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Koopman mode analysis on thermal data for building energy
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ABSTRACT
Current approaches to thermal control and energy management in
residential and office buildings rely on complex or high-
dimensional thermal models. We provide a means to extract
features from in-office thermal-data sensors which avoid the use
of standard models. We develop these data-driven methods
through the use of Koopman operator theory. We validate our
resulting algorithms via analysing thermal data from a single
thermal zone space. The particular advantage of the method is
that it associates the temporal characteristics of control
mechanisms with the corresponding spatial zones of influence.
The methodology enables identification of spatial heating and
cooling control modes directly from the data.
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1. Introduction

The ‘House as a System’ approach is gaining traction as a protocol to gain deep energy
efficiency in residential buildings (Hoicka & Parker, 2018). However, the current approach
is focused on scheduling the order of retrofits (insulation first, replacement of furnace
second, etc.) and thus high capital expenditure actions. In commercial buildings, the
cost of such retrofits has led to development of strategies for optimising operations of
existing systems, focusing first on fault detection and returning the building operation
to a ‘healthy’ state (Littooy et al., 2016). Beyond the fault detection methodologies,
model-based approaches lead to optimisation of existing systems and potential of
deep energy savings for new commercial builds (Georgescu & Mezić, 2015), and even
US Army facilities (Mezic, 2017). However, these gains are not currently utilised in the
context of residential buildings or individual office spaces.

Therefore, residential buildings and individually managed office spaces have recently
gained more attention within the topic of energy efficiency. There are about 136.5 million
residential buildings in the United States (Bureau, 2018), creating a large opportunity for
energy savings via retrofits and new designs, to create more efficient homes. Through
addition of sensing, communication and actuation of components, devices are made
‘smart’, such that they communicate wirelessly with each other and transmit data to
help reduce use during peak demand periods. Smart home and office technologies
have potential to deliver benefits such as convenience, control, security and monitoring,
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environmental protection, and enjoyment from engaging with the technology itself (Ford
et al., 2017). Current control methodologies rely on models with complex physics and
uncertainty in parameters that hamper performance and implementation. Here we intro-
duce a data-driven (model-independent) methodology for indoor temperature of a single
zone and multi-zone buildings, with the goal of improving energy efficiency for residen-
tial buildings or individual office spaces that can serve as a basis for energy saving algor-
ithms. Some initial work has been done in finding a physical model to help with these
energy saving algorithms for residential buildings (Boskic & Mezic, 2020). This model inde-
pendence in achieved through the use of Koopman operator methods in the design of
unsupervised learning algorithms.

The Koopman operator is an infinite-dimensional, linear operator that acts on a Hilbert
space of functions called the space of observables (Koopman & Neumann, 1932; Koopman,
1931). The eigenvalues and eigenfunctions of this linear operator are capable of capturing
key characteristics of the dynamical system which we assume we are observing in the gen-
eration of any time series of interest. Additionally, the Koopmanmodes, corresponding to a
particular choice of observable function, allow one to reconstruct and forecast (predict) the
observed quantities. Together, Koopman eigenvalues, eigenfunctions, and modes yield the
Koopman mode decomposition (KMD) of an arbitrary observable (Arbabi & Mezić, 2017b;
Mezić, 2005). Koopman modes, under our choice of observables, identify spatial domains
(zones) associated with specific temporal dynamics, thus enabling, for example, spatial
zones of interest for actuation in optimal control strategies. KMD has been used in
various fields such as fluid flow (Rowley et al., 2009), biology (Hasnain et al., 2019), and
traffic networks (Avila & Mezić, 2020).

To enable Koopman mode analysis, we have collected temperature readings at five
locations within our Laboratory at UCSB and an outdoor reading from the Santa
Barbara Municipal Airport (∼2 miles away). In addition, we also have humidity, light,
pressure, and noise measurements for the indoor sensors. Measurements from these
sensors (along with outdoor temperature) taken every 5 min over the course of 5 days
can be found in Figure 4.

The paper is organised as follows: In Section 2, we describe the sensor implementation
(data collection). In Section 3, we describe the basics of data-driven Koopman spectral
analysis. In Section 4, we describe the results of the analysis using the Koopman operator
theory. We conclude in Section 5.

2. Sensor implementation

In order to understand effect of occupancy patterns on temperature variations, we have
incorporated Omron Environment Sensors into our laboratory space. In this section, we
describe their implementation and data analytics.

