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Abstract

For asymptotically periodic systems, a powerful (phase) reduction of the dynamics is obtained by

computing the so-called isochrons, i.e. the sets of points that converge toward the same trajectory

on the limit cycle. Motivated by the analysis of excitable systems, a similar reduction has been

attempted for non-periodic systems admitting a stable fixed point. In this case, the isochrons

can still be defined but they do not capture the asymptotic behavior of the trajectories. Instead,

the sets of interest—that we call “isostables”—are defined in literature as the sets of points that

converge toward the same trajectory on a stable slow manifold of the fixed point. However, it

turns out that this definition of the isostables holds only for systems with slow-fast dynamics.

Also, efficient methods for computing the isostables are missing.

The present paper provides a general framework for the definition and the computation of the

isostables of stable fixed points, which is based on the spectral properties of the so-called Koopman

operator. More precisely, the isostables are defined as the level sets of a particular eigenfunction of

the Koopman operator. Through this approach, the isostables are unique and well-defined objects

related to the asymptotic properties of the system. Also, the framework reveals that the isostables

and the isochrons are two different but complementary notions which define a set of action-angle

coordinates for the dynamics. In addition, an efficient algorithm for computing the isostables is

obtained, which relies on the evaluation of Laplace averages along the trajectories. The method

is illustrated with the excitable FitzHugh-Nagumo model and with the Lorenz model. Finally,

we discuss how these methods based on the Koopman operator framework relate to the global

linearization of the system and to the derivation of special Lyapunov functions.
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I. INTRODUCTION

Among the abundant literature on networks of coupled systems, a vast majority of studies

focus on asymptotically periodic systems (i.e. coupled oscillators) while only a few consider

coupled systems characterized by a stable fixed point. This is particularly surprising since the

latter can exhibit excitable regimes that are relevant in many situations (e.g. neuroscience

[14]). One reason for this disproportion is probably related to phase reduction methods.

For asymptotically periodic systems, powerful phase reduction methods turn the (complex,

high-dimensional) system into a phase oscillator evolving on the circle, making the analysis

of complex networks more amenable to mathematical analysis [2, 16, 31]. In contrast, in

the case of systems admitting a stable fixed point, the development of equivalent reduction

methods is more recent and a general framework is still in its infancy.

The goal of reduction methods is to assign the same value to a (codimension-1) set of

initial conditions that are characterized by the same asymptotic behavior, in turn designing

a coordinate on the state space. In the case of asymptotically periodic systems, these sets of

identical (phase) value are the so-called isochrons, which approach the same trajectory on

the limit cycle [32]. This concept has been recently extended to heteroclinic cycles [29]. For

systems admitting a stable focus, the isochrons (or isochronous sections) can still be defined

as the sets of points that are invariant under a particular return map [9, 28]. This notion is of

particular interest in the case of weak foci (i.e. with purely imaginary eigenvalues) and non-

smooth vector fields, where the existence of isochrons is a non-trivial problem related to the

stability of the fixed point. However, the isochrons provide in this case no information on the

asymptotic convergence of the trajectories toward the fixed point and are not useful for the

system reduction. (Note also that they do not exist for fixed points with real eigenvalues.)

Therefore, the isochrons must be complemented by another family of sets: the so-called

isostables.

Excitable systems are characterized by slow-fast dynamics with a stable fixed point and,

in the plane, they admit a particular trajectory—the transient attractor or slow manifold—

that temporarily attracts all the trajectories as they approach the fixed point. In this case,

the isostables are naturally defined as the sets of points that converge to the same trajectory

on the transient attractor [24]. (Note that these sets are called “isochrons” in [24], but we

feel that the proper sense is “isostables” instead, in order to avoid the confusion with the
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isochrons of foci studied in [9, 28].) For non-planar systems possessing a multi-dimensional

slow manifold or center manifold, a (more rigorous) framework was previously developed

in [4, 26]. In that work, the sets of interest (called “projection manifolds” in [26]) are

closely related to the notion of isostable and correspond to the invariant fibers of the (slow

or center) manifold, i.e. the sets of initial conditions characterized by the same long-term

behavior on that manifold. Through the reduction obtained with the isostables, excitable

systems have been studied in various contexts (sensitivity to periodic pulses [3, 13, 25],

network synchronization [17], etc.).

Since the isostables provide a characterization of the system dynamics around the fixed

point, their computation is also desirable for systems which do not contain multiple time

scales (i.e. with no slow or center manifold). For instance, the computation of the isosta-

bles can be useful to achieve an optimal control that minimizes the time of convergence

toward a steady state or to investigate the delay of convergence to a stable equilibrium

in decision-making models [30]. But in these cases, a more general framework is required,

which defines the isostables as particular (and unique) codimension-1 sets capturing the

asymptotic behavior of the system. In addition, the computation of the isostables through

backward integration [24] or normal form of the dynamics [4] is limited to a neighborhood

of the slow manifold. In this context, an efficient method for computing the isostables in

the entire basin of attraction is also missing.

In this paper, we propose a general framework for the reduction of systems admitting a

stable fixed point, which is not limited to excitable systems with slow-fast dynamics. This

approach is based on the spectral properties of the so-called Koopman operator [19, 21].

More precisely, we propose a general and unique definition of the isostables in terms of a

particular eigenfunction of the Koopman operator. In addition, the framework yields an

efficient method to compute the isostables in the whole basin of attraction. This method

relies on the estimation of Laplace averages along the trajectories and can be seen as an

extension of the approach recently developed in [18] to compute the isochrons of limit cycles.

Viewed through the Koopman operator framework, the isostables and the isochrons ap-

pear to be two different but complementary concepts. On the one hand, they are different

since they are related to the absolute value and to the argument, respectively, of the eigen-

function of the Koopman operator. On the other hand, they are complementary in the sense

that they define a set of action-angle coordinates for the system dynamics. This action-angle
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representation is related to important properties of the isotables, such as the global lineariza-

tion of the dynamics and the derivation of special Lyapunov functions, that we discuss in

the paper.

The paper is organized as follows. In Section II, we introduce the concept of isostable in

the context of the Koopman operator framework, both for linear and nonlinear systems. We

also propose a rigorous definition of the isostables and discuss their main properties. The

relation between the isostables and the Laplace averages is developed in Section III. This

provides an efficient algorithm for the computation of the isostables which is illustrated in

Section IV for the excitable FitzHugh-Nagumo model and the Lorenz model. Finally, the

related concepts of action-angle representation, global linearization, and Lyapunov function

are discussed in Section V. Section VI gives some concluding remarks.

II. ISOSTABLES AND KOOPMAN OPERATOR

The isostables of an asymptotically stable fixed point x∗ are the sets of points that share

the same asymptotic convergence toward the fixed point. More precisely, trajectories with

an initial condition on an isostable Iτ0 simultaneously intersect the successive isostables Iτn

after a time interval τn − τ0, thereby approaching the fixed point synchronously (Figure

1). The isostables partition the basin of attraction of the fixed point and define a new

coordinate τ that satisfies τ̇ = 1 along the trajectories. Or equivalently, they define a

coordinate r , exp(λτ) with the linear dynamics ṙ = λr. This new coordinate can be used

in a context of model reduction.

At this point, it is important to remark that this (intuitive) definition of isostable is not

complete. Indeed, there exist an infinity of families of sets that satisfy the above-described

property. But among these families, only one defines a smooth change of coordinates and

is relevant to capture the asymptotic behavior of the trajectories. In this section, we will

give a rigorous definition of this unique family of isostables. To do so, we first consider the

particular case of linear systems. Then, we extend the concept to nonlinear systems, using

the Koopman operator framework.
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Figure 1: Trajectories starting from the same isostable Iτ0 are characterized by the same con-

vergence toward the fixed point. They simultaneously intersect the successive isostables Iτn and

approach the fixed point synchronously.

A. Linear systems

Consider the stable linear system

ẋ = Ax , x ∈ R
n , (1)

and assume that each eigenvalue λj = σj + iωj of the matrix A is of multiplicity 1, has

a strictly negative real part σj < 0, and corresponds to the right eigenvector vj (which is

normalized, that is, ‖vj‖ = 1). By convention, we sort the eigenvalues so that λ1 is the

eigenvalue related to the “slowest” direction, that is

σj ≤ σ1 < 0 , j = 2, . . . , n . (2)

The flow induced by (1) is the continuous-time map φ : R×Rn 7→ Rn, that is, φ(t, x) is the

solution of (1) with the initial condition x. For linear systems, the flow is given by

φ(t, x) =
n
∑

j=1

sj(x)vj eλjt , (3)

where sj(x) are the coordinates of the vector x in the basis (v1, . . . , vn). The function sj(x)

can be computed as the inner product sj(x) = 〈x, ṽj〉, with ṽj the eigenvectors of the adjoint

A∗, associated with the eigenvalues λc
j = σj −iωj and normalized so that 〈vj , ṽj〉 = 1. (Note

that sj(x) is an eigenfunction of the so-called Koopman operator; see Section II B.)

