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ABSTRACT
In this paper, analysis is performed on the uncer-
tainty in energy consumption calculated from whole-
building energy models of two different building de-
signs; a typical code compliant building, and the same
building redesigned with high performance elements.
We perform sensitivity analysis which reveals which
parameters (out of approximately 900) influence the
uncertainty in the consumption of energy in the build-
ing model the most. We conclude that the most sensi-
tive parameters of the model relate to building opera-
tion (i.e. scheduling), and also find that a low energy
building design is more robust to parameter variations
than the conventional design.

INTRODUCTION
Building energy modeling has been pursued for the
past few decades and has resulted in various modeling
tools that predict energy use with reasonable accuracy.
As building design focuses on low energy concepts,
new technologies are being introduced into building
design, and new component models are needed for
these modeling packages to analyze their performance.
New component models not only bring new dynamics
and behavior to the model, they also bring new sources
of uncertainty in its output, and the need to analyze this
uncertainty.
Uncertainty analysis (UA) in this context, is the pro-
cess of predicting how uncertain inputs (typically
constant-in-time parameters) influences the output of
the model (e.g. energy consumption or comfort vari-
ables). To perform this quantitative analysis, the
model is usually parsed into many different realiza-
tions, each with a different set of parameter values
within a given range. The outputs of these realizations
are then computed and statistical analysis is performed
on these output distributions (see (Moon, 2005) for a
general discussion of UA in building modeling). There
are many benefits of performing UA which include
quantifying confidence bounds on outputs of a build-
ing energy simulation.
In some cases, UA is insightful enough to make con-
clusions from (as in (Soratana and Marriott, 2010)),
while typically, once this data is generated, sensitiv-
ity analysis is then performed. Sensitivity analysis
(SA) is a method that calculates the uncertain param-
eters which have most influence on the outputs. There

are many obvious benefits to this type of analysis be-
cause once the most influential parameters are identi-
fied, more engineering attention can be placed on them
(e.g. for model calibration (see (ONeill et al., 2011)),
building or control design, and for online diagnostic
algorithms).
Parameter range and distribution type of the samples
influences the sampled behavior of the building model
which is to be studied. There have been many studies
to determine the type of distribution (normal, uniform,
log-uniform, etc.) for typical parameters in building
models (see (Dominguez-Munoz et al., 2009) where
statistical properties of the thermal conductivity of dif-
ferent materials was empirically identified, or (Cóstola
et al., 2010) where uncertainty in airflow rates were
calculated, or the report (Clarke et al., 1990), or thesis
(Macdonald, 2002)). Without specific information, a
uniform distribution is typically used with a large pa-
rameter range.
In this work, we apply a uniform distribution to all
nonzero parameters, and for those with zero nomi-
nal value, we apply an exponential distribution so that
the samples are centered closer to the nominal value
of zero. The tools in this paper identify the most
important parameters of the building model, and this
information will allow us to go back and associate
physically-based distributions for these important pa-
rameters in future work (if they are different from the
assumed uniform type). In a sense, the analysis in
this paper is associated with conceptual design analy-
sis while the same process can be repeated for detailed
design analysis (Struck et al., 2009).
There are multiple ways to calculate the samples once
the distribution type and range is defined. One tradi-
tional method is the Monte Carlo (MC) approach and
an updated version of this method called Latin Hyper-
cube Sampling (LHS) which creates samples with less
clumps that the MC approach. In this work, we use
a quasi-MC approach which has faster convergence
rates than the MC or LHS method and samples that
fill the volume more uniformly (Saltelli et al., 2000).
A more detailed discussion of convergence as well as
a typical convergence plot for this type of analysis can
be found in (Eisenhower et al., 2011).
There have been many studies in the energy model-
ing literature using different SA approaches (screening
methods, local methods, and global analysis) to study
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building energy models. For example, (Venancio and
Pedrini, 2009) studied the impact on energy in three
different architectural options, and in (Pollack et al.,
2009), five different design options were studied using
sensitivity analysis.
The screening method method is good for studying
models with a few uncertain parameters and has been
used in building systems studies including (Rahni
et al., 1997) where 23 parameters were selected from
an original set of 390 using 136 simulations, and in
(Brohus et al., 2009b) where pre-screening techniques
were used to reduce the number of uncertain param-
eters in a model from 13 to 7 prior to detailed sensi-
tivity analysis. Similarly, in (Brohus et al., 2009a), a
screening method was used to reduce a parameter set
from 57 to 10, upon which an Analysis of Variance
(ANOVA) based analysis (described below) was per-
formed to identify the most sensitive parameters of a
single-family home simulation model. This is useful
for a conceptual understanding of how one parameter
influences the output of a model, but is time intensive
when there are a large number of parameters. In ad-
dition to this, combinatorial influences (when the per-
turbation of two or more parameters at the same time
has more influence than individual perturbations) are
not captured in this approach.
Local methods are another approach that is good for
studying a small number of uncertain parameters, and
has been used extensively in the building system com-
munity where (Spitler et al., 1989) studied family
housing with 5 uncertain parameters, and in (Struck
et al., 2009) where 10 parameters were studied using
200 simulations, and (Lomas and Eppel, 1992) which
used various local methods on a model containing 70
uncertain parameters. In the paper (Lam et al., 2008),
10 parameters were studied using OAT (43 realisa-
tions each) for 10 different building types, and (Firth
et al., 2010) who studied 27 parameters in a household
model using local methods as well.
Global methods, including the Morris method have
been used in sensitivity analysis for many building
simulations models as in (de Wit and Augenbroe,
2002) where 100 realisations for 89 uncertain param-
eters was performed on room air distribution, or (Cor-
rado and Mechri, 2009) where 10 parameters were
found to be significant out of the 129 which were var-
ied using LHS and the Morris method. In (Heiselberg
et al., 2009), the Morris method was used to calculate
the elementary effects (a type of sensitivity analysis
screening method) for a building model with 21 pa-
rameters (88 realisations were performed). Another
global approach is the Analysis of Variance method
(ANOVA), which calculates individual and combina-
torial variance contributions in the output variables. In
(Capozzoli et al., 2009) LHS and ANOVA was used to
calculate sensitivity indices for 6 architectural param-
eters using 100 realizations for 5 different buildings in
Italy.