Figure 1 shows the full schematic of an individual sensor. The sensors detect tempera-
ture, humidity, light, UV index, pressure, and sound in one compact package. Bluetooth is
used to sync the data with a cell phone. The data was collected on 5-minute intervals, for
the period May 6th 0:00 to May 11th 0:00, and stored in a CSV file. The outdoor tempera-
ture was gathered from the National Weather Service, taken by Santa Barbara Municipal
Airport, which is in close proximity to the laboratory space. The placement of five sensors
is shown in Figure 2 and a schematic along with the HVAC vents is shown in Figure 3. We
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keep the sensors at similar heights and away from direct HVAC vents. We also try to keep
the sensors at a reasonable distance away from light sources and any pipes that may
radiate heat.

As an example of data timetraces, in Figure 4, we show the plot of the five sensors and
the outdoor temperature in degrees Celsius. Several interesting features are observable.
The 24 h (daily) dynamics of the outdoor temperature is somewhat reflected in the room
dynamics. However, there are short-term oscillations in the room temperature that are not
present in the outdoor temperature data and are clearly due to control dynamics. These
are particularly visible in the 4th and 5th day of observation.

3. Koopman mode decomposition

In the context of deterministic dynamical systems, state-variables are those variables that
if known for a system at a particular time, the dynamics of the system would be deter-
mined for all of time (e.g. use angle and angular velocity for the mathematical pendulum).
The classical approach in dynamical systems theory is to work in a mathematical space in
which variables which describe the current state of the system are the main objects of
interest, i.e. state-space. When recording dynamic data from complex systems such as
buildings, the state variables which fully describe the system are not known and there
may be too many to ever measure. This poses no problem for the operator theoretic
view of dynamical systems in which the main objects of interest are functions whose
domain are the state-space – known as observables (Budišić et al., 2012). In the case of
the pendulum, this could be kinetic energy, potential energy, or another function of
angle and angular momentum. In this view, we can think of any measurements (or poss-
ibly functions of measurements) we take of a system of interest as a function of some
unknown state. In the context of buildings, the states could be temperature, light,
noise, humidity. It is convenient to have access to spatially distributed measurements,
as the spatial features and control mechanisms can be analysed. We pursue this here.

The simplest context in which to introduce the Koopman view is for discrete-time
dynamical systems which can be described by repeated application of a single function
T : M � M, i.e.

x′ = T(x) (1)

Figure 1. Block diagram of the Omron sensor module (Environment Sensor, 2018).
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AssumeM is any set whose elements label all possible states (e.g. state-space for the logis-
tic map) of the system and x′ is the updated state, corresponding to x, after a single time
step. The Koopman operator framework was originally described for Hamiltonian vector
fields on manifolds (generalized setting of Hamiltonian systems of ordinary differential
equations) (Koopman, 1931) and has been extended to the case of stochastic (Mezić,

Figure 2. Sensor placement within the office. (a) shows the front sensor close to the entrance the
office. (b) shows the sensor in the middle part of the office labelled as middle right, and the location
in respect to the entrance door (c) shows the general placement of the other sensors and their corre-
sponding names.
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2005; Mezić & Banaszuk, 2004) and nonautonomous (Maćešić et al., 2017) systems. For the
dynamical system described by equation (1), the induced Koopman operator U represents
a new discrete-time dynamical system whose state-space is the set of all complex-valued
observables with domain M (denoted by C

M):

f ′ = U(f ) = f ◦ T ( ◦ is function composition).

It is easy to show that U is linear (c [ C and f , g [ CM),

U(cf + g) = (cf + g) ◦ T = c(f ◦ T)+ g ◦ T = cU(f )+ U(g),

thus we can consider eigenvalues λ and eigenfunctions f,

U(f) = lf.

Figure 3. Sensor placement schematic along with HVAC vents.

Figure 4. Temperature traces from five indoor sensors and the outdoor sensor, utilised on Koopman
Mode Analsysis.
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Research into the spectral expansion of the Koopman operator for data-driven analysis of
dynamical systems was initiated by Mezić (2005); Mezić and Banaszuk (2004).

Considering the repeated action of U, p times, on a finite collection of n observables
{f1, . . . , fn} that lie in the span of a finite collection of m eigenfunctions {f1, . . . , fm},
with eigenvalues {l1, . . .lm} and dual basis {c1, . . . , cn}, leads to a special case of the
Koopman mode decomposition (KMD):

Up( f1)
..
.