Next, we show that the isostables of linear systems are simply defined as the level sets of

|s1(x)| = |〈x, ṽ1〉|. We consider separately the cases λ1 real (with other eigenvalues real or

complex) and λ1 complex (with other eigenvalues real or complex).
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1. Real eigenvalue λ1

When the eigenvalue λ1 = σ1 is real, the trajectories induced by the flow (3) asymp-

totically approach the fixed point along the slowest direction v1 (since the eigenvalues

are sorted according to (2)). Then, the trajectories characterized by the same coefficient

|s1(x)| , exp(σ1τ(x)) exhibit the same asymptotic convergence toward the fixed point:

φ(t, x) = v±
1 eσ1(t+τ(x)) +

n
∑

j=2

sj(x) vj exp(λjt) ≈ v±
1 eσ1(t+τ(x)) as t → ∞ , (4)

where the notation v±
1 implies that either the vector v1 or −v1 must be considered. The

initial conditions x of these trajectories therefore belong to the same isostable

Iτ =







x ∈ R
n
∣

∣

∣

∣

x = eσ1τ v±
1 +

n
∑

j=2

αj vj , ∀αj ∈ R







, (5)

which is obtained by considering t = 0 in (4). In this case, the isostables are the (n − 1)-

dimensional hyperplanes parallel to vj for all j > 2 (or equivalently, perpendicular to ṽ1)

(Figure 2).

(a) (b)

Figure 2: (a) The isostables of linear systems with a real eigenvalue λ1 are the hyperplanes spanned

by the eigenvectors vj , with j > 2. The particular isostable I∞ contains the fixed point. (b) For

two-dimensional systems (or in the plane v1 − v2), the isostables are pairs of parallel lines.
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2. Complex eigenvalue λ1

A system having a complex eigenvalue λ1 can be transformed through the use of action-

angle coordinates. Then, the isostables are obtained from the isostables (5) of the subsystem

which is related to the action coordinates and which is only characterized by real eigenvalues

σj . Consider a linear coordinate transformation that expresses the dynamics (1) in the

(spectral) basis given by the vectors vj (for λj real) and ℜ{vj}, −ℑ{vj} (for λj = λc
j+1

complex). (Note that ℜ{vj} and ℑ{vj} are not parallel since the two eigenvectors vj

and vj+1 are independent.) This is performed by diagonalizing A and by using the linear

transformation

T =







1 1

−i i







in each subspace spanned by a pair of complex eigenvectors (vj ,vj+1). The dynamics become































ẏj = σjyj j ∈ {i ∈ {1, . . . , n}|λi ∈ R} ,








ẏj

ẏj+1









=









σj −ωj

ωj σj

















yj

yj+1









j ∈ {i ∈ {1, . . . , n}|λi = λc
i+1 /∈ R} ,

with the initial conditions yj(0) = sj(x0) (for λj ∈ R) and (yj(0), yj+1(0)) =

(2ℜ{sj(x0)}, 2ℑ{sj(x0)}) (for λj = λc
j+1 /∈ R). Then, using the variables rj = yj (for

λj ∈ R) and the polar coordinates (yj, yj+1) = (rj cos(θj), rj sin(θj)) (for λj = λc
j+1 /∈ R), we

obtain the canonical equations

ṙj = σjrj j ∈ {i ∈ {1, . . . , n}|λi ∈ R or λi = λc
i+1 /∈ R} , (6)

θ̇j = ωj j ∈ {i ∈ {1, . . . , n}|λi = λc
i+1 /∈ R} . (7)

The initial conditions are given by rj(0) = sj(x0) (for λj ∈ R) and (rj(0), θj(0)) =

(2|sj(x0)|,∠sj(x0)) (for λj = λc
j+1 /∈ R), where ∠ denotes the argument of a complex

number.

According to (6)-(7), the variables rj and θj can be interpreted as the action-angle co-

ordinates of the system (see [1]) and the convergence toward the fixed point is captured by

the (action) variables rj . Therefore, the isostables of (1) correspond to the isostables of the

linear system (6) with the real eigenvalues σj . Since the highest eigenvalue is σ1, the results

of Section II A 1 imply that the isostables are characterized by a constant value |r1|, that
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is, they are the level sets of |s1(x)|. Denoting r1 = 2|s1(x)| , exp(σ1τ(x)) and using an

expression similar to (5), we obtain (in the variables yi)

Iτ =







y ∈ R
n

∣

∣

∣

∣

y = (cos(θ)e1 + sin(θ)e2)eσ1τ +
n
∑

j=3

αj ej , ∀αj ∈ R, ∀θ ∈ [0, 2π)







,

where ej are the unit vectors of Rn, or equivalently (in the variables xi)

Iτ =







x ∈ R
n
∣

∣

∣

∣

x = (cos(θ)a + sin(θ)b)eσ1τ +
n
∑

j=3

αj vj , ∀αj ∈ R, ∀θ ∈ [0, 2π)







, (8)

with a = ℜ{v1} and b = −ℑ{v1}. In this case, the isostables are the (n − 1)-dimensional

cylindrical hypersurfaces parallel to vj for all j ≥ 3. The intersection of an isostable with

the 2-dimensional plane spanned by (a, b) (i.e., the base of the cylinder) is an ellipse (Figure

3). Indeed, a linear transformation turns the circle in the variables yj into an ellipse in the

variables xj .

The trajectories starting from the same isostable converge to the fixed point along a spiral

characterized by the vectors (a, b), according to

φ(t, x) ≈ (a cos(ω1t + θ(x)) + b sin(ω1t + θ(x))) eσ1(t+τ(x)) as t → ∞ ,

with exp(σ1τ(x)) = 2|s1(x)| and θ(x) = ∠s1(x). Note that the phase—or angle coordinate—

θ is related to the notion of isochron (see e.g. [9, 28] and Section V).

(a) (b)

Figure 3: (a) The isostables of linear systems with a complex eigenvalue λ1 are cylindrical hyper-

surfaces spanned by vj for all j ≥ 3. (b) For two-dimensional linear systems (or in the plane a−b),

the isostables are ellipses with constant axes.
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The expressions (5) and (8) provide a unique definition of the isostables in the case of

linear systems, when λ1 is real and when λ1 is complex, respectively. Since v±
1 = v1 exp(iθ)

with θ = {0, π} and cos(θ)a + sin(θ)b = ℜ{v1 exp(iθ)}, these two definitions can be sum-

marized in a single definition.

Definition 1 (Isostables of linear systems). For the system (1), the isostable Iτ associated

with the time τ is the (n − 1)-dimensional manifold

Iτ =







x ∈ B(x∗)

∣

∣

∣

∣

x = ℜ
{

v1 eiθ
}

eσ1τ +
n
∑

j=j

αj vj , ∀αj ∈ R, ∀θ ∈ Θ







,

with Θ = {0, π} and j = 2 if λ1 ∈ R, and Θ = [0, 2π) and j = 3 if λ1 /∈ R.

B. Nonlinear systems

Now, we consider a nonlinear system

ẋ = F(x) , x ∈ R
n (9)

where F is an analytic vector field, which admits a stable fixed point x∗ with a basin of

attraction B(x∗) ⊆ Rn. In addition, we assume that the Jacobian matrix J computed at

x∗ has n distinct (nonresonant) eigenvalues λj = σj + iωj characterized by strictly negative

real parts σj < 0 and sorted according to (2). (For unstable fixed points or for multiple

eigenvalues, see Remark 1 and Remark 2, respectively.)

The isostables of linear systems have been defined as the level sets of the coefficient s1(x)

that appears in the expression of the flow (3). For nonlinear systems, an expression of the

flow similar to (3) can be obtained through the framework of Koopman operator [19, 21]. The

Koopman semigroup of operators U t describes the evolution of a (vector-valued) observable

f : Rn 7→ Cm along the trajectories of the system and is rigorously defined as the composition

U tf(x) = f ◦φ(t, x). Throughout the paper, we will make no assumption on the observables,

except that they are analytic in the neighborhood of the fixed point. In the space of analytic

observables, the operator has only a point spectrum and its spectral decomposition yields

[20]

U tf(x) =
∑

{k1,...,kn}∈Nn

sk1
1 (x) · · · skn

n (x) vk1···kn
e(k1λ1+···+knλn)t . (10)
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A detailed derivation of the decomposition in the case of a stable fixed point is given in Ap-

pendix A. The functions sj(x), j = 1, . . . , n, are the smooth eigenfunctions of U t associated

with the eigenvalues λj, i.e.