In some cases, output distributions from energy mod-
els are not fully described by their variance alone
(Eisenhower et al., 2011). Due to this, we use a
global derivative-based approach which uses the func-
tion (Sobol and Kucherenko, 2009)

µm =

∫ ∣∣∣∣ ∂f∂xm
∣∣∣∣ dx, (1)

where f is a meta-model of the energy simulation (de-
scribed below) and xm is the mth uncertain parameter
in the model. The integration is performed over all
dimensions of the sampling points.
The sensitivity calculations we perform are all based
on a model of the EnergyPlus model (a meta-model)
which allows analytic operations to be performed
(among other things, see (Chlela et al., 2009)). Meta-
modeling, including the high dimensional model real-
ization (HDMR) (Li et al., 2002) has been performed
in other sensitivity analysis studies (Mara and Taran-
tola, 2008). This approach fits either polynomial, or
other analytic functions through the data points. This
approach works well in many cases, but is also very
susceptible to either noise or outliers in the data. An-
other approach uses support vector regression (SVR)
as described in (Smola and Scholkopf, 2004). We have
found that this SVR approach (using Gaussian kernels)
works the best for the type of data produced by energy
models. The software we use to compute the samples
and calculate sensitivities is available at (Aimdyn Go-
SUM Software, 2010).