Up( fn)

⎡
⎢⎣

⎤
⎥⎦ =

∑m
k=1 l

p
kfkck( f1)
..
.

∑m
k=1 l

p
kfkck( fn)

⎡
⎢⎣

⎤
⎥⎦ =

∑m
k=1

lpkfk

ck( f1)
..
.

ck( fn)

⎡
⎢⎣

⎤
⎥⎦. (2)

This decomposition allows us to evolve observables {f1, . . . , fn} by simply multiplying
each term in the sum above by its corresponding eigenvalue lk. This enables the intuitve
interpretations of the magnitude and complex phase of lk as corresponding to rate of
growth and frequency of oscillation, respectively. If we are only interested in the evolution
of the observables along a single trajectory of (1) starting at x, then the f′

ks could be
chosen so that fk(x) = 1, and KMD would take the following simpler form

[Up( f1)](x)
..
.

[Up( fn)](x)

⎡
⎢⎣

⎤
⎥⎦ =

∑m
k=1 l

p
kfk(x)ck( f1)
..
.

∑m
k=1 l

p
kfk(x)ck( fn)

⎡
⎢⎣

⎤
⎥⎦ =

∑m
k=1

lpk

ck( f1)
..
.

ck( fn)

⎡
⎢⎣

⎤
⎥⎦. (3)

3.1. Dynamic mode decomposition

The last column vector appearing in (2) and (3) is known as the Koopman Mode of the
observables {f1, . . . , fn} relative to the discrete-time system descibed by (1). From (3),
we see that the magnitude of ck(fi) tells us howmuch of a role the growth and oscillations
rates given by lk play a role in evolution of fi along the single trajectory starting at x. Simi-
larly, the complex phase of ck(fi) gives a relative phase correspsonding to the oscillations
give by lk .

The most common approximation of the Koopman operator and its spectral quantities
is given by the Dynamic Mode Decomposition (DMD) (Arbabi & Mezić, 2017a; Klus, 2016;
Korda & Mezić, 2018; Mezić & Arbabi, 2017; Schmid, 2010; Williams et al., 2015), we have
used it on building data; first we give a brief description of DMD.

Consider the case where we have a discrete-time dynamical system as in (1) and we
have evaluated a set of observables {f1, . . . , fn} along the firstm+1 time points of a trajec-
tory starting at x. We can put this into a matrix D such that each row corresponds to a
different observable and the columns are ordered by time:

D =
f1(x) f1(T(x)) . . . f1(Tm(x))

..

. ..
. . .

. ..
.

fn(x) fn(T(x)) . . . fn(Tm(x))

⎡
⎢⎣

⎤
⎥⎦ (4)

=
f1(x) [U(f1)](x) . . . [Um(f1)](x)

..

. ..
. . .

. ..
.

fn(x) [U(fn)](x) . . . [Um(fn)](x)

⎡
⎢⎣

⎤
⎥⎦. (5)
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We can split D into the matrix X of the first m columns and Y of the last m columns, i.e.

X =
f1(x) f1(T(x)) . . . f1(Tm−1(x))

..

. ..
. . .

. ..
.

fn(x) fn(T(x)) . . . fn(Tm−1(x))

⎡
⎢⎣

⎤
⎥⎦, (6)

Y =
f1(T(x)) f1(T2(x)) . . . f1(Tm(x))

..

. ..
. . .

. ..
.

fn(T(x)) fn(T2(x)) . . . fn(Tm(x))

⎡
⎢⎣

⎤
⎥⎦. (7)

The main idea in DMD is to find a matrix A such that AX is close to Y in some sense. In this
way, A would be mapping the vector of samples taken at the point Ti(x) close to those
taken at the point Ti+1(x), for all i [ {0, . . . , m− 1}. Intuitively, as the number of time
points goes to infinity or as we add more observables (which could just be functions of
our original ones), we should better and better approximate the Koopman operator U
by the linear operator we are representing by the matrix A. One such A we could use is
A = YX†, where X† is the pseudo-inverse of X. Such an A satisfies the following (Boyd &
Vandenberghe, 2004):

‖AX − Y‖F= inf
B[Rm×n

BX − Y‖ ‖F.

If we let M = Rn and T(x) = Ax as in Equation (1), then DMD of the data matrix D
approximates KMD of the functions {f1, . . . , fn} with respect to the system descibed by
Equation (1).