U tsj(x) = sj(φ(t, x)) = sj(x)eλjt , (11)

and the vectors vk1···kn
are the so-called Koopman modes [27], i.e. the projections of the

observable f onto sk1
1 (x) · · · skn

n (x). For the particular observable f(x) = x, (10) corresponds

to the expression of the flow and can be rewritten as

φ(t, x) = U tx = x∗ +
n
∑

j=1

sj(x)vj eλjt +
∑

{k1,...,kn}∈Nn
0

k1+···+kn>1

sk1
1 (x) · · · skn

n (x) vk1···kn
e(k1λ1+···+knλn)t .

(12)

The first part of the expansion is similar to the linear flow (3). The eigenvalues λj and the

Koopman modes vj are the eigenvalues and eigenvectors of J, respectively. Although the

eigenfunctions sj(x) are not computed as the inner products 〈x, ṽj〉 as in the linear case,

they can be interpreted as the inner products 〈z, ṽj〉, where z is the initial condition of a

virtual trajectory evolving according to the linearized dynamics ż = Jz and characterized

by the same asymptotic evolution as φ(t, x) [15]. The other terms in (12) do not appear in

the expression of the linear flow (3) and account for the transient behavior of the trajectories

owing to the nonlinearity of the dynamics.

The isostables can be rigorously defined as the level sets of the absolute value of the

eigenfunction |s1(x)|. Indeed, the asymptotic evolution of the flow (12) is dominated by

the first mode associated to λ1. Then, a same argument as in Section II A shows that the

points x characterized by the same value |s1(x)| are the initial conditions of trajectories that

converge synchronously to the fixed point, with the evolution

φ(t, x) ≈















x∗ + v±
1 eσ1(t+τ(x)) , eσ1τ(x) = |s1(x)| , λ1 ∈ R ,

x∗ + ℜ
{

v1 ei(ω1t+θ(x))
}

eσ1(t+τ(x)) , eσ1τ(x) = 2|s1(x)| , θ(x) = ∠s1(x) λ1 /∈ R .

(13)

We are now in position to propose a general definition for the isostables of a fixed point,

which is valid both for linear and nonlinear systems and which is reminiscent of the usual

definition of isochrons for limit cycles [10, 32].
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Definition 2 (Isostables). For the system (9), the isostable Iτ of the fixed point x∗, asso-

ciated with the time τ , is the (n − 1)-dimensional manifold

Iτ =
{

x ∈ B(x∗)
∣

∣

∣

∣

∃ θ ∈ Θ s.t. lim
t→∞

e−σ1t
∥

∥

∥φ(t, x) − x∗ − ℜ
{

v1 ei(ω1t+θ)
}

eσ1(t+τ)
∥

∥

∥ = 0
}

,

with Θ = {0, π} and ω1 = 0 if λ1 ∈ R and Θ = [0, 2π) if λ1 /∈ R.

The reader will easily verify that, for all x belonging to the same isostable, Definition 2

imposes the same value |s1(x)| in the decomposition of the flow (12) and the same asymptotic

behavior (13). Note that without the multiplication by the increasing exponential e−σ1t, one

would have Iτ = B(x∗) ∀τ since φ(t, x) − x∗ → 0 as t → ∞ for all x ∈ B(x∗).

Except for the case of multiple eigenvalues, for which v1 might not be unique (see Remark

2), the isostables are uniquely defined through Definition 2. Uniqueness of the isostables also

follows from the fact that the Koopman operator has a unique eigenfunction s1(x) which is

continuously differentiable in the neighborhood of the fixed point. Since it is precisely this

eigenfunction s1(x) that appears in (12), the isostables are the only sets that are relevant

to capture the asymptotic behavior of the trajectories.

Remark 1 (Unstable fixed point). Definition 2 is easily extended to unstable fixed points

characterized by σj > σ1 > 0 for all j. Indeed, the isostables are still given by Definition

2, where the limit t → ∞ is replaced by t → −∞, that is, one considers the flow φ(−t, x)

induced by the (stable) backward-time system. In this case, the isostables are related to the

unstable eigenfunction s1(x) of the Koopman operator.

Remark 2 (Multiple eigenvalues). When the eigenvalue λ1 has a multiplicity m > 1, the

fixed point is either a star node (m linearly independent eigenvectors) or a degenerate node

(m linearly dependent eigenvectors). In the case of a star node, Definition 2 is not unique

since it depends on the direction of the eigenvector v1 (in other words, a C1 eigenfunction

of the Koopman operator corresponding to the eigenvalue λ1 is not unique). Actually, v1

should be replaced in Definition 2 by any linear combination of m orthonormal eigenvectors

of λ1, a situation where the isostables lying in the vicinity of the fixed point correspond to

cylindrical hypersurfaces whose intersection with the hyperplane spanned by the eigenvectors

of λ1 is a hypersphere. In the case of a degenerate node, the asymptotic evolution toward the

fixed point is dominated by the (slowest) term s1(x)v1 tm−1 exp(σ1t). Then, the increasing

exponential exp(−σ1t) in Definition 2 must be replaced by t1−m exp(−σ1t).
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C. Some remarks on the isostables

Equivalent definitions for excitable systems. In [24], the authors considered two-

dimensional excitable systems characterized by a transient attractor (i.e. slow manifold)

which attracts all the trajectories as they approach the fixed point. They defined the isosta-

bles (they actually used the term “isochrons”, see Section V A) as the sets of points that

converge to the same trajectory on the transient attractor. This definition is equivalent to

Definition 2 since both impose that trajectories on the same isostable have the same asymp-

totic behavior (see also Section IV A). However, the definition of [24] is qualitative since no

trajectory effectively reaches the transient attractor (which may even lose its normal stabil-

ity property near a fixed point with complex eigenvalues). Also, it is valid only if the system

admits a transient attractor induced by the slow-fast dynamics. In contrast, Definition 2 is

more general and does not rely on the existence of a transient attractor.

For systems with a slow (or center) manifold, the “projection manifolds” studied in [4, 26]

are related to the isostables. They are the sets of initial conditions for which the trajectories

share the same long-term behavior on the slow manifold. In addition, they can be obtained

through the normal form of the dynamics [4]. If the slow manifold is one-dimensional and

if λ1 is real, the projection manifolds are identical to the isostables. Otherwise, they do not

exactly correspond to the isostables since they are not related to the slowest direction v1

only and are not of codimension-1.

Isostables and flow. The flow φ(∆t, ·) maps the isostable Iτ to the isostable Iτ+∆t, for

all ∆t ∈ R (as explained in the beginning of Section II). Indeed, if x ∈ Iτ , Definition 2

implies that

lim
t→∞

e−σ1t
∥

∥

∥φ(t, x) − x∗ − ℜ
{

v1 ei(ω1t+θ)
}

eσ1(t+τ)
∥

∥

∥ = 0

for some θ ∈ Θ. Using the substitution t = t′ + ∆t, we have

lim
t′→∞

e−σ1t′

∥

∥

∥φ (t′, φ(∆t, x)) − x∗ − ℜ
{

v1 ei(ω1t′+θ′)
}

eσ1(t′+τ+∆t)
∥

∥

∥ = 0 ,

with θ′ = θ + ω1∆t ∈ Θ, so that φ(∆t, x) ∈ Iτ+∆t.

Local geometry near the fixed point. The isostables close to the fixed point have a geom-

etry similar to the isostables of the linearized dynamics, i.e. parallel hyperplanes (λ1 ∈ R)

or cylindrical hypersurfaces with constant axes of the elliptical sections (λ1 /∈ R) (see Sec-

tion II A). This follows from the fact that, in the vicinity of the fixed point, the flow (12)
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and the flow induced by the linearized dynamics are (approximately) equal, so that their

eigenfunctions s1(x) have (approximately) the same value for ‖x − x∗‖ ≪ 1 (see also (A4)

in Appendix A).

Invariant fibration. When the eigenvalue λ1 is real, the isostables are the invariant fibers

of the 1-dimensional invariant manifold V defined as the trajectory associated with the slow

direction v1 (i.e. the transient attractor in the case of slow-fast systems). Given their

local geometry, it is clear that the isostables near the fixed point are the fibers defined by

the splitting N ⊕ TV , where N = span{v2, . . . , vn} and TV = span{v1}. Moreover, it

follows from the invariance property of the isostables that this local fibration is naturally

extended to the whole invariant manifold V by backward integration of the flow. Provided

that σ2 < σ1, the normal hyperbolicity of V implies that the isostables are characterized by

smoothness properties and persist under a small perturbation of the vector field [5, 12]. In

addition, this description also implies the uniqueness of the concept of isostables. Note that

Definition 2 is recovered in [6], Theorem 3, and corresponds to the property that the points

on the same fiber converge to a trajectory on V with the fastest rate.