Models
The two models that are compared in this study orig-
inate from the United States Department of Energy
(DOE) EnergyPlus Benchmark Model Suite (Deru
et al., 2009). The DOE benchmark model suite con-
tains 15 models that represent approximately 70% of
commercial building stock in the United States. The
models are then organized so that each one of them
can be simulated at one of 16 different locations in the
US (using typical meteorological year (TMY) weather
data for each of these locations). Each model is also
organized by construction type; new construction, ex-
isting construction - post 1980, and existing construc-
tion - pre 1980.
The model studied in this paper is a new construction
medium office building located in Las Vegas, Nevada.
This location is subject to hot and dry summers and
cool winters (relatively extreme in both the summer
and winter). This medium office building has three
floors and approximately 5000 m2 (54,000 ft2) of floor
area. The entire building is conditioned and the total
energy per total building area is about 467 [MJ/m2].
The building is a rectangular cube (aspect ratio 1.5),
with 33% window to wall ratio, and is zoned with 5
zones per floor (one central zone and one zone for each
perimeter side of the building). Throughout this pa-
per we will call the model of this building the nominal
model.
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The building has one boiler which serves variable air
volume (VAV) reheat coils for each of the 15 occupied
zones, and heating in the air handling units (AHUs)
is provided by a gas furnace. Cooling is supplied
by direct expansion (DX) coils in the AHUs, one for
each floor. Load and usage schedules are based on
ASHRAE guidelines (e.g., ASHRAE Standard 90.1-
2004).
A high performance version of this building was also
constructed using design information from a techni-
cal report from the Pacific Northwest National Lab
(Thornton et al., 2009). Building performance was en-
hanced by improvements to both the envelope as well
as equipment within the building (including schedul-
ing).
For the envelope, the insulation was enhanced in both
the walls (R13 to R20.5) and in the roof (R15 to R25)
without changing its thermal capacity. To reduce the
impact of solar radiation, the solar reflectance of the
roof was increased from 0.23 to 0.69. Since the nom-
inal building was designed based on standards for Las
Vegas, high efficiency windows were already speci-
fied, and so there was no change between the nominal
and high performance models. However, in the high
performance model, overhang shading was added with
a projection factor of 0.5.
To reduce the amount of energy consumed by the heat-
ing and cooling equipment, a ground source heat pump
(GSHP) was incorporated into the design. This GSHP
supplies hot water for radiant floor heating and cold
water for active chilled beam cooling. In the high per-
formance building, a dedicated outside air system for
ventilation was also implemented.
The electrical loads were also decreased in the
high performance building. The interior lighting
power density was reduced from 10.8 W/m2 to 8.1
W/m2. Interior lighting schedules (usage fraction)
were changed to consider occupancy-sensor based
control. For the perimeter zones, lighting is dimmed
based on sensed natural daylight. Exterior lighting
power allowances were reduced by 37.5% and the ex-
terior lights were turned off between 12am and 12pm.
In addition to the lighting changes, the plug load den-
sity was also decreased from 8.07 to 5.92 W/m2.
With the performance enhancements to both the en-
velope and equipment, the annual energy intensity of
the building was reduced by about 41% (from 467 to
273 [MJ/m2]). In addition to the reduction of energy,
the building was more comfortable as modeled. The
zone hours not comfortable in either winter or summer
clothes as calculated by EnergyPlus was reduced by
73% in the high performance model. Table 1 presents
annual usage comparison for subsystems in the nomi-
nal and high performance models.

Parameter Variation and Simulation
In each model, almost every numeric parameter was
varied to capture how this variation quantitatively in-

Table 1: Electricity usage comparison, nominal vs.
high performance model (all units in GJ).

Electricity Type Nominal High Perfor-
mance Case

Heating 0 32.69
Cooling 318.93 216.32
Interior Lighting 552.57 260.6
Exterior Lighting 42.89 9.00
Interior Equipment 806.04 554.47
Fans 119.51 56.61
Pumps 0.82 77.73
Annual Total 1840.76 1207.42

fluences building energy use. The exceptions were
in the parameters related to equipment performance
curves, and parameters that describe solution methods
(e.g. autosizing, or method of calculating infiltration).
Because of differences in the building designs, the
models had a different number of parameters (746 for
the nominal model, while the high performance build-
ing had 947). We have selected 10 different groups as
shown in Table 2 to characterize all of these parame-
ters.
All of the parameters were varied by ±25% of their
nominal value, although many of the parameters were
constrained; for instance, fractional parameters with a
nominal of 0.9 would be varied between 0.675 and 1.0.
The heating and cooling setpoints had to be limited to
6.5% variation because otherwise they would overlap,
which created conflict in the dual-setpoint manage-
ment. All parameters were varied concurrently using
a quasi-random approach. To obtain the output distri-
butions, 5000 model realizations were created which
were ultimately parallelized and simulated on a 184-
CPU Linux cluster using EnergyPlus build 3.1.0.027.
It was found that 5000 realizations (EnergyPlus mod-
els with different input files) were more than enough to
gain good convergence results on the statistics of the
output variables.
EnergyPlus has the ability to output many different
metered variables from the energy simulation. From
the outputs that are available, 7 different outputs were
chosen for analysis: Facility Gas, Facility Electricity,
Heating, Cooling, Pump Electricity, Interior Lights,
and Interior Equipment (all units in Joules). Total an-
nual consumption and peak demand (hourly peak in
one year) were two metrics used in this study. We
chose these outputs because the profiles of these out-
puts clearly reflect the building performance and en-
ergy end-use pattern. The gas and electricity outputs
are facility-wide consumption variables, and because
of this, more attention will be paid to these two quan-
tities in this paper.

