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ON LEAST SQUARES PROBLEMS WITH CERTAIN
VANDERMONDE--KHATRI--RAO STRUCTURE WITH

APPLICATIONS TO DMD\ast 

ZLATKO DRMA\v C\dagger , IGOR MEZI\'C\ddagger , AND RYAN MOHR\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper proposes a new computational method for solving the structured least
squares problem that arises in the process of identification of coherent structures in dynamic pro-
cesses, such as, e.g., fluid flows. It is deployed in combination with dynamic mode decomposition
(DMD), which provides a nonorthogonal set of modes corresponding to particular temporal frequen-
cies. A selection of these is used to represent time snapshots of the underlying dynamics. The
coefficients of the representation are determined from a solution of a structured linear least squares
problems with the matrix that involves the Khatri--Rao product of a triangular and a Vandermonde
matrix. Such a structure allows for a very efficient normal equation based least squares solution,
which is used in state-of-the-art computational fluid dynamics (CFD) tools, such as the sparsity
promoting DMD (DMDSP). A new numerical analysis of the normal equations approach provides
insights about its applicability and its limitations. Relevant condition numbers that determine nu-
merical robustness are identified and discussed. Further, the paper offers a corrected seminormal
solution and the QR factorization based algorithms. It shows how to use the Vandermonde--Khatri--
Rao structure to efficiently compute the QR factorization of the least squares coefficient matrix,
thus providing a new computational tool for the ill-conditioned cases where the normal equations
may fail to compute a sufficiently accurate solution. Altogether, the presented material provides a
firm numerical linear algebra framework for a class of structured least squares problems arising in a
variety of applications besides the DMD, such as, e.g., multistatic antenna array processing.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . antenna array processing, coherent structure, dynamic mode decomposition,
Khatri--Rao product, Koopman operator, Krylov subspaces, proper orthogonal decomposition, Rayleigh--
Ritz approximation, scattering coefficients, structured least squares, Vandermonde matrix
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1. Introduction. Dynamic mode decomposition (DMD) [38] is a tool of the
trade in computational fluid dynamics (CFD), both in high fidelity numerical simu-
lations and in pure data driven scenarios; for a review see [42] and references therein.
Its data driven framework and deep theoretical roots in Koopman operator theory
[36, 51] make DMD a versatile tool in a plethora of applications beyond CFD, e.g.,
studying dynamics of infectious diseases [34] or revealing spontaneous subtle emotions
on human faces [10] in the field of affective computing. For detailed study of DMD
and its applications we refer the reader to [31].

A distinctive feature of DMD is that it is purely data driven. It does not assume
knowledge of the solution of the governing, generally nonlinear, equations obeyed by
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the dynamics under study; it does assume that the supplied data snapshots (vectors
of observables) xi \in \BbbC n are generated by a linear operator \BbbA so that xi+1 = \BbbA xi,
i = 1, . . . ,m, with some initial x1, and a constant time lag \delta t. One can think of \BbbA 
as, e.g., a black-box numerical simulation software, or as, e.g., a discretized physics
taken by a high-speed camera such as in studying flame dynamics and combustion
instabilities [18]. However, \BbbA is not accessible; only the snapshots x1, . . . ,xm+1 are
available. The DMD computes approximate eigenpairs of \BbbA by a combination of the
proper orthogonal decomposition (POD) and the Rayleigh--Ritz projection. Under
certain conditions, DMD can serve as an approximation to the Koopman operator
underlying the process evolution [36, 2, 29]. For a good approximation in the sense
of the Koopman operator, the key is that the set of observables is well selected and
rich enough---this is a separate issue not considered in this paper.

The Ritz pairs (\lambda j , zj), computed by the DMD as the approximate eigenpairs
of \BbbA , are used for spatial-temporal decomposition of the snapshots. More precisely,
it can be shown that, generically, the snapshots can be decomposed using the Ritz
vectors zj (normalized in the \ell 2 norm to \| zj\| 2 = 1) as the spatial spanning set,
and with the temporal coefficients provided by the Ritz values \lambda j = | \lambda j | ei\omega j\delta t (here
assumed simple)

(1.1) xi =

m\sum 

j=1

zjaj\lambda 
i - 1
j \equiv 

m\sum 

j=1

zjaj | \lambda j | i - 1ei\omega j(i - 1)\delta t, i = 1, . . . ,m.

In order to identify the most important coherent structures in the dynamic process,
the representations (1.1) are attempted with a smaller number of modes zj ; the task
is to determine \ell < m, the indices \varsigma 1 < \cdot \cdot \cdot < \varsigma \ell , and the coefficients \alpha j to achieve
high fidelity of the snapshot representations

(1.2) xi \approx \widehat xi \equiv 
\ell \sum 

j=1

z\varsigma j\alpha j\lambda 
i - 1
\varsigma j , i = 1, . . . ,m.

After selecting an appropriate subset \{ z\varsigma j\} of the modes, the key numerical step, and
the central theme of this paper, is solution of a structured linear least squares (LS)
problem

\sum m
i=1 \| xi  - \widehat xi\| 22  - \rightarrow min for the coefficients \alpha j in (1.2). We are interested

in both algebraic and numerical aspects of this problem.

1.1. Contributions and overview. To set the stage, in section 2 we briefly
review the DMD, and in section 2.2 we state in detail the problem of snapshot re-
construction (1.1) and (1.2) using the selected modes; the sparsity promoting DMD
(DMDSP) [26] solution of the snapshot reconstruction problem is reviewed in section
2.2.1.

Our contributions can be summarized as threefold and are presented in the rest
of the paper as follows.