When λ1 is complex, however, the isostables cannot be interpreted as the invariant fibers

of an invariant manifold. They are homeomorphic to a circle (or to a cylinder) and cannot be

the sets of points converging to the same trajectory, since the flow is continuous. Moreover,

in the neighborhood of the fixed point, one observes no particular one-dimensional invariant

manifold (e.g. a slow manifold) that is tangent to the ℜ{v1} − ℑ{v1} plane. In that case,

the only definition of the isostables is in terms of an eigenfunction of the Koopman operator.

Extension to other eigenfunctions. The isostables Iτ are related to the first eigenfunc-

tion s1(x) of the Koopman operator, but the concept can be directly generalized to other

eigenfunctions. Namely, the sets I
(j)

τ (j) , j ∈ J = {i ∈ {1, . . . , n}|λi ∈ R or λi = λc
i+1 /∈ R},

are obtained by considering the level sets of |sj(x)|. The extension is useful to derive an

action-angle coordinates representation of the system, to perform a global linearization of

the dynamics (see Section V B), or to compute the (un)stable manifold of an attractor.

The intersection between the sets I
(j)

τ (j), with j ≤ j, is defined as the generalization of
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Definition 2

⋂

j∈J

j≤j

I
(j)

τ (j) =







x ∈ B(x∗)

∣

∣

∣

∣

∃ θj ∈ Θj s.t.

lim
t→∞

e−σ
j
t

∥

∥

∥

∥

∥

∥

φ(t, x) − x∗ −
∑

j∈J

j≤j

ℜ
{

vj ei(ωjt+θj)
}

eσj(t+τ (j))

∥

∥

∥

∥

∥

∥

= 0







,

(14)

with Θj = {0, π} if λj ∈ R and Θj = [0, 2π) if λj /∈ R. When τ (j) = ∞ for all j < j ∈ J ,

(14) is equivalent to Definition 2, so that it can be interpreted as an isostable for the system

restricted to the invariant manifold Mj =
⋂

j∈J ,j<j I
(j)

τ (j)=∞
. (The manifold Mj is associated

with the fast directions vj , j = j, . . . , n.) In addition, if λj ∈ R, (14) defines a codimension-

j invariant fibration of the invariant manifold Vj =
⋂

j∈J ,j>j I
(j)

τ (j)=∞
. (The manifold Vj is

associated with the slow directions vj , j = 1, . . . , j.) If Vj is a slow manifold, then the

fibration (14) corresponds to the projection manifolds considered in [4, 26]. Note that the

family of manifolds Vj generalizes the notion of slow manifold observed for systems with

slow-fast dynamics.

III. LAPLACE AVERAGES

In this section, we show that the isostables can be obtained through the computation of

the so-called Laplace averages. The Laplace averages of a scalar observable f : Rn 7→ C are

given by

f ∗
λ(x) = lim

T →∞

1

T

∫ T

0
(f ◦ φt)(x) e−λt dt , (15)

with φt(x) = φ(t, x) and λ ∈ C. (The observable f has to satisfy some conditions which

ensure that the averages exist.) When it exists and is nonzero for some λ and f , the Laplace

average f ∗
λ(x) corresponds to the eigenfunction of the Koopman operator associated with

the eigenvalue λ [20]. Indeed, one easily verifies that

U t′

f ∗
λ(x) = lim

T →∞

1

T

∫ T

0
(f ◦ φt+t′)(x) e−λt dt

= eλt′

lim
T →∞

1

T

∫ T +t′

t′

(f ◦ φt)(x) e−λt dt

= eλt′

f ∗
λ(x)

where the second equality is obtained by substitution. For systems with a stable fixed point,

the Laplace average f ∗
λ1

(x) corresponds (up to a scalar factor) to the eigenfunction s1(x),
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and is therefore related to the concept of isostable. In addition, the Laplace averages are an

extension of the Fourier averages [19, 21] that were used in [18] to compute the isochrons of

limit cycles.

Remark 3. Instead of (15), the generalized Laplace averages [20]

f ∗
λj

(x) = lim
T →∞

1

T

∫ T

0



(f ◦ φt)(x) − f(x∗) −
j−1
∑

k=1

f ∗
λk

(x)eλkt



 e−λjt dt

must be considered to obtain other eigenfunctions sj(x), j ≥ 2, and the associated sets I
(j)

τ (j)

considered in (14). However, their computation is delicate since it requires a very accurate

computation of the other (generalized) Laplace averages f ∗
λk

(x), k < j, and goes beyond the

scope of the present paper.

A. The main result

The exact connection between the Laplace averages and the isostables is given in the

following proposition.

Proposition 1. Consider an observable f ∈ C1 such that f(x∗) = 0 and 〈∇f(x∗), v1〉 6= 0.

Then, a unique level set of the Laplace average |f ∗
λ1

| corresponds to a unique isostable. That

is, |f ∗
λ1

(x)| = |f ∗
λ1

(x′)|, with x ∈ Iτ and x′ ∈ Iτ ′, if and only if τ = τ ′. In addition,

τ − τ ′ =
1

σ1
ln

∣

∣

∣

∣

∣

f ∗
λ1

(x)

f ∗
λ1

(x′)

∣

∣

∣

∣

∣

.

Proof. If x belongs to the isostable Iτ , one has, for some θ ∈ Θ,

lim
t→∞

e−σ1t
∣

∣

∣(f ◦ φt)(x) − f(x∗) −
〈

∇f(x∗), ℜ
{

v1 ei(ω1t+θ)
}〉

eσ1(t+τ)
∣

∣

∣

= lim
t→∞

e−σ1t
∣

∣

∣〈∇f(x∗), φt(x) − x∗〉 + o(‖φt(x) − x∗‖) −
〈

∇f(x∗), ℜ
{

v1 ei(ω1t+θ)
}〉

eσ1(t+τ)
∣

∣

∣

≤ ‖∇f(x∗)‖ lim
t→∞

e−σ1t
∥

∥

∥φt(x) −
(

x∗ + ℜ
{

v1 ei(ω1t+θ)
}

eσ1(t+τ)
)∥

∥

∥

+ lim
t→∞

e−σ1to
(∥

∥

∥

∥

n
∑

j=1

sj(x)vj eλjt +
∑

{k1,··· ,kn}∈Nn
0

k1+···+kn>1

sk1
1 (x) · · · skn

n (x) vk1···kn
e(k1λ1+···+knλn)t

∥

∥

∥

∥

)

= 0 (16)

with λ1 = σ1+iω1. The first equality is obtained through a first-order Taylor approximation,

the inequality results from the Cauchy–Schwarz inequality and the expression of the flow
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(12), and the last equality is implied by Definition 2. Then, it follows from (16) that

∣

∣

∣

∣

∣

lim
T →∞

1

T

∫ T

0
(f ◦ φt)(x) e−λ1t dt − lim

t→∞

1

T

∫ T

0

(

f(x∗) +
〈

∇f(x∗), ℜ
{

v1 ei(ω1t+θ)
}〉

eσ1(t+τ)
)

e−λ1t dt

∣

∣

∣

∣

∣

≤ lim
T →∞

1

T

∫ T

0
e−σ1t

∣

∣

∣(f ◦ φt)(x) − f(x∗) −
〈

∇f(x∗), ℜ
{

v1 ei(ω1t+θ)
}〉

eσ1(t+τ)
∣

∣

∣ dt = 0 ,

or equivalently, given (15) and since f(x∗) = 0,

f ∗
λ1

(x) = lim
T →∞

1

T

∫ T

0

(

f(x∗) +
〈

∇f(x∗), ℜ
{

v1 ei(ω1t+θ)
}〉

eσ1(t+τ)
)

e−λ1t dt

= lim
T →∞

1

T

∫ T

0

〈

∇f(x∗),
v1 ei(ω1t+θ) + vc

1 e−i(ω1t+θ)

2

〉

eσ1τ−iω1t dt

= lim
T →∞

1

2T

(

∫ T

0
〈∇f(x∗), v1〉 eσ1τ+iθdt +

∫ T

0
〈∇f(x∗), vc

1〉 eσ1τ−i(2ω1t+θ)dt

)

.(17)

If λ1 ∈ R, one has ω1 = 0, v1 = vc
1, and eiθ = e−iθ (since θ ∈ Θ = {0, π}). Then, it follows

from (17) that

f ∗
λ1

(x) = lim
T →∞

1

T

∫ T

0
〈∇f(x∗), v1〉 eσ1τ+iθdt = 〈∇f(x∗), v1〉 eσ1τ+iθ (18)

and

|f ∗
λ1

(x)| = | 〈∇f(x∗), v1〉 | eσ1τ , λ1 ∈ R . (19)

If λ1 /∈ R, ω1 6= 0 implies that the second term of (17) is equal to zero, which yields

|f ∗
λ1

(x)| =
| 〈∇f(x∗), v1〉 |

2
eσ1τ , λ1 /∈ R . (20)

For x′ ∈ Iτ ′, the inequalities (19) or (20) still hold (with τ replaced by τ ′), so that the result

follows provided that 〈∇f(x∗), v1〉 6= 0.