Uncertainty Analysis
Simulations were performed on numerous realizations
of both models and the statistics of the outputs were
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Table 2: Examples of parameters in each group type (partial list).
Number Type Examples of specific parameters captured in the parame-

ter group
1 Heating source Gas fired furnace (efficiency), boiler (capacity, effi-

ciency), ground source heat pump (rated heating capac-
ity, rated heating power consumption, rated load/source
side flow rate), ground heat exchanger (depth, number of
boreholes, etc.)

2 Cooling source DX coil (COP, sensible heat ratio), ground source heat
pump (rated cooling capacity, rated cooling power con-
sumption, rated load/source side flow rate, etc.)

3 AHU AHU SAT setpoint, outside air fraction schedule, etc.
4 Primary Mover: Air loop Fans (efficiency, pressure rise, etc.)
5 Primary Mover: Water loop Pumps (rated flow rate, rated head, rated power consump-

tion, etc.)
6 Terminal unit VAV boxes (maximum air flow rate, minimum air flow

fraction, etc.), radiant heating floor (hydronic tube in-
side diameter, heating control throttle range etc.), chilled
beam (supply air flow rate, maximum total chilled water
flow rate, beam length, number of beam etc.)

7 Zone external Building envelope (material thermal properties such as-
conductivity, density, and specific heat, window thermal
and optic properties, etc.), outdoor conditions (ground
temperature, ground reflectance, etc.)

8 Zone internal Internal heat gains design level (lighting load, number of
people, people activity level, etc.), schedules

9 Zone setpoint Zone temperature setpoint (space cooling and heating set-
points)

10 Sizing parameter Size factor, design parameters for zones, system and plant
(zone cooling design supply air temperature, loop design
temperature difference, etc.)

calculated. In Figure 1, standard deviation for each
output is presented for both the nominal model and the
high performance model.
It is evident that the energy efficient design is more ro-
bust to uncertainty. We also find that the uncertainty in
peak demand (the simulated hour with highest magni-
tude consumption) is much less than in the annual con-
sumption. This can be explained by the idealized con-
trol systems within the model, which attempt to keep
process variables within a controlled range.
It should be noted that the total consumption of the
high performance building is less than the nominal
building, and this should be accounted for when con-
sidering the uncertainty. To accommodate for this dif-
ference, the coefficient of variation (CV) for each of
the outputs of both models is presented. The CV is the
standard deviation divided by the mean, which allows
a comparison of distributions from dissimilar sources
(which consume drastically different amounts of en-
ergy). The plot of the CV for each of the outputs of
both models is presented in Figure 2.
For brevity, the entire distributions for only two of the
outputs are illustrated in Figure 3. The distributions
for all of the other outputs look fairly similar to these
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Figure 1: Standard deviation for the seven outputs of
the two models (nominal model and high performance
design).

two plots. Figure 3 shows that a low energy build-
ing design with well integrated envelope and equip-
ment is more robust to parameter variations than a con-
ventional design that does not explicitly address sub-
system interactions. In addition to this, the CV’s are
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Figure 2: Coefficient of variation (standard deviation
as % of Mean) for the seven outputs of the two models
(nominal model and high performance design).

most different between nominal and high performance
building in heating and facility gas, which also sug-
gests the role of the good envelope design (which af-
fects heating energy consumption the most).
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Figure 3: Example histograms of the two main facility
wide outputs.