In section 3, we revisit the normal equations based solution, which is used in the
DMDSP. In section 3.1, we formulate the reconstruction problem in more general-
ity by allowing weighted reconstruction error---each snapshot carries a weight that
determines its importance in the overall error. Also, the norm in the space of the
observables can be an energy norm given by a user supplied positive definite ma-
trix (e.g., inverse noise covariance, or a diagonal matrix that emphasizes snapshots
of particular interest). Then, in section 3.2, we give explicit formulas for the nor-
mal equations solutions for this weighted LS problem, and we discuss the underlying
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structure, which is an interplay of the Kronecker, Hadamard, and Khatri--Rao matrix
products. This provides an algebraic framework and a solution formula for the cases
where noise, uncertainty, and different scales/physical nature of the observables must
be taken into account. In section 3.3 we propose a new simple yet powerful mod-
ification of the implementation of the DMDSP; its polishing phase is considerably
improved by replacing the variation of the Lagrangian technique with deployment of
certain canonical projections. Using a CFD example, in section 3.4 we illustrate the
efficacy of the presented techniques.

Next, in section 4 we examine the numerical aspects of the solution via the normal
equations. From the numerical point of view, using normal equations for solving the
LS problems is an ill-advised approach, because the condition number of the problem
is squared; see, e.g., [7, section 2.1.4]. Moreover, the matrix of the LS coefficients
depends on the notoriously ill-conditioned Vandermonde matrix defined by the Ritz
values \{ \lambda \varsigma j\} , and on the nonorthonormal set of the corresponding Ritz vectors. None-
theless, the DMDSP is an important and widely used tool in the DMD computational
framework. Furthermore, a similarly structured LS problem arises in multistatic an-
tenna array processing, and the solution is again based on the normal equations [32].
To the best of our knowledge, the potential of numerical failure of this normal equa-
tions approach due to ill-conditioning has not been addressed in the literature. The
key questions are when and why are normal equations safe to use? In section 4.2,
we identify the relevant condition number and argue that the underlying Khatri--Rao
and Hadamard products' structure of the normal equations usually ensures sufficient
numerical accuracy despite potentially high condition numbers of both the Vander-
monde matrix of the Ritz values and the matrix of the Ritz vectors. To the best
of our knowledge, this aspect of the DMDSP has not been considered before, and
our results provide a precise explanation of the condition under which the normal
equation based method is safe to use. We use numerical examples (contrived small
dimensional ones, Q2D Kolmogorov flow, the Chua's circuit, and the Ikeda map) to
illustrate the applicability of our theory and to motivate and justify the development
of new algorithms that avoid squaring the condition number of the LS matrix.

The third part of our contributions, in section 5, is new LS solution methods via
the QR factorization---the corrected seminormal solution in section 5.1 and the pure
QR factorization based procedure. The key technical difficulty is efficient computa-
tion of the QR factorization of a large and structured LS matrix; this is resolved in
section 5.2 where we propose an efficient recursive scheme that exploits the Khatri--
Rao product structure involving a Vandermonde matrix. In section 5.3 we provide
an error and perturbation analysis of the QR factorization based solution and discuss
the importance of pivoting. Fine details such as using only real arithmetic in the case
of real snapshots are discussed in section 5.4. Together with detailed descriptions and
numerical analysis of the new proposed algorithms, we provide detailed blueprints for
numerical software development in the framework of the LAPACK library [1].

In the concluding remarks in section 6, we stress the importance of using the ad-
vanced numerical linear algebra and announce our work to develop high performance
software implementations of the introduced algorithms.

2. Preliminaries. For the reader's convenience, and to introduce the notation,
we briefly review the DMD, the snapshot reconstruction task (1.1)--(1.2), and the
DMDSP, which is a widely used snapshot reconstruction method in the DMD frame-
work.
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ON LS PROBLEMS WITH APPLICATIONS TO DMD A3253

2.1. DMD and its variations. The DMD, introduced in [38], is outlined in
Algorithm 1.

Algorithm 1. [Zk,\Lambda k] = DMD(Xm,Ym).

Input:
\bullet Xm = (x1, . . . ,xm),Ym = (y1, . . . ,ym) = (x2, . . . ,xm+1) \in \BbbC n\times m that
define a sequence of snapshots pairs (xi,yi \equiv \BbbA xi). (Tacit assumption is
that n is large and that m\ll n.)

1: [U,\Sigma ,\Phi ] = svd(Xm) ; \{ The thin SVD: Xm = U\Sigma \Phi \ast , U \in \BbbC n\times m, \Sigma =
diag(\sigma i)

m
i=1\} 

2: Determine numerical rank k.
3: Set Uk = U(:, 1 : k), \Phi k = \Phi (:, 1 : k), \Sigma k = \Sigma (1 : k, 1 : k)
4: Sk = ((U\ast kYm)\Phi k)\Sigma 

 - 1
k ; \{ Schmid's formula for the Rayleigh quotient U\ast k\BbbA Uk\} 

5: [Bk,\Lambda k] = eig(Sk) \{ \Lambda k = diag(\lambda j)
k
j=1; SkBk(:, j) = \lambda jBk(:, j); \| Bk(:, j)\| 2 = 1\} 

\{ We always assume the generic case that Sk is diagonalizable, i.e., that in Line 5.
the function eig() computes the full column rank matrix Bk of the eigenvectors
of Sk. In general, Bk may be ill-conditioned.\} 

6: Zk = UkBk \{ Ritz vectors\} 
Output: Zk, \Lambda k

The more intuitive companion matrix based approach [36], which is considered
numerically infeasible due to the computation with the notoriously ill-conditioned
Vandermonde matrices, can be made competitive with Algorithm 1, as shown in
[14]. Another approach, designated as Exact DMD [49], allows nonsequential data
Ym = \BbbA Xm, and it implicitly uses the matrix YmX\dagger m, where X\dagger m denotes the Moore--
Penrose generalized inverse. For a more extensive study of DMD and its variations
and applications, see, e.g., [39, 11, 20, 12, 21, 46, 43, 45, 44, 33, 3]. Recently, in [15],
we proposed an enhancement of Algorithm 1---Refined Rayleigh Ritz Data Driven
Modal Decomposition. It follows the DMD scheme, but it further allows data driven
refinement of the Ritz vectors, and it provides data driven computable residuals.