The Laplace average f ∗
λ1

(x) considered in Proposition 1 actually extracts the term

v10···0 s1(x) from the expression of U tf(x) (10). The Koopman mode v10···0 corresponds

to 〈∇f(x∗), v1〉, as shown by (19) and (20) (recall that s1 = exp(σ1τ) when λ1 ∈ R or

s1 = exp(σ1τ)/2 when λ1 /∈ R). This value must be nonzero to ensure that f has a nonzero

projection onto s1.

Remark 4 (Unstable fixed point and multiple eigenvalues (see also Remarks 1 and 2)). (i)

For unstable fixed points with σj > σ1 > 0 for all j, the isostables are the level sets of the

Laplace averages |f ∗
−λ1

| computed for backward-in-time trajectories φ(−t, ·).

(ii) In the case of a star node (e.g. with a real eigenvalue of multiplicity m), the isostables
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obtained through the Laplace averages depend on the choice of the observable f , which

can have a nonzero projection 〈∇f(x∗), vj〉, j = 1, . . . , m, on several eigenfunctions of the

Koopman operator associated with the eigenvalue λ1. However, a unique family of isostables

is obtained by considering the level sets of
√

∑m
k=1(f

∗
λ1,k)2, where f ∗

λ1,k denotes the Laplace

average for an observable fk that satisfies 〈∇fk(x∗), vj〉 = 0 for all j ∈ {1, . . . , m} \ {k}.

(iii) In the case of a degenerate fixed point (eigenvalue of multiplicity m), the isostables

are computed with the Laplace averages, but the exponential exp(−λ1t) in (15) must be

replaced by t1−m exp(−λ1t).

B. Numerical computation of the Laplace averages

Proposition 1 shows the strong connection between the isostables and the Laplace aver-

ages, a result which provides a straightforward method for computing the isostables. Simi-

larly to the method developed in [18], the computation of isostables is realized in two steps:

(i) the Laplace averages are computed (over a finite time horizon) for a set of sample points

(distributed on a regular grid or randomly); (ii) the level sets of the Laplace averages (i.e.

the isostables) are obtained using interpolation techniques. The proposed method is flexible

and well-suited to the use of adaptive grids, for instance. In addition, the averages can be

computed either in the whole basin of attraction of the fixed point or only in regions of

interest.

It is important to note that the computation of the Laplace averages involves the multi-

plication of the very small quantity (f ◦ φt)(x) with the very large quantity exp(−λ1t), as

t → ∞. When the trajectory approaches the fixed point, the relative error of the integration

method implies that the (numerically computed) quantity (f ◦ φt)(x) does not compensate

exactly the value exp(−λ1t), and the computation becomes numerically unstable. Therefore,

a high accuracy of the numerical integration scheme and a reasonably small time horizon T

are required for the computation of the Laplace averages.

In spite of the numerical issue mentioned above, an algorithm based on a straightforward

calculation of the Laplace averages produces good results. However, it is improved if one can

avoid computing the integral. Toward this end, we remark that evaluating the integral (15)

is not necessary when λ1 is real, since the integrand converges to a constant value. When λ1

is complex, we consider the successive iterations of the discrete time-T1 map φ(T1, ·), with
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T1 = 2π/ω1. The result is summarized as follows.

Proposition 2. (i) Real eigenvalue λ1. Consider an observable f ∈ C1 that satisfies f(x∗) =

0. Then, the Laplace average f ∗
λ1

(x) corresponds to the limit

f ∗
λ1

(x) = lim
t→∞

e−σ1t(f ◦ φt)(x) . (21)

(ii) Complex eigenvalue λ1. Consider two observables f1 ∈ C1 and f2 ∈ C1 that satisfy

f1(x
∗) = f2(x∗) = 0

|〈∇f1(x∗), a〉| = |〈∇f2(x
∗), b〉| 6= 0

〈∇f1(x
∗), b〉 = 〈∇f2(x∗), a〉 = 0

with a = ℜ{v1} and b = −ℑ{v1}. Then the Laplace average |f ∗
λ1

(x)| of an observable

f ∈ C1 is proportional to the limit

|f ∗
λ1

(x)| ∝ lim
n→∞
n∈N

e−σ1nT1

√

((f1 ◦ φnT1)(x))2 + ((f2 ◦ φnT1)(x))2 ,

with T1 = 2π/ω1.

Proof. (i) Real eigenvalue λ1. Since f(x∗) = 0, the result follows from (16) and (18).

(ii) Complex eigenvalue λ1. Provided that f(x∗) = 0, (16) implies that

lim
n→∞

e−σ1nT1(f ◦ φnT1)(x) =
〈

∇f(x∗), ℜ
{

v1eiθ
}〉

eσ1τ = 〈∇f(x∗), a cos(θ) + b sin(θ)〉 eσ1τ

and since f1(x
∗) = f2(x

∗) = 0,

lim
n→∞

e−σ1nT1(f1 ◦ φnT1)(x) = cos(θ) 〈∇f1(x
∗), a〉 eσ1τ

lim
n→∞

e−σ1nT1(f2 ◦ φnT1)(x) = sin(θ) 〈∇f2(x∗), b〉 eσ1τ .

Then, one has

lim
n→∞

e−σ1nT1

√

((f1 ◦ φnT1)(x))2 + ((f2 ◦ φnT1)(x))2 = | 〈∇f1(x∗), a〉 |eσ1τ

and it follows from (20) that the limit is proportional to |f ∗
λ1

(x∗)|—with the factor of pro-

portionality 2| 〈∇f1(x
∗), a〉 / 〈∇f(x∗), v1〉 |.

Proposition 2 implies that the isostables can be computed as the level sets of particular

limits. In the case λ1 ∈ R, the computation of the limit (21) is interpreted as the infinite-

dimensional version of the power iteration method used to compute the eigenvector of a
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matrix associated with the largest eigenvalue. While the straightforward computation of

the Laplace averages (15) is characterized by a rate of convergence T −1, the computation

of these limits is characterized by an exponential rate of convergence. Hence, the results of

Proposition 2 are of great interest from a numerical point of view, and it is particularly so

since the numerical instability imposes an upper bound on the finite time horizon T .

Remark 5. In the case λ1 ∈ R, the limit (21) is characterized by the rate of convergence

exp(ℜ{λ2 − λ1}T ), which can still be slow if λ1 ≈ λ2. This rate can be further improved by

choosing an observable f that has no projection onto the eigenfunction s2, i.e. that satisfies

〈∇f, v2〉 = 0. In that case, the rate of convergence will be exp(ℜ{λ3 − λ1}T ). Similarly,

the convergence can be made as fast as required by choosing an observable that has no

projection onto many other eigenfunctions (i.e. with many zero Koopman modes vk1···kn
, see

Appendix A).

IV. APPLICATIONS

The concept of isostables of fixed points is now illustrated with some examples. These

examples show that the framework is coherent and general, coherent with the equivalent

definition of isostable for excitable systems and general since it is not limited to the particular

class of excitable systems.

The isostables are computed according to the algorithm proposed at the beginning of

Section III B. The Laplace averages are numerically computed through the integral (15)

(e.g. Section IV B) or through the limits derived in Proposition 2 (e.g. Section IV A).

A. The excitable FitzHugh-Nagumo model

The concept of isostables is primarily motivated by the reduction of excitable systems

characterized by slow-fast dynamics. In this case, the points on the same isostable Iτ share

the same asymptotic behavior on a stable slow manifold.

In this context, we compute the isostables for the well-known FitzHugh-Nagumo model

[7, 22]

v̇ = −w − v(v − 1)(v − a) + I ,

ẇ = ǫ(v − γw) ,
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which admits an excitable regime with a stable fixed point (x∗ = (v∗, w∗), with v∗ = w∗)

for the parameters I = 0.05, ǫ = 0.08, γ = 1, and a = {0.1, 1}. The eigenvalues (of the

Jacobian matrix at the fixed point) are either real (e.g., a = 1) or complex (e.g., a = 0.1).

We consider both cases in the sequel.

In [24], the isostables were computed for the FitzHugh-Nagumo model through the back-

ward integration of trajectories starting in a close neighborhood of the stable slow manifold

(or transient attractor). Here, we obtain the same results using a forward integration method

based on the computation of the Laplace averages.

