,s2( (0,s2) � pert)(x1, x2).

This completes the example.

The asymptotic equivalence for the chained, linear cascades can be pushed to chained, nonlinear cascades
with asymptotically stable fixed points through the use of a topological conjugacy. Let ⌧ = (⌧1, . . . , ⌧n) :

Cd1 ⇥ · · ·⇥Cdn ! Cd1 ⇥ · · ·⇥Cdn be a topological conjugacy from the linear system to the nonlinear system
and ⌧�1

= (⇢1, . . . , ⇢n) : Cd1 ⇥ · · ·⇥ Cdn ! Cd1 ⇥ · · ·⇥ Cdn its inverse. In general, both ⌧
i

and ⇢
i

are maps
from Cd1 ⇥ · · ·⇥ Cdn ! Cdi . The topological conjugacy makes the following diagram commute:

Cd1 ⇥ · · ·⇥ Cdn Cd1 ⇥ · · ·⇥ Cdn

Cd1 ⇥ · · ·⇥ Cdn Cd1 ⇥ · · ·⇥ Cdn

⌧

Lin

�t

⌧

NonLin

�t

(52)

Theorem 2.7 (Asymptotic equivalence for nonlinear cascaded systems). Let the conditions of Theorem 2.2

be satisfied and let ⌧ = (⌧1, . . . , ⌧n) : Cd1 ⇥ · · ·⇥Cdn ! Cd1 ⇥ · · ·⇥Cdn
be a topological conjugacy satisfying

Lin = ⌧

�1 � NonLin � ⌧ . Then, for each initial condition (y1, . . . , yn) for the nonlinear system, NonLin is

asymptotically equivalent to ⌧ � Nom � ⌧�1
with the perturbation function ⌧ � pert � ⌧�1

:

lim

t!1

���NonLin�t(y1, . . . , yn)�
�
⌧ � Nom � ⌧�1

��t
(⌧ � pert � ⌧�1

)(y1, . . . , yn)

��� = 0, (53)

where pert is given by (40).
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nonlinear	cascade

Proof. See section 3.3 for the proof.

Remark. Recall that Nom is the nominal decoupled linear system and ⌧ is a map from the linear to the
nonlinear system. Then ⌧ �Nom � ⌧�1 is a map on the same state space as the nonlinear system NonLin and
can be thought of as the nominal nonlinear system. Furthermore, since pert is the perturbation function for
the initial conditions of the linear system, then ⌧ � pert � ⌧�1 is the perturbation function for the nonlinear
system’s initial conditions.

Theorem 2.8 (Perturbation of eigenfunctions for nonlinear cascades). Let the conditions of Theorem 2.7

be satisfied. For any ~y = (y1, . . . , yn) 2 Cd1 ⇥ · · ·⇥ Cdn
,

lim

t!1

��U�t
NonLin

( (0,...,0,si,0,...,0) � ⌧�1
)(~y)� U�t

⌧�Nom�⌧�1( (0,...,0,si,0,...,0) � ⌧�1
)((⌧ � pert � ⌧�1

)(~y))

��

kL
i

kt
= 0. (54)

Proof. See section 3.4.

Remark. It was shown in [2] that if  was an eigenfunction corresponding to the Koopman operator associated
with the linearized system and ⌧ was a topological conjugacy from the linear to the nonlinear system, then
 � ⌧�1 was an eigenfunction of the Koopman operator associated with the nonlinear system. Recall that
 (0,...,0,si,0,...,0) is a principal eigenfunction for the Koopman operator U

Nom

associated with the nominal
linear system. Then  (0,...,0,si,0,...,0) � ⌧�1 is a principal eigenfunction for the Koopman operator U

⌧�Nom�⌧�1

associated with the nonlinear nominal system ⌧ � Nom � ⌧�1.
Remark. Theorem 2.8 says that the action of the Koopman operator associated with the nonlinear cascade
NonLin on the observable  (0,...,0,si,0,...,0) � ⌧�1 is asymptotically equivalent to the action of the Koopman
operator associated with ⌧ � Nom � ⌧�1 (the nominal nonlinear system) on  (0,...,0,si,0,...,0) � ⌧�1 but at a
perturbed initial condition, but when evaluated at a perturbed initial condition (⌧ � pert � ⌧�1

)(~y).
Remark. While the preceding results are proved for chained cascades, they should be easily extensible to the
general cascade systems. The difference should only be in the exact form of the perturbation functions and
the bounds. The asymptotic results should remain the same.