2.2. Sparse reconstruction using Ritz pairs. In matrix form, (1.1) is com-
pactly written as

(2.1) Xm =
\bigl( 
z1 z2 . . . zm

\bigr) 

\left( 
    

a1
a2

. . .

am

\right) 
    

\left( 
    

1 \lambda 1 . . . \lambda m - 1
1

1 \lambda 2 . . . \lambda m - 1
2

...
... . . .

...
1 \lambda m . . . \lambda m - 1

m

\right) 
    ,

where the coefficients aj are computed from the first column of Xm, Xm(:, 1) as

(2.2) (aj)
m
j=1 = Z\dagger mXm(:, 1).

In the framework of the Schmid's DMD, the amplitudes are usually determined by
the formula (2.2). Since Zm = UmBm (see Line 6 in Algorithm 1) and U\ast mUm = \BbbI m,
instead of applying the pseudoinverse of the explicitly computed Zm, one would use
the more efficient formula

(2.3) Z\dagger mXm(:, 1) = B - 1m (U\ast mXm(:, 1)).

For a formal proof of the existence of the representation (2.1) and relation to the
formulation via the Krylov decomposition and the Frobenius companion matrix, we
refer the reader to [14].
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The main goal of the representations (1.1), (2.1) is to reveal the underlying struc-
ture in the data. It is best achieved with an approximate representation using as few
as possible Ritz pairs (\lambda j , zj). A DMD algorithm may return k < m Ritz pairs, and
the representation cannot be exact. Ideally, the reconstruction is successful with a
small number of Ritz vectors that have small residuals (i.e., corresponding to some
eigenvectors of the underlying operator accessible only through the sequence of snap-
shots xi).

If we desire to take only the \ell < m most relevant Ritz pairs, then the question
is how to determine \ell , and what indices \varsigma 1, . . . , \varsigma \ell should be selected to achieve good
approximation:
(2.4)

Xm \approx 
\bigl( 
z\varsigma 1 z\varsigma 2 . . . z\varsigma \ell 

\bigr) 

\left( 
    

\alpha \varsigma 1

\alpha \varsigma 2

. . .

\alpha \varsigma \ell 

\right) 
    

\left( 
    

1 \lambda \varsigma 1 . . . \lambda m - 1
\varsigma 1

1 \lambda \varsigma 2 . . . \lambda m - 1
\varsigma 2

...
... . . .

...
1 \lambda \varsigma \ell . . . \lambda m - 1

\varsigma \ell 

\right) 
    \equiv Z\varsigma D\bfitalpha \BbbV \varsigma .

This seems a difficult task for practical computation. In general, here we assume
the availability of a reconstruction wizard that selects z\varsigma 1 , . . . , z\varsigma \ell so that in (2.4)
the reconstruction error \| Xm  - Z\varsigma D\bfitalpha \BbbV \varsigma \| 2F is as small as possible. An example of
such a wizard is an optimizer with (relaxed) sparsity constraints, e.g., the ADMM
(Alternating Directions Method of Multipliers) which is used in the DMDSP [26],
which we briefly review in section 2.2.1. Another strategy, proposed in [30, section 3],
is to choose modes that are dominant with respect to their influence over all snapshots.
A similar approach is used in [5].

For any strategy, once the modes are selected, instead of using the coefficients a\varsigma i
from the full reconstruction, one can achieve higher fidelity of (2.4) by recomputing
them by solving an LS problem for the new coefficients \alpha \varsigma i , with fixed z\varsigma 1 , . . . , z\varsigma \ell .
Here, optionally, we can use data driven refinements of the selected Ritz pairs (\lambda \varsigma j , z\varsigma j )
and reduce the residuals1; see [15].

2.2.1. DMDSP: Sparsity promoting DMD. One way to set up a computa-
tional procedure is to formulate it as an LS approximation with sparsity constraints

(2.5) \| Xm  - ZkD\bfitalpha \BbbV k,m\| 2F + \gamma \| \bfitalpha \| 0  - \rightarrow min
\bfitalpha 

,

where \| \bfitalpha \| 0 denotes the number of nonzero entries in the vector \bfitalpha = (\alpha i)
k
i=1 of the

new coefficients; the parameter \gamma \geq 0 penalizes nonsparsity of the solution \bfitalpha . The
measure of sparsity \| \bfitalpha \| 0 is in practical computations relaxed by using the \ell 1 norm,
\| \bfitalpha \| 1, which turns (2.5) into a convex optimization problem:

(2.6) \| Xm  - ZkD\bfitalpha \BbbV k,m\| 2F + \gamma \| \bfitalpha \| 1  - \rightarrow min
\bfitalpha 

.

In [26], for a given value of \gamma , the problem is solved in two steps:
1. Problem (2.6) is solved using the ADMM, and the optimal \bfitalpha is sparsified

by setting to zero its entries that are in modulus below a given threshold.
Let j1, . . . , js be the indices of the thus annihilated entries---they define the
sparsity pattern. Define E to be the matrix whose columns are the columns
of the identity with the indices j1, . . . , js. Then the obtained sparsity pattern
of \bfitalpha can be characterized by ET\bfitalpha = 0.

1Smaller residuals improve the performance of (1.2) when used for prediction.
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2. Once (2.6) has identified the sparsity structure, the coefficients \alpha i are com-
puted by solving the LS problem with sparsity constraint:

(2.7) \| Xm  - ZkD\bfitalpha \BbbV k,m\| 2F  - \rightarrow min
\bfitalpha 

, with the constraint ET\bfitalpha = 0.

In DMDSP terminology [26], this is the polishing part of the computation.
Since an optimal value of \gamma may be problem dependent, the above two-step procedure
is repeated over a grid of (dozens or hundreds of) values of \gamma .