Parameter Sensitivity
After gaining insight into how uncertainty in parame-
ter inputs influences the uncertainty in the outputs, we
now proceed to calculate the sensitivity indices which
identify which parameters influence the variance of the
output the most. Figures 4 and 5 illustrate the ag-
gregated total sensitivity indices for the 10 parame-
ter groups described in Table 2. The total sensitivity
(calculated from µm in Equation 1) for each of the pa-
rameters was calculated. If the influence coefficient
was less than 0.08, it was considered negligible and
ignored. We came up with this number by observing
a cutoff in the number of influential parameters versus
the sensitivity index amplitude. All parameters with
an index greater than this threshold were then collected

into their respective parameter type (as in Table 2). For
the nominal model, 55 of 746 (7.4%) were found to be
important, while 63 of the 947 (6.7%) were found to be
important for the high performance model. Once col-
lected, the total sensitivities for each parameter type
were then added to generate a single number for the
aggregated total sensitivity between a parameter group
type and an output type. It should be noted that since
we are using derivative based sensitivities (Equation
1), the summation may be larger than 1.0.
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Figure 4: Aggregated influence coefficients for yearly
peak energy consumption (nominal and high perfor-
mance models)
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Figure 5: Aggregated influence coefficients for annual
energy consumption (nominal and high performance
models)

It is clear from Figures 4 and 5 that the high per-
formance model has different parameter sensitivities
compared to the nominal design. Below we go through
each parameter type and describe which specific pa-
rameters are most influential.

• Parameter type 1 - Heating Source: The most sig-
nificant parameters in this group are related to the
efficiency of the boiler (in the nominal model)
and the gas burner efficiency for each air handling
unit (in the high performance model). In nominal
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model, a boiler is used to provide hot water to re-
heat coils in VAV boxes. On the other hand, in the
high performance model, the only heating source
is the gas burner in the AHU for the DOAS (ded-
icated outside air system).

• Parameter type 2 - Cooling Source: The sensitiv-
ity due to cooling source parameters arises pre-
dominately from the coefficient of performance
(COP) ratings for the three AHUs and the gas
consumption (both sum and peak) in the high per-
formance model. This may occur because in the
high performance model, chilled beams are used
in the cooling season and there is humidity con-
trol to avoid condensation on the chilled beam
surface.
There is also a large connection between cool-
ing source parameters and electricity usage in
the nominal model. The specific parameter that
comes into play is the COP of the DX system be-
cause all of the cooling is handled by DX coils. In
the high performance model, only the dedicated
outdoor air system (DOAS) system use DX coil,
most of cooling is handled by GSHP and chilled
beams.

• Parameter type 3 - Air Handling Unit: The sea-
sonal reset supply air temperature supply set-
points for the three AHUs are the only set of pa-
rameters from the air handling unit that influences
the variance in the consumption variables. The
Supply air temp setpoints have a big impact on
the gas burner energy usage in both cases. The
gas burner in the AHU is the only HVAC equip-
ment using gas in the high performance case,
while there is a gas boiler in the nominal case
for providing hot water to the reheat coil in ter-
minal VAV boxes. For both cases, HVAC equip-
ment consumes most of the gas. However, HVAC
equipment only consumes less than 35% electric-
ity in both cases (nominal - 24%, high perfor-
mance - 32%). This can explain why gas con-
sumption is more sensitive than electricity con-
sumption.

• Parameter type 4 - Primary Mover - Air Loop:
The efficiencies and pressure rise for the fans is
the most influential parameters in the air loop. In
the high performance model, the size of fan in
AHU is smaller since the AHU is only handling
ventilation (DOAS), fan energy consumption is a
very small portion of total energy consumption.

• Parameter type 5 - Primary Mover - Water Loop:
The parameters that influence uncertainty in the
water loop do not influence the uncertainty in the
facility outputs very much and this may be due
to the relatively low energy consumption on the
primary water loop. For instance, the pump us-
age is only 0.045% of total facility electricity in
the nominal model and 6.45% for the high per-

formance model. A few parameters in the water
loop for the high performance model (hot water
pump rated head, condenser pump rated head and
motor efficiency) are still small but may be due to
the increased pumping due to the chilled beams.

• Parameter type 6 - Terminal Unit: In the nomi-
nal model, outdoor air flow per zone was found
to be most significant parameters affecting gas
consumption (both yearly sum and peak). The
high performance model has very small influ-
ences from both the induction coefficient for one
of the chilled beams as well as the radiant floor
heating setpoint.