1. Real eigenvalues (a = 1)

The Laplace averages are computed according to the result of Proposition 2(i), with the

observable f(v, w) = (v − v∗) + (w − w∗). The level sets of the Laplace averages (isostables)

are represented in Figure 4.

−1 0 1 2
−1

−0.5

0

0.5

1

v

w

 

 

0.5

1

1.5

2

Figure 4: The level sets of the Laplace averages |f∗
λ1

| are the isostables (black curves) of the fixed

point (red dot). The color refers to the value of |f∗
λ1

|. In the neighborhood of the fixed point, the

isostables are parallel to the direction v2 ≈ (−1, 0.1133) (red arrow). Two trajectories with an

initial condition on the same isostable ((−0.0303, −0.5152) for the solid curve, (1.7879, −0.8182)

for the dashed curve) synchronously reach the same isostable after a time τ − τ ′ ≈ 12. They also

reach the stable slow manifold (transient attractor) (green curve) synchronously. (The averages are

computed on a regular grid 100 × 100, with a finite time horizon T = 50; the black dotted-dashed

curves are the nullclines.)
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One first verifies that the isostables are parallel to the eigenvector v2 in the neighborhood

of the fixed point. In addition, two trajectories with an initial condition on the same isostable

synchronously converge to the fixed point. For instance, two trajectories that start from the

same level set |s1(x
′)| = 1.74 synchronously reach the level set |s1(x)| = 0.17 after a time

τ − τ ′ ≈ 12. This observation confirms the result of Proposition 1, since

1

σ1

ln

∣

∣

∣

∣

∣

s1(x)

s1(x′)

∣

∣

∣

∣

∣

=
1

−0.1933
ln

0.17

1.74
≈ 12 .

The system admits an unstable slow manifold (transient repeller), which corresponds to

a stable slow manifold (transient attractor) for the backward-time system. The unstable

slow manifold lies in the highly sensitive region v < 0, w ≈ −0.3 characterized by a high

concentration of isostables. Consider a trajectory that is near the fixed point and that

belongs to the isostable Iτ . If it is weakly perturbed, it will jump to the isostable Iτ ′ , with

τ ′ ≈ τ , and will reach the initial isostable after a short time τ − τ ′ ≪ 1. In contrast, if

the trajectory is perturbed beyond the unstable slow manifold, it will reach the isostable

Iτ ′ , with τ ′ ≪ τ . As a consequence, the trajectory will not immediately converge toward

its initial position near the fixed point but will exhibit a large excursion in the state space,

whose duration is given by τ − τ ′ ≫ 1. This phenomenon induced by the unstable slow

manifold is characteristic of slow-fast excitable systems and is related to the concentration

of isostables. Note that for slow-fast asymptotically periodic systems, a high concentration

of isochrons is also observed near the unstable slow manifold [23].

2. Complex eigenvalues (a = 0.1)

The Laplace averages are computed according to the result of Proposition 2(ii), with the

observables f1(v, w) = b2(v − v∗) − b1(w − w∗) and f2(v, w) = a2(v − v∗) − a1(w − w∗),

a = (a1, a2), b = (b1, b2). The level sets (isostables) are represented in Figure 5. We

verify that the isostables are ellipses in the neighborhood of the fixed point (Figure 5(b)).

In addition, two trajectories with an initial condition on the same isostable synchronously

converge to the fixed point (Figure 5(a)). For instance, two trajectories that start from the

same level set |s1(x
′)| = 0.10 synchronously reach the level set |s1(x)| = 0.051 after a time

τ − τ ′ ≈ 16. This observation confirms the result of Proposition 1, since

1

σ1
ln

∣

∣

∣

∣

∣

s1(x)

s1(x′)

∣

∣

∣

∣

∣

=
1

−0.041
ln

0.051

0.10
≈ 16 .
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As in the case λ1 real, the system admits an unstable slow manifold (region v < 0 and

w ≈ 0) characterized by a high concentration of isostables.
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Figure 5: The level sets of the Laplace averages |f∗
λ1

| are the isostables (black curves) of the

fixed point (red dot). (a) Two trajectories with an initial condition on the same isostable

((0.7688, −0.5779) for the solid curve, (−0.1960, −0.1558) for the dashed curve) synchronously

reach the same isostable after a time τ − τ ′ ≈ 16. (The averages are computed on a regular

grid 100 × 100, with a finite time horizon T = 250, that is, with 11 iterations of the time-T1

map; the black dotted-dashed curves are the nullclines.) (b) In the neighborhood of the fixed

point, the isostables are ellipses. The arrows represent the vectors a = ℜ{v1} ≈ (0.96, 0.03) and

b = −ℑ{v1} ≈ (0, 0.27). (The averages are computed on a regular grid 50 × 50).
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B. The Lorenz model

The framework developed in this paper is not limited to two-dimensional excitable mod-

els, but can also be applied to higher-dimensional models, including those which are not

characterized by slow-fast dynamics. For instance, we compute in this section the isostables

of the Lorenz model

ẋ1 = a(x2 − x1) ,

ẋ2 = x1(ρ − x3) − x2 ,

ẋ3 = x1x2 − bx3 .

With the parameters a = 10, ρ = 0.5, b = 8/3, the origin is a stable fixed point with a real

eigenvalue λ1. Several isostables are depicted in Figure 6. They are the two-dimensional

level sets—i.e., the isosurfaces—of the Laplace averages f ∗
λ1

computed for the observable

f(x1, x2, x3) = x1 + x2 + x3. Note that the isostables are approximated by a plane in the

vicinity of the fixed point.

Figure 6: The isostables can be computed for three-dimensional models, including those which

are not characterized by slow-fast dynamics (in this case, the Lorenz model). Four isostables are

represented, which are the level sets of the Laplace averages |f∗
λ1

| ∈ {0.5, 1, 1.5, 2}. (The averages

are computed on a regular grid 75 × 75 × 75, with a finite time horizon T = 20; the red dot

corresponds to the fixed point.)

When the parameter ρ exceeds the critical value ρ = 1, the origin becomes unstable and

two stable fixed points (±x∗
1, ±x∗

2, x∗
3) appear. Since these fixed points are characterized
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by the same eigenvalues, their isostables can be obtained through the computation of a

single Laplace average f ∗
λ1

. In Figure 7, the isostables are computed for the value ρ = 2, a

situation characterized by a complex eigenvalue λ1. Note that the isostables are cylinders

in the vicinity of the fixed point. In addition, the level set |f ∗
λ1

| → ∞ corresponds to the

separatrix between the two basins of attraction (i.e. the stable manifold of the fixed point

at the origin).

Figure 7: The level sets of the Laplace averages |f∗
λ1

| ∈ {1, 2, 3, 4, 5} represent five isostables of the

two stable fixed points. (The averages are computed on a regular grid 50 × 50 × 50, with a finite

time horizon T = 15; the red dot corresponds to the (visible) stable fixed point.)

V. DISCUSSION

In this section, we discuss some topics related to the concept of isostables. Through

the Koopman operator framework, we claim that the notion of isostables is different from

but complementary to the known notion of isochrons. Isostables and isochrons define a

set of action-angle coordinates and are related to a global linearization of the dynamics.

In addition, we briefly show that the isostables are the level sets of a particular Lyapunov

function for the fixed point dynamics.

A. Isostables vs. isochrons

The isostables are the sets of points that approach the same trajectory when they con-

verge toward the fixed point. Similarly, in the case of asymptotically periodic systems, the
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isochrons are the set of points that converge toward the same trajectory on the limit cycle

[32]. It follows that isostables (of fixed points) and isochrons (of limit cycles) are conceptu-

ally related. However, these two concepts are also characterized by intrinsic differences and

turn out to be complementary.

The difference between isostables and isochrons can be understood through the framework

of the Koopman operator. The isostables have been defined as the level sets of the absolute

value of the Koopman eigenfunction |s1(x)| (Section II B). In contrast, the isochrons of limit

cycles were computed in [18] by using the argument of a Koopman eigenfunction. Similarly,

the isochrons of fixed points (characterized by a complex eigenvalue λ1) can be defined as

the levels sets of the argument ∠s1(x). These sets (also called isochronous sections) are

well-known and usually defined as the sets invariant under a particular return map (i.e. the

discrete map φ(T1, ·) considered in Proposition 2). Also, their existence, which is not trivial

in the case of weak foci (i.e. purely imaginary eigenvalues) or nonsmooth vector fields, has

been investigated in [9, 28]. In the case of linear systems, the isochrons correspond to radial

lines that intersect at the fixed point (see Figure 3(b)). For nonlinear systems, they are

tangent to radial lines at the fixed point but are characterized by a more complex geometry

(see Figure 8). Note that, when they exist, the isochrons are uniquely determined by their

toplogical properties: they define the unique periodic partition of the state space (of period

T1). In contrast, more care was needed to define the isostables as the level sets of the unique

smooth eigenvalue s1.