An advantage of DMDSP is that it is a black-box procedure; the wizard is simply
a convex optimization solver. However, it requires suitable range for the parameter
\gamma , which, to the best of our understanding, is determined experimentally for each
particular problem.2 Further, ADMM uses the augmented Lagrangian, which requires
an additional penalty parameter \rho , which means the user must input two parameters
(see [26, section A]).

The optimization problem (2.7) is solved by variation of the Lagrangian (see [26,
Appendix C]). This can be done more efficiently, and we discuss it in section 3.3.
Further, in the case of real data, the approximant needs to be real as well; this is
naturally achieved if the selected modes appear in complex conjugate pairs. It is not
clear whether the optimizer in DMDSP is so tuned to respect this structure. The
issue of computations with real data is discussed in detail in section 5.4.

We complete this review with an important observation.

Remark 2.1. The minimizations (2.5), (2.6) look analogous to the compressed
sensing problems; in fact [26] motivated the development of DMDSP as a combina-
tion of compressed sensing and convex optimization techniques. It should be noted,
however, that the snapshot reconstruction problem (2.4) may be heavily overdeter-
mined and generically with unique solution, while in the compressed sensing frame-
work one has an underestimated LS problem and the sparsity constraint is imposed
over a manifold of solutions. These are two fundamentally different situations. We
further comment on this issue in section 5.3.1.

3. Snapshot reconstruction: Weighted LS formulation and algebraic
structure. In this section, we discuss the algebraic structure of the LS problem
that defines the coefficients \alpha j in (1.2). In section 3.1, we first introduce a more
general weighted form of the problem by assigning nonnegative weight wi to each
snapshot xi, thus determining its importance in the reconstruction. We believe that
this added functionality will prove useful in applications of the DMD (in particular
in non-autonomous setting), as well as in other applications such as, e.g., multistatic
antenna array processing, which is briefly discussed in section 3.2.2. An explicit for-
mula for the solution of the corresponding normal equation for this general weighted
problem is given in section 3.2, and in section 3.2.1 we show that the Hadamard prod-
uct structure of the normal equations originates in the Khatri--Rao product structure
of the coefficients of the LS problem. Finally, in section 3.3 we revisit the polishing
phase of the DMDSP and show that it can be implemented more efficiently.

3.1. Setting the scene: The weighted LS reconstruction problem. Sup-
pose we have selected \ell modes, reindexed so that they are the leading ones, \varsigma j = j,
j = 1, . . . , \ell , and that we seek an approximate snapshot reconstruction (1.2). The pairs
(\lambda j , zj) are approximate eigenpairs of \BbbA , e.g., the Ritz pairs. In terms of Algorithm

1, Z\ell \equiv 
\bigl( 
z1 . . . z\ell 

\bigr) 
= Uk

\widetilde B\ell with some k \times \ell matrix \widetilde B\ell , and \ell \leq k \leq min(m,n).

2See, e.g., the software [25] for test examples in [26].
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The task is to determine, for given (\lambda j , zj)'s and nonnegative weights wi, the \alpha j 's to
achieve

(3.1)

m\sum 

i=1

w2
i

\bigm\| \bigm\| \bigm\| \bigm\| xi  - 
\ell \sum 

j=1

zj\alpha j\lambda 
i - 1
j

\bigm\| \bigm\| \bigm\| \bigm\| 
2

2

 - \rightarrow min
\alpha j

.

The weights wi > 0 are used to emphasize snapshots whose reconstruction is more
important; with suitable choices of W \equiv diag(wi)

m
i=1 we can target discrete time

subintervals of particular interest or, e.g., introduce forgetting factors that give less
importance to older, or more noisy (less reliable), information.

Remark 3.1. Here we use the \| \cdot \| 2 norm as the most common choice; if one wants
to distinguish the importance of different observables (that might be of a different
physical nature, expressed in different units, on different scales, and with different
levels of uncertainty), then \| \cdot \| 2 can be replaced with an energy norm \| 

\surd 
M \cdot \| 2,

where M is positive definite and
\surd 
M stands for the upper triangular Cholesky factor,

or the positive definite square root of M. This important modification adds one new
level of technical details, and it is omitted in this paper. For a detailed analysis of
DMD in the M-induced inner product we refer the reader to [15].

3.1.1. A matrix formulation and dimension reduction. The special struc-
ture of (3.1) is best revealed in its matrix formulation. To that end, define \Lambda =
diag(\lambda j)

\ell 
j=1,

\bfitalpha =

\left( 
   

\alpha 1

\alpha 2

\cdot 
\alpha \ell 

\right) 
   , \Delta \bfitalpha =

\left( 
   

\alpha 1 0 \cdot 0
0 \alpha 2 \cdot \cdot 
\cdot \cdot \cdot 0
0 \cdot 0 \alpha \ell 

\right) 
   , \Lambda i = \BbbV \ell ,m(:, i) \equiv 

\left( 
   

\lambda i - 1
1

\lambda i - 1
2

\cdot 
\lambda i - 1
\ell 

\right) 
   ,

\Delta \Lambda i =

\left( 
   

\lambda i - 1
1 0 \cdot 0

0 \lambda i - 1
2 \cdot \cdot 

\cdot \cdot \cdot 0

0 \cdot 0 \lambda i - 1
\ell 

\right) 
   \equiv \Lambda i - 1,

and write the objective (3.1) as the function of \bfitalpha ,

(3.2) \Omega 2(\bfitalpha ) \equiv \| 
\bigl[ 
Xm  - Z\ell \Delta \bfitalpha 

\bigl( 
\Lambda 1 \Lambda 2 . . . \Lambda m

\bigr) \bigr] 
W\| 2F  - \rightarrow min,

where

(3.3)
\bigl( 
\Lambda 1 \Lambda 2 . . . \Lambda m

\bigr) 
=

\left( 
    

1 \lambda 1 . . . \lambda m - 1
1

1 \lambda 2 . . . \lambda m - 1
2

...
... . . .