• Parameter type 7 - Zone External: The maximum
dry-bulb temperature for the heating design day
is the most significant parameter for the nomi-
nal model (this shows up in all four consump-
tion cases). Followed closely behind this is the
ground temperatures for January, June, and July
(since ground temperatures have significant im-
pact on building loads, and building loads in these
three months are relatively large). In the high per-
formance model, these design day conditions do
not have any influence. In the high performance
model, the building envelope is very good, and
therefore outside air temperature will not have
significant impact on the system performance. In
addition to this, there is only a slight contribution
from some of the envelope parameters like the
roof insulation, dirt correction factor on the win-
dows, and water temperature of the water main.

• Parameter type 8 - Zone Internal: The parame-
ters that influence the electrical consumption in
the nominal model are the lighting schedules, the
receptacle schedules and the elevator schedules
(in EnergyPlus a maximum power/load level is
defined and then a fraction of this level is set up
in the time schedule). For the high performance
model, the same schedules were found to be the
most influential. Due to high performance en-
velope, uncertainty in the energy consumption is
dominated by the internal load more than in the
nominal design case.

• Parameter type 9 - Zone Setpoint: The zone heat-
ing and cooling setpoint schedules have an al-
most equal contribution to the variance in both
the peak and sum gas usage for the nominal build-
ing. These schedules do not show up in the high
performance building which may be because ra-
diation heat transfer is dominant in the high per-
formance model.

• Parameter type 10 - Sizing Parameter: The nomi-
nal model has significant influence in its variance
from zone design supply air temperatures which
affects the gas consumption. This is also the case
for the high performance model, but to a lesser
degree. This is because in the high performance
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model, most of load is handled by a hydronic sys-
tem (e.g, radiant heating floor in heating mode,
chilled beam in cooling mode), and the air sys-
tem (e.g. DOAS) affects the overall system per-
formance to a lesser extent.

CONCLUSION
In this paper we performed large scale uncertainty and
sensitivity analysis on two similar building designs
using recently developed rapid sensitivity and uncer-
tainty analysis tools. The first design was a standard
medium sized office building and the second design
is the same building with high performance features
substituted (better envelope and more efficient equip-
ment). In both models, almost all parameters were
considered uncertain (700-900), and thousands of sim-
ulations were performed to quantify how this uncer-
tainty influences the predicted energy consumption. It
was found that the high performance building is more
robust to parameter uncertainty due to better specifi-
cation of the envelope and the equipment, while con-
sidering their interactions carefully during design. It
was also found that internal zonal loads (lighting, plug
loads, etc.) are dominant parameters for propagating
uncertainty to the output, particularly for cooling en-
ergy consumption. This is more noticeable in the high
performance model due to the energy efficient enve-
lope that manages external loads very well and leaves
the system more sensitive to internal loads. This type
of analysis is useful not only for building design, but
for its operation as well as it identifies which control
parameters or schedules influence energy consumption
the most.
There is an ongoing effort to make this process more
manageable with respect to the actual building de-
sign process. In this paper we studied on the order
of 1000 uncertain parameters. This analysis is being
performed on other models of different building types.
There is an effort to collect all of these results into a
database that summarizes the top 10% most influential
parameters in each building type. Knowing this infor-
mation would give the designer a list of the most im-
portant parameters in their design model and acceler-
ate the analysis, making it more manageable and scal-
able.
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Cóstola, D., Blocken, B., Ohba, M., and Hensen, J.
2010. Uncertainty in airflow rate calculations due
to the use of surface-averaged pressure coefficients.
Energy and Buildings, 42:881–888.

de Wit, S. and Augenbroe, G. 2002. Analysis of un-
certainty in building design evaluations and its im-
plications. Energy and Buildings, 34:951–958.

Deru, M., Field, K., Studer, D., Benne, K., Griffith,
B., Torcellini, P., Halverson, M., Winiarski, D., Liu,
B., Rosenberg, M., Huang, J., Yazdanian, M., and
Crawley, D. 2009. Doe commercial building re-
search benchmarks for commercial buildings. Tech-
nical report, Washington, DC: U.S. Department of
Energy, Energy Efficiency and Renewable Energy,
Office of Building Technologies.