2.2 Numerical experiments.

The results of theorem 2.2 were confirmed with simulation. The simulation consisted of 7-layer§ linear
chained, cascaded system with randomly generated dimensions for each system i. System matrices L

i

were
randomly generated with entries uniformly in the interval [�1, 1] and then scaled to have kL

i

k = (0.9)

8�i for
i = 1, . . . , 7. The coupling matrices C

i,i�1 were also randomly generated with entries uniformly in [�1, 1].
Initial conditions for each system i were randomly generated and scaled to have kx

i

k = 1.
Figures 3 and 4 show the log absolute error and log relative errors of a typical run of the simulation.

The black asterisks in fig. 3 are the predicted upper bound (38). The colored lines in each plot correspond
to the log of the absolute error, log

�
k⇧

i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
�
, between the

linear and the nominal systems. Figure 4 shows the log of the relative error

log

✓
k⇧

i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt

◆
. (55)

As can be seen, the log absolute error and log relative error decrease linearly, confirming that the absolute
error and relative error decrease exponentially fast to zero.

3 Proofs of the main results

3.1 Asymptotic equivalence of linear, chained cascades.

The first lemma gives the general solution for the i-th level of the chained linear cascade system
§
The choice of 7 layers was made merely for display purposes. Results for larger cascades have been confirmed as well.
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Furthermore, for any i 2 {1, . . . , n}
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i

kt
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Proof. See section 3.2 below.
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Let ê
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be the i-th canonical basis vector of length n and write  
siên,i =  (0,...,0,si,0,...,0). Form the

Laplace average,
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⇤
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siên,i) � pert
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kL
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kt
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It is clear from (48), that the right-hand side converges to 0 as N ! 1.
In the general case, to project onto the � eigenspace, U

Lin

in the above average is replaced with U
Lin

(I�P )

where P is the projection onto the direct sum of µ-eigenspace, for µ satisfying |µ| > |�|.

Remark. It can be shown that  
siên,i � pert is an eigenfunction of U

Lin

, without appeal to the GLA theorem,
by direct computation, but it is more involved since pert for an n-layer cascade consists of a product of n�1

lower block triangular matrices. Example 2.6 below shows the computation for just a two layer system.

Example 2.6. We demonstrate that the result of corollary 2.5 explicitly for a 2 layer chained cascade;

x1(t+ 1) = L1x1(t)

x2(t+ 1) = L2x2(t) + C2,1x1(t).

Using theorem 2.2,

pert1(x1, x2) =
⇥
I

d1 0
⇤ 

x1

x2

�

pert2(x1, x2) =
⇥
D2,1 I

d2

⇤ 
x1

x2

�
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Proof. See section 3.3 for the proof.

Remark. Recall that Nom is the nominal decoupled linear system and ⌧ is a map from the linear to the
nonlinear system. Then ⌧ �Nom � ⌧�1 is a map on the same state space as the nonlinear system NonLin and
can be thought of as the nominal nonlinear system. Furthermore, since pert is the perturbation function for
the initial conditions of the linear system, then ⌧ � pert � ⌧�1 is the perturbation function for the nonlinear
system’s initial conditions.

Theorem 2.8 (Perturbation of eigenfunctions for nonlinear cascades). Let the conditions of Theorem 2.7

be satisfied. For any ~y = (y1, . . . , yn) 2 Cd1 ⇥ · · ·⇥ Cdn
,

lim

t!1

��U�t
NonLin

( (0,...,0,si,0,...,0) � ⌧�1
)(~y)� U�t

⌧�Nom�⌧�1( (0,...,0,si,0,...,0) � ⌧�1
)((⌧ � pert � ⌧�1

)(~y))

��

kL
i

kt
= 0. (54)

Proof. See section 3.4.

Remark. It was shown in [2] that if  was an eigenfunction corresponding to the Koopman operator associated
with the linearized system and ⌧ was a topological conjugacy from the linear to the nonlinear system, then
 � ⌧�1 was an eigenfunction of the Koopman operator associated with the nonlinear system. Recall that
 (0,...,0,si,0,...,0) is a principal eigenfunction for the Koopman operator U

Nom

associated with the nominal
linear system. Then  (0,...,0,si,0,...,0) � ⌧�1 is a principal eigenfunction for the Koopman operator U

⌧�Nom�⌧�1

associated with the nonlinear nominal system ⌧ � Nom � ⌧�1.
Remark. Theorem 2.8 says that the action of the Koopman operator associated with the nonlinear cascade
NonLin on the observable  (0,...,0,si,0,...,0) � ⌧�1 is asymptotically equivalent to the action of the Koopman
operator associated with ⌧ � Nom � ⌧�1 (the nominal nonlinear system) on  (0,...,0,si,0,...,0) � ⌧�1 but at a
perturbed initial condition, but when evaluated at a perturbed initial condition (⌧ � pert � ⌧�1

)(~y).
Remark. While the preceding results are proved for chained cascades, they should be easily extensible to the
general cascade systems. The difference should only be in the exact form of the perturbation functions and
the bounds. The asymptotic results should remain the same.