...
1 \lambda \ell . . . \lambda m - 1

\ell 

\right) 
    \equiv \BbbV \ell ,m \in \BbbC \ell \times m.

Schematically, we have, assuming n > m,

\left( 
  

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

\right) 
  

\underbrace{}  \underbrace{}  
\bfX m

\approx 

\left( 
  

\bullet \bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 

\right) 
  

\underbrace{}  \underbrace{}  
Z\ell 

\Delta \bfitalpha \underbrace{}  \underbrace{}  
(  \star 0
0  \star )

\bigl( 
+ + + + +
+ + + + +

\bigr) 
\underbrace{}  \underbrace{}  
( \Lambda 1 \Lambda 2 ... \Lambda m )

.D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

69
.2

31
.4

.7
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON LS PROBLEMS WITH APPLICATIONS TO DMD A3257

Since Xm = (x1, . . . ,xm), we can rewrite the above expression as follows:

\Omega 2(\bfitalpha ) = \| 
\bigl[ \bigl( 
x1 x2 . . . xm

\bigr) 
 - Z\ell \Delta \bfitalpha 

\bigl( 
\Lambda 1 \Lambda 2 . . . \Lambda m

\bigr) \bigr] 
W\| 2F

= \| (W \otimes \BbbI n)

\left[ 
  

\left( 
  

x1

...
xm

\right) 
   - 

\left( 
  

Z\ell \Delta \bfitalpha \Lambda 1

...
Z\ell \Delta \bfitalpha \Lambda m

\right) 
  

\right] 
  \| 22 = \| 

\left( 
  

w1x1

...
wmxm

\right) 
   - 

\left( 
  

w1Z\ell \Delta \Lambda 1

...
wmZ\ell \Delta \Lambda m

\right) 
  \bfitalpha \| 22.

(3.4)

In principle, (3.4) is a standard linear LS problem that can be solved using an off-
the-shelf solver. This is certainly not optimal (here we assume n\gg m > \ell ) because it
ignores the particular structure of the coefficient matrix, which is of potentially large
dimensions mn \times \ell , not sparse, and the direct solver complexity is O(mn\ell 2) flops.
Further, to understand the numerical accuracy of the computed approximations, and
to identify relevant condition numbers, we need to take into account the structure
that involves the Ritz pars (zj , \lambda j). These issues are important, and in this section
we provide the details.

The first step is to remove the ambient space dimension n and to replace it with
\ell . To that end, let Z\ell = Q (R\bfzero ) be the QR factorization. Note that R is of full rank.

Then, using the unitary invariance of the Euclidean norm, the above can be
written as

(3.5) \Omega 2(\bfitalpha ) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left( 
  

w1Q
\ast x1

...
wmQ\ast xm

\right) 
   - 

\left( 
  

w1 (R\bfzero )\Delta \Lambda 1

...
wm (R\bfzero )\Delta \Lambda m

\right) 
  \bfitalpha 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

.

Now partition each Q\ast xi as Q
\ast xi =

\bigl( \bfg i

\bfh i

\bigr) 
where gi is \ell \times 1 and hi s (n - \ell )\times 1. The

objective function becomes

\Omega 2(\bfitalpha ) = \| (W \otimes \BbbI \ell )

\left[ 
  

\left( 
  

g1

...
gm

\right) 
   - 

\left( 
  

R\Delta \Lambda 1

...
R\Delta \Lambda m

\right) 
  \bfitalpha 

\right] 
  \| 22 +

m\sum 

i=1

w2
i \| hi\| 22(3.6)

\equiv \| (W \otimes \BbbI \ell )

\left[ 
  

\left( 
  

g1

...
gm

\right) 
   - (\BbbI m \otimes R)

\left( 
  

\Delta \Lambda 1

...
\Delta \Lambda m

\right) 
  \bfitalpha 

\right] 
  \| 22 +

m\sum 

i=1

w2
i \| hi\| 22(3.7)

\equiv \| 

\left( 
  

w1g1

...
wmgm

\right) 
   - (W \otimes R)

\left( 
  

\Delta \Lambda 1

...
\Delta \Lambda m

\right) 
  \bfitalpha \| 22 +

m\sum 

i=1

w2
i \| hi\| 22,(3.8)

where \otimes denotes the Kronecker product. Note that hi is the component of the cor-
responding xi that is orthogonal to the range of Z\ell and thus beyond the reach of
optimization with respect to \bfitalpha . Hence, we actually need the economy-size QR fac-
torization Z\ell = Q(:, 1 : \ell )R; gi = Q(:, 1 : \ell )\ast xi.

Remark 3.2. Since in a DMD framework Z\ell = Uk
\widetilde B\ell , \widetilde B\ell \in \BbbC k\times \ell , the factoriza-

tion of Z\ell is obtained from the QR factorization \widetilde B\ell = Q\prime R, where by the essential
uniqueness Q(:, 1 : \ell ) = UkQ

\prime . (Even if the columns of Z\ell are the refined Ritz vectors,

they have a representation of the form Z\ell = Uk
\widetilde B\ell , only with a different matrix \widetilde B\ell .)

Hence, the QR factorization of Z\ell is not necessarily computed explicitly from the
explicitly computed Z\ell ; the more economic way is using the QR factorization of \widetilde B\ell .