Isostables and isochrons appear to be two different but complementary notions. On

one hand, the isostables are related to the stability property of the system and provide

information on how fast the trajectories converge toward the attractor. On the other hand,

the isochrons are related to a notion of phase and provide information on the asymptotic

behavior of the trajectories on the attractor. Given (11), the isostables are related to the

property
d

dt
|s1(φt(x))| = σ1|s1(φt(x))| (22)

while the isochrons are characterized by

d

dt
∠s1(φt(x)) = ω1 . (23)

In the case of fixed points, it is clear that the isochrons are not relevant to characterize the

synchronous convergence of the trajectories, a fact that stresses the importance of considering
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the isostables instead.
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Figure 8: For a fixed point with a complex eigenvalue λ1, the isostables (black curves) and the

isochrons (red curves) of the fixed point are the level sets of |s1(x)| and ∠s1(x), respectively.

In the vicinity of the fixed point, the isostables are ellipses and the isochrons are straight lines.

(The numerical computations are performed for the FitzHugh-Nagumo model, with the parameters

considered in Section IV A 2; the blue dot represents the fixed point.)

B. Action-angle coordinates and global linearization

For a two-dimensional dynamical system which admits a spiral sink (two complex eigen-

values), the families of isostables and isochrons provide an action-angle coordinates repre-

sentation of the dynamics. More precisely, (22) and (23) imply that, with the variables

(r, θ) = (|s1(x)|,∠s1(x)), the system is characterized by the (action-angle) dynamics

ṙ = σ1r

θ̇ = ω1

in the basin of attraction of the fixed point. For systems of higher dimension, the action-angle

dynamics are obtained with several Koopman eigenfunctions, i.e. (rj , θj) = (|sj(x)|,∠sj(x))

leads to ṙj = σjrj, θ̇j = ωj. Note that this was also shown in Section II A 2 in the case of

linear systems with a spiral sink.

When expressed in the action-angle coordinates, the dynamics become linear. This is

in agreement with the recent work [15] showing that a coordinate system which linearizes
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the dynamics is naturally provided by the eigenfunctions of the Koopman operator (see also

Appendix A). Namely, in the new variables yj = sj(x), the system dynamics are given by

d

dt
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yn
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λ1 0
. . .

0 λ2
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Moreover, the linear change of coordinates
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, (24)

where the columns of V are the eigenvectors vj of the Jacobian matrix J at the fixed point,

leads to the linear dynamics

d

dt













z1

...

zn













= J













z1

...

z2













.

For the two-dimensional FitzHugh-Nagumo model, the coordinates (z1, z2) are represented in

Figure 9 and are equivalent to the action-angle coordinates (r, θ) (Figure 8). They correspond

to Cartesian coordinates in the vicinity of the fixed point, where the linearized dynamics are

a good approximation of the nonlinear dynamics (see also (A3) in Appendix A). But owing

to the nonlinearity, the coordinates are deformed as their distance from the fixed point

increases. The comparison between these coordinates and regular Cartesian coordinates

therefore appears as a measure of the system nonlinearity.

In the case of two-dimensional systems with a stable spiral sink, the derivation of action-

angle coordinates and the global linearization are obtained through the isostables and the

isochrons, that is, with only the first Koopman eigenfunction s1(x). For higher-dimensional

systems (or two-dimensional systems with a sink node), global linearization involves several

Koopman eigenfunctions sj(x) (see [15] for a detailed study), which can be obtained through

the generalized Laplace averages (see Remark 3). In the context of model reduction, or when

the dynamics are significantly slow in one particular direction, the first eigenfunction—

related to the isostable—is however sufficient to retain the main information on the system

behavior.
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Figure 9: The coordinates z1 (black curves) and z2 (red curves) correspond to Cartesian coordinates

in the vicinity of the fixed point but are deformed when far from the fixed point. (The numerical

computations are performed for the FitzHugh-Nagumo model, with the parameters considered in

Section IV A 2; the blue dot represents the fixed point.)

C. Lyapunov function and contracting metric

As a consequence of the linearization properties illustrated in the previous section, the

Koopman eigenfunctions—and in particular the isostables—can be used to derive Lyapunov

functions and contracting metrics for the system.

In the particular case of two-dimensional systems with a spiral sink, the isostables are the

level sets of the particular Lyapunov function V(x) = |s1(x)| (see Figure 10 for the FitzHugh-

Nagumo model). Indeed, (22) implies that V̇(x) = σ1V(x) < 0 ∀x ∈ B(x∗) \ {x∗} and one

verifies that V(x∗) = 0. This function is a special Lyapunov function of the system, in the

sense that its decay rate is constant everywhere. (Note that the function V = ln(|s1(x)|)/σ1

satisfies V̇ = −1 but with V(x∗) = −∞.)

In addition, the isostables are related to a metric which is contracting in the basin of

attraction of the fixed point. Namely, the distance

d(x, x′) = |s1(x) − s1(x′)|

is well-defined and (11) implies that

d

dt
d
(

φt(x), φt(x
′)
)

= σ1d(x, x′) < 0 , ∀x 6= x′ ∈ B(x∗) .

For more general systems that admit a stable fixed point, the function V(x) = |s1(x)| is still

decreasing along the trajectories, but V(x) = 0 does not imply x = x∗ (V is zero on the

29



Figure 10: The function V = |s1(x)| is a particular Lyapunov function for the system (here, the

FitzHugh-Nagumo model with the parameters considered in Section IV A 2). One verifies that

the function decreases with a constant rate along a trajectory (black curve). Note also that the

unstable slow manifold (region v < 0, w ≈ 0) is characterized by a line of maxima of the Lyapunov

function.

whole isostable Iτ=∞ that contains the fixed point). However, the function can be used with

the LaSalle invariance principle. To obtain a good Lyapunov function, several Koopman

eigenfunctions must be considered. For instance, the function

V(x) =





n
∑

j=1

|sj(x)|p





1/p

,

with the integer p ≥ 1, satisfies

V̇(x) =





n
∑

j=1

|sj(x)|p





1
p

−1
n
∑

j=1

σj |sj(x)|p ≤ σ1V(x)

and V(x) = 0 iff x = x∗. In addition, a contracting metric is given by

d
(

x, x′
)

=





n
∑

j=1

|sj(x) − sj(x
′)|p





1/p

and one has
d

dt
d
(

φt(x), φt(x
′)
)

≤ σ1d(x, x′) , ∀x, x′ ∈ B(x∗) .

It follows from the above observations that showing the existence of stable eigenfunctions of

the Koopman operator is sufficient to prove the global stability of the attractor. Therefore,
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the Koopman operator framework could potentially yield an alternative method for the

global stability analysis of nonlinear systems.

VI. CONCLUSION

In this paper, the well-known phase reduction of asymptotically periodic systems has

been extended to the class of systems which admit a stable fixed point. In the context

of the Koopman operator framework, the approach is not restricted to excitable systems

with slow-fast dynamics but is valid in more general situations. The isostables required for

the reduction of the dynamics, which correspond is some cases to the fibers of a particular

invariant manifold of the system, are interpreted as the level sets of an eigenfunction of the

Koopman operator. In addition, they are shown to be different from the concept of isochrons

that prevails for asymptotically periodic systems. Beyond its theoretical implications, the

framework also yields an efficient (forward integration) method for computing the isostables,

which is based on the estimation of Laplace averages along the trajectories.

The reduction of the dynamics through the Koopman operator framework leads to an

action-angle coordinates representation that is intimately related to a global linearization

of the system. More precisely, the proposed reduction procedure is nothing but a global

linearization of the system where only one direction of interest is considered, which retains

the main information on the system behavior (i.e. the slowest direction). In this context,

the isostables—related to the action—or the isochrons—related to the angle— used for the

reduction are particular objects involved in the global linearization process. Given this

relation between reduction methods and linearization, research perspectives are twofold.