3.2. DMD rank reduction

The Koopman Operator is an infinite-dimensional operator. However, when low-dimen-
sional structures in the underlying physics exist, they can be captured with a few
modes. An efficient approach to this computes DMD modes in the basis of U that is
taken from an singular value decomposition (SVD) of the data matrix X (Brunton et al.,
2016).

In order to truncate DMD algorithms with r modes, we will use a truncated SVD basis
where we keep the r largest singular values. In order to select r, we examine the singular
values on the diagonal of S. We select r such that the sum of the first r singular values
accounts for over 95% of the variance in the data.

Algorithm 1 Hankel Power Spectrum DMD

Consider data matrix D as defined (4).

1. Define hankel matricies X and Y as in (6) and (7) with n delays.
2. Compute the SVD of X:

svd(X) = USṼ
∗

3. Find dimension of subspace and truncate as discussed in 3.2.

ADVANCES IN BUILDING ENERGY RESEARCH 7



4. Form the matrix

Ã = S−
1
2U∗YṼS−

1
2

5. Compute eigendecomposition of Ã. Let (lj, w̃j), j = 1, 2, .., m, be the eigenvalue-vector
pair. The eigenvalue of Ã is identical to the eigenvalue of A, and

W = S
1
2W̃

are the eigenvectors of Ã. These eigenvectors are scaled so they do not have unit norm.
6. The dynamic modes cj are defined as

cj = YVS−1W

7. Define f to be the frequency of the oscillation to be

fi = Im(log(li))/DT
2p

8. Lastly define the Power to be square of the magnitude of the modes

P = ‖c‖2

4. Analysis and results

In the following, we perform Koopman spectral analysis on the temperature data in Figure
4 via the use of DMD algorithm discussed above. We assign a ‘power’ that each DMD
mode represents in the data matrix X. Since the algorithm involves inverses of the diag-
onal matrix of singular values of X, we treat any singular value less than s/106 as zero,
where σ is the largest singular value.

4.1. Dynamic mode decomposition on temperature data

As observables, we use the temperature measured at 5 different points in the office and
the local outdoor temperature. We denote these by {f1, . . . , f6}. Their timetraces are
shown in Figure 4. It is noticeable that indoor sensors have similar responses to
control, with the exception of the back left space in the first couple of days.

Since we have only six observables, and data sampling at 5 min intervals, we have a
very ‘fat’ matrix D – an underdetermined system. The data matrix used in this analysis
is of size [6× 1441]. Thus we use a Hankel matrix that gives us a delayed embedding
of the data (Arbabi & Mezić, 2017a). We also use time-shifted versions of these observa-
bles to generate new ones, e.g. by f7 = f1 ◦ T . We will augment our data with 200 delays
which will give result in an X and Ymatrix to be of size [1206× 1240]. Since our system is a
underdetermined system due to the size of original data matrix, we try to find an optimal
amount of time delays used for the augmentation of the X and Y matrix. For this we, use
the following relative error:

ÃX − YF

YF
. (8)

In the following figures, we have several plots representing Koopman spectral quantities
related to the observables. In Figures 5 and 6, we use 200 and 300, respectively, time
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shifted observables for each of our six temperature sensors, using the information from
Figure 7, that shows the relative error compared to the number of delays used in the
Hankel matrix. Relative error was computed using Equation (8). Something to note
from this is more delays is sometimes not optimal, i.e can be considered as over training
the system by giving it more states than needed to perform the analysis.

The eigenvalues values mostly lie on the unit disk, with a few having some with larger
imaginary part meaning oscillations as seen in Figure 8. The mode with frequency near
day−1 has much larger magnitude for the outside component than for any inside com-
ponent. This is expected, since indoor temperature is more stable due to control. The
bumps in the frequency plot near frequencies of 15 day−1 and 25 day−1 are another con-
sistent feature amongst the plots for different numbers of time-shifted observables. We
will use the frequency of 15 day−1 for further evaluation since we have some intution
of what might be the cause of the interesting dynamics. This mode, having a period
near 1.5 h, has much larger components indoor than outdoor, and is related to heating
and cooling control.