D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

69
.2

31
.4

.7
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3258 ZLATKO DRMA\v C, IGOR MEZI\'C, AND RYAN MOHR

Further, if Xm = Um\Sigma mV \ast m is the thin SVD of Xm, then

\Omega 2(\bfitalpha ) =
\bigm\| \bigm\| \bigm\| 
\Bigl[ 
Um\Sigma mV \ast m  - Uk

\widetilde B\ell \Delta \bfitalpha 

\bigl( 
\Lambda 1 \Lambda 2 . . . \Lambda m

\bigr) \Bigr] 
W
\bigm\| \bigm\| \bigm\| 
2

F
(since Uk = UmU\ast mUk)

=

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
\Sigma mV \ast m  - 

\biggl( \widetilde B\ell 

0m - k,\ell 

\biggr) 
\Delta \bfitalpha 

\bigl( 
\Lambda 1 \Lambda 2 . . . \Lambda m

\bigr) \biggr] 
W

\bigm\| \bigm\| \bigm\| \bigm\| 
2

F

=
\bigm\| \bigm\| \bigm\| 
\Bigl[ 
\Sigma kV

\ast 
k  - \widetilde B\ell \Delta \bfitalpha 

\bigl( 
\Lambda 1 \Lambda 2 . . . \Lambda m

\bigr) \Bigr] 
W
\bigm\| \bigm\| \bigm\| 
2

F
+

m\sum 

j=k+1

\sigma 2
j \| V \ast m(j, :)W\| 22,

and (as in the unweighted case considered in [26]) the reconstruction is done with
the projections of the snapshots onto the span of the leading k left singular vectors
(principal components). In the corresponding basis, the snapshots are the columns of

\Sigma kV
\ast 
k (xi \equiv (\Sigma kV

\ast 
k )(:, i)), the Ritz vectors are in \widetilde B\ell (Z\ell \equiv \widetilde B\ell ), and we may proceed

with the QR factorization \widetilde B\ell = Q\prime R, thus removing the large dimension n in the
very first step. This is included as a special case in the generic description (3.4)--(3.6)
which appears in other applications (outside the DMD framework; see, e.g., [32]), and
it is thus preferred as a general form of the structured LS problem.

Remark 3.3. An efficient alternative approach to reducing the dimension is the
QR-compressed scheme [15, section 5.2.1], which replaces the ambient space dimension
n with m + 1 even before the DMD computation. In this projected framework, the
QR factorization of Z\ell then reduces the dimension from m + 1 to \ell . This has been
successfully used in [14], where Z\ell is computed directly (without the DMD) from
the eigenvectors of the companion matrix (inverse of the Vandermonde matrix from
(2.1)). For large scale problems, parallel implementation of the QR factorization is
used in [37] as an efficient preprocessing step for the SVD in Line 1 of Algorithm 1.

3.2. Structure of the LS problem and normal equations solution. The
objective function \Omega 2(\bfitalpha ) has a very particular structure that allows a rather elegant
explicit formula [26, section II.B] for the optimal \bfitalpha via the normal equations in the
unweighted case (W = \BbbI m). Here, we generalize the formula to the weighted case.
Then, we discuss an additional structure.

Theorem 3.4. With the notation as above, the unique solution \bfitalpha of the LS prob-
lem (3.1) is

(3.9) \bfitalpha = [(R\ast R) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m)] - 1[(\BbbV \ell ,mW \circ (R\ast GW))e],

where G =
\bigl( 
g1 . . . gm

\bigr) 
, e =

\bigl( 
1 . . . 1

\bigr) T
. In terms of the original data,

(3.10) \bfitalpha = [(Z\ast \ell Z\ell ) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m)] - 1[(\BbbV \ell ,mW \circ (Z\ast \ell XmW))e].

Proof. Note that \bfitalpha actually solves
(3.11)

\| (\bfW \otimes \BbbI \ell ) [\vec{}\bfg  - S\bfitalpha ] \| 2  - \rightarrow min, where \vec{}\bfg =

\left(   \bfg 1

...
\bfg m

\right)   , S = (\BbbI m \otimes R)

\left(   \Delta \Lambda 1

...
\Delta \Lambda m

\right)   \equiv 

\left(   R\Delta \Lambda 1

...
R\Delta \Lambda m

\right)   .

Hence, the optimal \bfitalpha is given by the Moore--Penrose generalized inverse, \bfitalpha = S\dagger w\vec{}gw,
where \vec{}gw = (W \otimes \BbbI \ell )\vec{}g, Sw = (W \otimes \BbbI \ell )S, S\dagger w = (S\ast wSw)

 - 1S\ast w, i.e.,
(3.12)

\bfitalpha = S\dagger w\vec{}gw = (S\ast wSw)
 - 1S\ast w\vec{}gw =

\biggl( m\sum 

k=1

w2
k\Delta 
\ast 
\Lambda k

R\ast R\Delta \Lambda k

\biggr)  - 1 m\sum 

i=1

wi\Delta 
\ast 
\Lambda i
(wiR

\ast gi).
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ON LS PROBLEMS WITH APPLICATIONS TO DMD A3259

Further, using the Hadamard matrix product \circ and the elementwise conjugation \cdot ,
we can write

m\sum 

k=1

w2
k\Delta 
\ast 
\Lambda k

R\ast R\Delta \Lambda k
=

m\sum 

k=1

w2
k(R

\ast R) \circ (\Lambda k\Lambda 
T
k ) = (R\ast R) \circ 

m\sum 

k=1

w2
k\Lambda k\Lambda 

T
k

(3.13)

= (R\ast R) \circ (\BbbV \ell ,mW2\BbbV T
\ell ,m) = (R\ast R) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m), and(3.14)

(3.15)

m\sum 

i=1

wi\Delta 
\ast 
\Lambda i
(wiR

\ast gi) = (\BbbV \ell ,mW \circ (R\ast GW))e.

Note that Theorem 3.4 does not use the Vandermonde structure of \BbbV \ell ,m; it only
requires full row rank; similarly the triangular structure of R is not important, and
we only require R to have full column rank. Hence, its result can be stated in a more
general form.