2.2 Numerical experiments.

The results of theorem 2.2 were confirmed with simulation. The simulation consisted of 7-layer§ linear
chained, cascaded system with randomly generated dimensions for each system i. System matrices L

i

were
randomly generated with entries uniformly in the interval [�1, 1] and then scaled to have kL

i

k = (0.9)

8�i for
i = 1, . . . , 7. The coupling matrices C

i,i�1 were also randomly generated with entries uniformly in [�1, 1].
Initial conditions for each system i were randomly generated and scaled to have kx

i

k = 1.
Figures 3 and 4 show the log absolute error and log relative errors of a typical run of the simulation.

The black asterisks in fig. 3 are the predicted upper bound (38). The colored lines in each plot correspond
to the log of the absolute error, log

�
k⇧

i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
�
, between the

linear and the nominal systems. Figure 4 shows the log of the relative error

log

✓
k⇧

i

� Lin�t(x1, . . . , xn

)�⇧

i

� Nom�t
(pert(x1, . . . , xn

))k
kL

i

kt

◆
. (55)

As can be seen, the log absolute error and log relative error decrease linearly, confirming that the absolute
error and relative error decrease exponentially fast to zero.

3 Proofs of the main results

3.1 Asymptotic equivalence of linear, chained cascades.

The first lemma gives the general solution for the i-th level of the chained linear cascade system
§
The choice of 7 layers was made merely for display purposes. Results for larger cascades have been confirmed as well.
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Proof. See section 3.3 for the proof.

Remark. Recall that Nom is the nominal decoupled linear system and ⌧ is a map from the linear to the
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can be thought of as the nominal nonlinear system. Furthermore, since pert is the perturbation function for
the initial conditions of the linear system, then ⌧ � pert � ⌧�1 is the perturbation function for the nonlinear
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Proof. See section 3.4.
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associated with the nonlinear nominal system ⌧ � Nom � ⌧�1.
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operator associated with ⌧ � Nom � ⌧�1 (the nominal nonlinear system) on  (0,...,0,si,0,...,0) � ⌧�1 but at a
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)(~y).
Remark. While the preceding results are proved for chained cascades, they should be easily extensible to the
general cascade systems. The difference should only be in the exact form of the perturbation functions and
the bounds. The asymptotic results should remain the same.

2.2 Numerical experiments.

The results of theorem 2.2 were confirmed with simulation. The simulation consisted of 7-layer§ linear
chained, cascaded system with randomly generated dimensions for each system i. System matrices L

i

were
randomly generated with entries uniformly in the interval [�1, 1] and then scaled to have kL

i

k = (0.9)

8�i for
i = 1, . . . , 7. The coupling matrices C

i,i�1 were also randomly generated with entries uniformly in [�1, 1].
Initial conditions for each system i were randomly generated and scaled to have kx
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k = 1.
Figures 3 and 4 show the log absolute error and log relative errors of a typical run of the simulation.

The black asterisks in fig. 3 are the predicted upper bound (38). The colored lines in each plot correspond
to the log of the absolute error, log
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As can be seen, the log absolute error and log relative error decrease linearly, confirming that the absolute
error and relative error decrease exponentially fast to zero.

3 Proofs of the main results

3.1 Asymptotic equivalence of linear, chained cascades.

The first lemma gives the general solution for the i-th level of the chained linear cascade system
§
The choice of 7 layers was made merely for display purposes. Results for larger cascades have been confirmed as well.
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Pullback	of	principal	
eigenfunction	to	(nominal)	

nonlinear	system

Map	of	the	linear	
perturbation	function	to	
nonlinear	case
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Conclusions

Under	mild	conditions	that	linear	cascade	is	asymptotically	equivalent	to	
decoupled	(nominal)	system	started	from	perturbed	initial	conditions

The	Koopman	principal	eigenvalues	of	component	systems	are	also	part	of	the	
spectrum	for	the	linear	cascade’s	Koopman	operator
Principal	eigenfunctions	get	modified	by	a	composition	with	the	perturbation	
functions

The	results	extend	to	nonlinear	cascades	through	topological	conjugacy
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