Dominguez-Munoz, F., Anderson, B., Cejudo-Lopez,
J., and Carrillo-Andres, A. 2009. Uncertainty in
the thermal conductivity of insulation materials. In
Eleventh International IBPSA Conference, pages
1008–1013.

Eisenhower, B., O’Neill, Z., Fonoberov, V. A., and
Mezic, I. 2011. Uncertainty and sensitivity de-
composition of building energy models. Journal
of Building Performance Simulation, Available On-
line, In Press.

Firth, S., Lomas, K., and Wright, A. 2010. Targeted
household energy-efficiency measures using sensi-

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 2791 -



tivity analysis. Building Research and Information,
38(1):25–41.

Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen,
H., Seinre, E., and Thomas, S. 2009. Application of
sensitivity analysis in design of sustainable build-
ings. Renewable Energy, 34:2030–2036.

Lam, J., Wan, K., and Yang, L. 2008. Sensitiv-
ity analysis and energy conservation measures im-
plications. Energy Conversion and Management,
49:3170–3177.

Li, G., Wang, S.-W., Rabitz, H., Wang, S., and Jaffe,
P. 2002. Global uncertainty assessments by high di-
mensional model representations (hdmr). Chemical
Engineering Science, 57:4445–4460.

Lomas, K. J. and Eppel, H. 1992. Sensitivity analy-
sis techniques for building thermal simulation pro-
grams. Energy and Buildings, 19:21–44.

Macdonald, I. 2002. Quantifying the effects of uncer-
tainty in building simulation. PhD thesis, Univer-
sity of Strathclyde, Department of Mechanical En-
gineering.

Mara, T. and Tarantola, S. 2008. Application of global
sensitivity analysis of model output to building ther-
mal simulations. Building Simulation, 1:290–302.

Moon, H. 2005. Assessing Mold Risks in Buildings
under Uncertainty. PhD thesis, Georgia Institute of
Technology.

ONeill, Z. D., Eisenhower, B., Yuan, S., Bailey, T.,
Narayanan, S., and Fonoberov, V. 2011. Modeling
and calibration of energy models for a dod building.
ASHRAE Transactions, 117(2).

Pollack, M., Roderick, Y., McEwan, D., and Wheatley,
C. 2009. Building simulation as an assisting tool in
designing an energy efficient building: A case study.
In Eleventh International IBPSA Conference, pages
1191–11980.

Rahni, N., Ramdani, N., Candau, Y., and Dalicieux, P.
1997. Application of group screening to dynamic
building energy simulation models. Journal of Sta-
tistical Computation and Simulation, 57(1):285–
304.

Saltelli, A., Chan, K., and Scott, E. M. 2000. Sensitiv-
ity Analysis. Wiley.

Smola, A. and Scholkopf, B. 2004. A tutorial on sup-
port vector regression. Statistics and Computing,
14:199–222.

Sobol, I. and Kucherenko, S. 2009. Derivative
based global sensitivity measures and their link with
global sensitivity indices. Mathematics and Com-
puters in Simulation, 79:3009–3017.

Soratana, K. and Marriott, J. 2010. Increasing innova-
tion in home energy efficiency: Monte carlo simula-
tion of potential improvements. Energy and Build-
ings, 42(6):828–833.

Spitler, J., Fisher, D., and Zietlow, D. 1989. A primer
on the use of influence coefficients in building simu-
lation. Building Simulation ’89 Transactions, pages
299–304.

Struck, C., Hensen, J., and Kotek, P. 2009. On the
application of uncertainty and sensitivity analysis
with abstract building performance simulation tools.
Journal of Building Physics, 33(1):5–27.

Thornton, B., Wang, W., Lane, M., Rosenberg, M.,
and Liu, B. 2009. Technical support document:
50% energy savings design technology packages
for medium office buildings. Technical Report
PNNL-18774, Pacific Northwest National Labora-
tory, Richland, WA.

Venancio, R. and Pedrini, A. 2009. The influence
of design decisions on energy consumption and
thermal performance: The case of UFRN campus,
brazil. In Eleventh International IBPSA Conference,
pages 136–143.

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 2792 -