The formula (3.9), (3.10), which appears to be new, contains the formula from
[26, section II.B] as a special unweighted case. Since the Hadamard product of two
positive definite matrices remains positive definite, the solution of (3.9) is obtained
using the Cholesky factorization of (R\ast R) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m) followed by forward and
backward substitutions. The complexity of (3.9) in terms of arithmetic operations is
dominated by O(m\ell 2) +O(\ell 3). Typically, m\gg \ell .

Relations (3.11)--(3.15), which imply (3.9), hide an elegant structure that we
discuss next in section 3.2.1.

3.2.1. On Khatri--Rao structure of the snapshot reconstruction prob-
lem. Recall that, for two column partitioned matrices A = (a1, a2, . . . , an) \in \BbbC p\times n

and B = (b1, b2, . . . , bn) \in \BbbC q\times n, their Khatri--Rao product is defined as the column-
wise Kronecker product:

(3.16) A\odot B =
\bigl( 
a1 \otimes b1 a2 \otimes b2 . . . an \otimes bn

\bigr) 
\in \BbbC pq\times n.

The following proposition contains well-known facts; it is included solely for the
reader's convenience. For a more detailed study of matrix products involved in this
section we refer the reader to [22, Chapters 4 and 5].

Proposition 3.5. The Khatri--Rao product satisfies the following relations:
\bullet For any matrices A, B, C, D of appropriate dimensions,

(3.17) (AB)\odot (CD) = (A\otimes C)(B \odot D).

\bullet For any three matrices A, B, C of appropriate dimensions and with B diag-
onal,

(3.18) vec(ABC) = (CT \odot A) diag(B).

(Recall that in general we have, for any B, vec(ABC) = (CT \otimes A)vec(B).)
\bullet For any two matrices A and B with the same number of columns,

(A\odot B)T (A\odot B) = (B \odot A)T (B \odot A) = (ATA) \circ (BTB),(3.19)

(A\odot B)\ast (A\odot B) = (B \odot A)\ast (B \odot A) = (A\ast A) \circ (B\ast B).(3.20)
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A3260 ZLATKO DRMA\v C, IGOR MEZI\'C, AND RYAN MOHR

Let \Pi be a permutation matrix whose columns are the columns of the (m\ell \times m\ell )
identity taken in the order of the following permutation \varpi \ell ,m:
(3.21)

\varpi \ell ,m =
\Bigl( 

1 2 3 ... m m+1 m+2 m+3 ... 2m ... m(\ell  - 1)+1 ... m\ell 
1 \ell +1 2\ell +1 ... (m - 1)\ell +1 2 \ell +2 2\ell +2 ... (m - 1)\ell +2 ... \ell ... \ell +(m - 1)\ell 

\Bigr) 
.

(In MATLAB, we can generate \varpi \ell ,m as

\varpi \ell ,m = reshape(reshape(1 : \ell \ast m,\ell ,m)',\ell \ast m,1),

which intuitively describes \varpi \ell ,m as transformation of indices between a column and
a row major ordering of a two dimensional array.)

Proposition 3.6. The LS problem (3.11) has the following Khatri--Rao struc-
ture:

(i) S = \Pi (R\odot \BbbV T
\ell ,m) = \BbbV T

\ell ,m \odot R, or, equivalently, S(\varpi \ell ,m, :) = R\odot \BbbV T
\ell ,m.

(ii) (R\ast R)\circ (\BbbV \ell ,m\BbbV \ast \ell ,m) = (R\odot \BbbV T
\ell ,m)\ast (R\odot \BbbV T

\ell ,m) = (\BbbV T
\ell ,m\odot R)\ast (\BbbV T

\ell ,m\odot R) = S\ast S.

(iii) For any m\times m matrix W, (W \otimes \BbbI m)S = (W\BbbV T
\ell ,m)\odot R.

Proof. The proof is straightforward.

Since \Pi is orthogonal, the problem reduces to computing the QR factorization of
R\odot \BbbV T

\ell ,m, and the objective (3.11) can be written as

(3.22) \| \vec{}g  - S\bfitalpha \| 2 \equiv \| \vec{}g  - \Pi (R\odot \BbbV T
\ell ,m)\bfitalpha \| 2 \equiv \| \Pi T\vec{}g  - (R\odot \BbbV T

\ell ,m)\bfitalpha \| 2  - \rightarrow min .

Note that \vec{}g = vec(G) and that \Pi T\vec{}g = vec(GT ), where G is from (3.15), and vec(\cdot )
denotes the operator that reshapes a matrix by stacking its columns in a tall vector.
Normal equations are attractive in this setting because of avoiding the row dimension
m\ell of the Khatri--Rao product.

3.2.2. Application in antenna array processing. The matrix LS approxi-
mation with the Khatri--Rao structure also appears in other applications. An example
is multistatic antenna array processing, where one determines the scattering coeffi-
cients \alpha i by solving \| H  - Grecdiag(\alpha i)

\ell 
i=1G

T
tr\| F  - \rightarrow min\alpha i

. Here H stands for the
multistatic data matrix, and the columns Grec(:, i) and Gtr(:, i) are the steering vec-
tors associated with wave propagation between the receiving and transmitting array,
respectively, and the ith scatterer. We refer the reader to [32], where the unweighted
(i.e., W = \BbbI ) version of (3.9) is derived as the normal equations solution based on the
properties of the Khatri--Rao product. In fact, Theorem 3.4 provides a generalization
of [32] to weighted LS. (The formulas in Theorem 3.4 do not use the fact that \BbbV \ell ,m

is a Vandermonde matrix.)

3.3. An improvement of the sparsity promoting DMDSP. In the notation
of [26], with \ell = k (i.e., using k modes, where k is the dimension of the POD basis),
we can write \Omega 2(\bfitalpha ) in the unweighted case (W = \BbbI m) as

(3.23) \Omega 2(\bfitalpha ) = \bfitalpha \ast \BbbP \bfitalpha  - q\ast \bfitalpha  - \bfitalpha \ast q+ \| \Sigma k\| 2F , where \BbbP = (Z\ast kZk) \circ (\BbbV k,m\BbbV \ast k,m),

and q = diag(\BbbV k,mVk\Sigma kBk), where Zk = UkBk and Bk is the matrix of the Ritz
vectors computed in Line 5 of Algorithm 1.