The plots, Figures 5 and 6, contains the frequency of each DMD eigenvalue with its
power. We are plotting these in units of day−1. Notice the two bumps in the spectrum
Figure 5 around a frequency of 15 day−1 in and 25 day−1, these frequencies correspond

Figure 5. Plot of dynamic mode ranking against frequency with 200 delays for the augmented data.
Frequency 1 day−1 and 15 day−1 are of particular interest showing the highest ’power’. Due to the
sorting of the dynamic modes, we find mode 3 and 43 are corresponding to frequency 1 day−1

and 15 day−1, respectfully.
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to control action. This control action is set to have cooling come on every 1.5 h and this
can even be seen in Figure 4 where day 0 and 1 are controlled to be between a certain
temperature inside the space during work hours. Figures 9 and 10 contains a represen-
tation of the first six components of the highest power DMD mode with frequency
close to one, corresponding to the daily cycle. The magnitude (left) and complex phase
(right) of each of the components of this mode are represented using colours over a sim-
plified diagram of our office. The magnitudes are relatively uniform, indicating the ability
of control to largely achieve the objective. Notice that the phase of −p is equal to π

explaining the difference in colour seen in the figure.
Figures 11 and 12 represents the highest power mode with frequency near 15 day−1.

The outside sensor shows no magnitude at this frequency, implying the mode is due to
the control action. With this analysis, we can determine that the interesting dynamics are
occurring in a particular part of the office space. We are also able to confirm this analysis
since we know in particular a HVAC vent exists to the right of the sensor. Another inter-
esting observation pulled from the phase of the mode of the back left sensor is we can see
that area is not uniform with the rest of the room but also not 1 radian out of phase like
the middle right. If we notice in Figure 2, the back left sensor also has a HVAC vent but
there is cardboard blocking the airflow out. This caused the analysis to pick up little
control action since there was an obstruction.

Figure 6. Plot of dynamic mode ranking against frequency with 300 delays for the augmented data.
Again showing frequency 1 day−1 and 15 day−1. Due to the sorting of the dynamic modes, we find
mode 4 and 34 are corresponding to frequency 1 day−1 and 15 day−1, respectfully.
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Figure 7. Relative error compared to the amount of time delays used for the augmented data.

Figure 8. Plot of real and imaginary eigenvalues using the 300 delays for the augmented data.
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It is remarkable that this is an emergent feature of the control system. Namely, the fre-
quency of oscillation is not built into the control software but emerges from the operation
of the system. This observation can be used for correct tuning of control systems using
Koopman Mode Analysis. Visible are also differences in magnitude of this mode, indicat-
ing different local conditions for different spatial locations. This is also useful information
for understanding of operation of an implemented control system. The phases of the
mode show uniformity.

The analysis using Koopman modes gives us a insight into the thermal dynamics of
indoor spaces. Namely, the distinction between the zones affected strongly by the
outside conditions, near the window, are evident. In addition, there are modes that
clearly indicate dynamics of the controllers. In this way, the external influences are separ-
ated from control dynamics.

Figure 9. Plotting mode 3 which has a period of 1 per day. The magnitude of the mode shows which
part of the office affects the dynamics the most and phase of mode shows how different locations act
in and our phase with each other.

Figure 10. Plotting mode 4 which has a period of 1 per day.
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5. Conclusions

In this paper, we described the utilisation of Koopman mode analysis for determination of
emergent properties of air conditioning control systems in individual office spaces or resi-
dential buildings. Due to having a small number of raw experimental observables, yet
good temporal resolution, the Hankel DMD method was applied to approximate spectral
properties of the Koopman operator directly from data. Thermal control algorithms
possess emergent properties and spatial inhomogeneities that can be detected using
the data-driven Koopman Mode Analysis. In the office space, we studied a thermal
mode with an oscillatory period of 1.5 h was detected, clearly driven by control action,
enabling for the first time spatial and temporal analysis of the oscillatory control behav-
iour directly from data. Inhomogeneities in spatial control action were determined based

Figure 11. Plotting mode 43 which has a period of 1.5 h. The magnitude of the mode shows that the
middle right sensor has the most interesting dynamics related to this period of evaluation. As well as
the same location being out of phase with the rest of the office space.

Figure 12. Plotting mode 34 which has a period of 1.5 h. The magnitude of the mode shows that the
middle right sensor has the most interesting dynamics again.
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on the magnitude and phase of the mode associated with the 1.5 h period of oscillation.
The layout of the sensors and HVAC vent placement was seen in Figure 3 which confirms
the DMD analysis discussed above.

The results can be used for tuning control systems to obtain better control action as
well as energy efficiency. The method also provides insights into the design of actuation,
as spatial inhomogeneities in modes are typically connected to location of air diffusers.
The analysis presented here is not restricted to temperature data. Humidity, as well as
sound (noise pollution) can be studied using the same methodology.
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