On the one hand, convenient Laplace average methods could be developed for linearization

purposes (e.g. computation of the isostables of limit cycles [11] in the whole—possibly

high-dimensional—basin of attraction), and for the computation of (un)stable manifolds as

well. On the other hand, the Koopman operator framework can be further exploited for the

reduction of more general dynamical systems (e.g. chaotic systems).
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Appendix A: Spectral decomposition of the Koopman operator

In this appendix, we derive the expansion (10) of an observable onto the eigenfunctions of

the Koopman operator. Consider the change of variable s : x 7→ y, with yj = sj(x), where

sj is an eigenfunction of the Koopman operator. It follows that s(x∗) = 0 and, given (11),

the dynamics is linearized in the y variable, i.e. ẏj = λj yj. According to the linearization

Poincaré theorem [8], the transformation s is analytic since the vector field F is analytic and

the eigenvalues are nonresonant (and provided there is no unstable fixed point in B(x∗)). If

an observable f is analytic, the Taylor expansion of f(s−1(y)) around the origin yields

f(s−1(y)) = f(x∗) + ∇fT (x∗) Js−1y +
1

2
yT JT

s−1HJs−1 y +
1

2
yT

n
∑

k=1

∂f

∂xk

∣

∣

∣

∣

∣

x∗

Hs−1
k

y + h.o.t. ,

(A1)

where Js−1 is the Jacobian matrix of s−1 at the origin (i.e. Js−1,ij = ∂s−1
i /∂yj(0)), H is

the Hessian matrix of f at x∗ (i.e. Hij = ∂2f/(∂xi∂xj)(x
∗)), and Hs−1

k
is the Hessian

matrix of s−1
k at the origin (i.e. Hs−1

k
,ij = ∂2s−1

k /(∂yi∂yj)(0)). Using the relationship y =

(s1(x), . . . , sn(x)), we can turn the expansion (A1) into an expansion of f onto the products

of the eigenfunctions sj . For a vector-valued observable f , we obtain

f(x) =
∑

{k1,...,kn}∈Nn

vk1···kn
sk1

1 (x) · · · skn

n (x) (A2)

with the (first) Koopman modes

vk1···kn
=































































f(x∗) kj = 0 ∀j ,
n
∑
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∣

∣

∣
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∣
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∂s−1
k

∂yj

∣

∣
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∣

∣

0

kj = 1 , ki = 0 ∀i 6= j ,

n
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n
∑
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∂xk∂xl
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∣

∣

∣

∣
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0
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∣

∣
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0

+
n
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k=1
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∂xk

∣

∣

∣

∣

∣

x∗
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k

∂yi∂yj
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∣

∣

∣

∣

0

ki = kj = 1 , kr = 0 ∀r 6= {i, j} ,

1

2

n
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n
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∂xk∂xl
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∣

∣
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k

∂yi

∣

∣

∣

∣

∣

0
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+
1
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n
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∣
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∣
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0

ki = 2 , kj = 0 ∀j 6= i .
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The other (higher-order) Koopman modes can be derived similarly from (A1). Since the

eigenfunctions satisfy (11), the relationship (10) directly follows from (A2).

For the observable f(x) = x, the Koopman modes are given by

vk1···kn
=

1

k1! . . . kn!

∂k1···kns−1

∂k1y1 · · · ∂knyn

∣

∣

∣

∣

∣

0

.

In particular, the eigenvectors of the Jacobian matrix J of F (i.e. vj = vk1···kn
, with kj = 1,

ki = 0 ∀i 6= j) correspond to

vj =
∂s−1

∂yj

∣

∣

∣

∣

∣

0

and one has Js−1 = V, where the columns of V are the eigenvectors vj. It follows that the

variables z introduced in (24) satisfy z = Js−1y so that (A1) implies

x = x∗ + z + o(‖z‖) . (A3)

In addition, the derivation of y = s(s−1(y)) at the origin leads to

δij =

〈

∇si(x
∗),

∂s−1

∂yj

∣

∣

∣

∣

∣

c

0

〉

=
〈

∇si(x
∗), vc

j

〉

.

Therefore, the gradient ∇si(x
∗) is the left eigenvector ṽc

i of J (associated with the eigenvalue

λi) and one has

si(x) = 〈x − x∗, ∇sc
i(x

∗)〉 + o(‖x − x∗‖) = 〈x − x∗, ṽi〉 + o(‖x − x∗‖) , (A4)

which implies that, for ‖x − x∗‖ ≪ 1, the eigenfunction si(x) is well approximated by the

eigenfunction of the linearized system.
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[9] J. Giné and M. Grau, Characterization of isochronous foci for planar analytic differential

systems, in Proceedings of the Royal Society of Edinburgh-A-Mathematics, vol. 135, Cam-

bridge Univ Press, 2005, pp. 985–998.

[10] J. Guckenheimer, Isochrons and phaseless sets, Journal of Mathematical Biology, 1 (1975),

pp. 259–273.

[11] A. Guillamon and G. Huguet, A computational and geometric approach to phase resetting

curves and surfaces, SIAM Journal On Applied Dynamical Systems, 8 (2009), pp. 1005–1042.

[12] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, vol. 583 of Lecture Notes

in Mathematics, Springler-Verlag, 1977.

[13] N. Ichinose, K. Aihara, and K. Judd, Extending the concept of isochrons from oscillatory

to excitable systems for modeling an excitable neuron, International Journal of Bifurcation and

Chaos, 8 (1998), pp. 2375–2385.

[14] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and

Bursting, MIT press, 2007.

[15] Y. Lan and I. Mezic, Linearization in the large of nonlinear systems and Koopman operator

spectrum, Physica D, 242 (2013), pp. 42–53.

[16] I. G. Malkin, The methods of Lyapunov and Poincare in the theory of nonlinear oscillations,

Gostekhizdat, Moscow-Leningrad, (1949).

[17] N. Masuda and K. Aihara, Synchronization of pulse-coupled excitable neurons, Physical

Review E, 64 (2001), pp. 051906/1–13.

[18] A. Mauroy and I. Mezic, On the use of Fourier averages to compute the global isochrons

of (quasi)periodic dynamics, Chaos, 22 (2012), p. 033112.

[19] I. Mezic, Spectral properties of dynamical systems, model reduction and decompositions, Non-

linear Dynamics, 41 (2005), pp. 309–325.

34



[20] , Analysis of fluid flows via spectral properties of Koopman operator, Annual Review of

Fluid Mechanics, 45 (2013).

[21] I. Mezic and A. Banaszuk, Comparison of systems with complex behavior, Physica D-

Nonlinear Phenomena, 197 (2004), pp. 101–133.

[22] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating

nerve axon, in Proceedings of the IRE, vol. 50, 1962, pp. 2061–2070.

[23] H. M. Osinga and J. Moehlis, Continuation-based computation of global isochrons, SIAM

Journal on Applied Dynamical Systems, 9 (2010), pp. 1201–1228.

[24] A. Rabinovitch and I. Rogachevskii, Threshold, excitability and isochrones in the

Bonhoeffer–van der Pol system, Chaos, 9 (1999), pp. 880–886.

[25] A. Rabinovitch, R. Thieberger, and M. Friedman, Forced Bonhoeffer-van der Pol

oscillator in its excited mode, Physical Review E, 50 (1994), pp. 1572–1578.

[26] A. J. Roberts, Appropriate initial conditions for asymptotic descriptions of the long term

evolution of dynamical systems, Australian Mathematical Society, Journal, Series B-Applied

Mathematics, 31 (1989), pp. 48–75.

[27] C. W. Rowley, I. Mezic, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral

analysis of nonlinear flows, Journal of Fluid Mechanics, 641 (2009), pp. 115–127.

[28] M. Sabatini, Non-periodic isochronous oscillations in plane differential systems, Annali di

Matematica Pura ed Applicata, 182 (2003), pp. 487–501.

[29] K. Shaw, Y. Park, H. Chiel, and P. Thomas, Phase resetting in an asymptotically

phaseless system: On the phase response of limit cycles verging on a heteroclinic orbit, SIAM

Journal on Applied Dynamical Systems, 11 (2012), pp. 350–391.

[30] L. Trotta, E. Bullinger, and R. Sepulchre, Global analysis of dynamical decision-

making models through local computation around the hidden saddle, PloS ONE, 7 (2012),

p. e33110.

[31] A. Winfree, The Geometry of Biological Time, New York: Springler-Verlag, 2001 (Second

Edition).

[32] A. T. Winfree, Patterns of phase compromise in biological cycles, Journal of Mathematical

Biology, 1 (1974), pp. 73–95.

35


	I Introduction
	II Isostables and Koopman operator
	A Linear systems
	1 Real eigenvalue 1
	2 Complex eigenvalue 1

	B Nonlinear systems
	C Some remarks on the isostables

	III Laplace averages
	A The main result
	B Numerical computation of the Laplace averages

	IV Applications
	A The excitable FitzHugh-Nagumo model
	1 Real eigenvalues (a=1)
	2 Complex eigenvalues (a=0.1)

	B The Lorenz model

	V Discussion
	A Isostables vs. isochrons
	B Action-angle coordinates and global linearization
	C Lyapunov function and contracting metric

	VI Conclusion
	 Acknowledgments
	A Spectral decomposition of the Koopman operator
	 References