Remark 3.7. Let us compare this q and the corresponding q\bfzero = [(\BbbV k,m\circ (Z\ast kXm))e]
in relation (3.10) (with \ell = k and W = \BbbI m). Since Z\ast kXm = B\ast k\Sigma kV

\ast 
k , by [22, Lemma

5.1.3], we have

q\bfzero = [(\BbbV k,m \circ (B\ast k\Sigma kV
\ast 
k ))e] = diag(\BbbV k,m(B\ast k\Sigma kV

\ast 
k )

T = diag(\BbbV k,mVk\Sigma kBk) = q.
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ON LS PROBLEMS WITH APPLICATIONS TO DMD A3261

The constrained problem (2.7) (\Omega 2(\bfitalpha )  - \rightarrow min, ET\bfitalpha = 0, where the k \times s
matrix E is described in section 2.2.1) is in the polishing phase of DMDSP solved via
the variation of the Lagrangian (see [26, Appendix C]), which yields the augmented
(k + s)\times (k + s) system of equations

(3.24)

\biggl( 
\BbbP E
ET 0

\biggr) \biggl( 
\bfitalpha 
\bfitnu 

\biggr) 
=

\biggl( 
q
0

\biggr) 

for the amplitudes \bfitalpha and the vector of Lagrange multipliers \bfitnu . The amplitudes are
then explicitly expressed as (see [26, Appendix C] and [25])

(3.25) \bfitalpha =
\bigl( 
\BbbI k 0

\bigr) 
\Biggl[ \biggl( 

\BbbP E
ET 0

\biggr)  - 1\biggl( 
q
0

\biggr) \Biggr] 
.

A more efficient procedure is to write \bfitalpha as \bfitalpha = E\bot \bfitbeta , where E\bot \in \BbbC k\times (k - s) con-
tains the remaining columns of the identity (complementary to the columns of E),
and \bfitbeta \in \BbbC k - s is a new (unconstrained) variable. The objective function now reads
\Omega 2(\bfitalpha )ET\bfitalpha =\bfzero \equiv \Omega 2(\bfitbeta ) = \bfitbeta \ast (E\ast \bot \BbbP E\bot )\bfitbeta  - (E\ast \bot q)\ast \bfitbeta  - \bfitbeta \ast (E\ast \bot q)+\| \Sigma k\| 2F , where E\ast \bot \BbbP E\bot 
is a (k  - s) \times (k  - s) main submatrix of \BbbP , and the explicit solution is (cf. Theorem
3.4)

(3.26) \bfitalpha = E\bot 
\bigl[ 
(E\ast \bot \BbbP E\bot ) - 1(E\ast \bot q)

\bigr] 
.

Schematically, the coefficient matrices of the linear systems in (3.25) and (3.26) can
be illustrated as follows:
(3.27)

\biggl( 
\BbbP E
ET 0

\biggr) 
=

\left( 
         

\ast \ast \ast \ast \ast \ast \ast \ast \bfone 0 0 0 0 0
\ast \circledast \circledast \circledast \ast \ast \circledast \circledast \circledast \ast \ast \ast 0 0 0 0 0 0
\ast \ast \ast \ast \ast \ast \ast \ast 0 \bfone 0 0 0 0
\ast \ast \ast \ast \ast \ast \ast \ast 0 0 \bfone 0 0 0
\ast \circledast \circledast \circledast \ast \ast \circledast \circledast \circledast \ast \ast \ast 0 0 0 0 0 0
\ast \ast \ast \ast \ast \ast \ast \ast 0 0 0 \bfone 0 0
\ast \ast \ast \ast \ast \ast \ast \ast 0 0 0 0 \bfone 0
\ast \ast \ast \ast \ast \ast \ast \ast 0 0 0 0 0 \bfone 
\bfone 0 0 0 0 0 0 0 \bfzero \bfzero \bfzero \bfzero \bfzero \bfzero 
0 0 \bfone 0 0 0 0 0 \bfzero \bfzero \bfzero \bfzero \bfzero \bfzero 
0 0 0 \bfone 0 0 0 0 \bfzero \bfzero \bfzero \bfzero \bfzero \bfzero 
0 0 0 0 0 \bfone 0 0 \bfzero \bfzero \bfzero \bfzero \bfzero \bfzero 
0 0 0 0 0 0 \bfone 0 \bfzero \bfzero \bfzero \bfzero \bfzero \bfzero 
0 0 0 0 0 0 0 \bfone \bfzero \bfzero \bfzero \bfzero \bfzero \bfzero 

\right) 
         

, E\ast \bot \BbbP E\bot =
\bigl( \circledast \circledast \circledast \circledast \circledast \circledast 
\circledast \circledast \circledast \circledast \circledast \circledast 

\bigr) 
, E\bot =

\left( 
  

0 0
\bfone 0
0 0
0 0
0 \bfone 
0 0
0 0
0 0

\right) 
  .

Remark 3.8. To appreciate the difference between (3.25) and (3.26), consider for
example k = m = 1200 and only \ell = 30 modes. The augmented system in (3.25) is
of dimension 1200 + 1170 = 2370, while the same result is obtained from the system
(3.26) of dimension 30. Given the cubic complexity of the solution of linear systems,
the speedup of (3.26) over (3.25) is considerable. It should be noted that (3.24)
is a particular case of the saddle point problem that is solved by specially tailored
methods; for an overview we refer the reader to [4]; see also, e.g., [19]. However, our
proposed alternative (3.26) is simpler and much more efficient.

Remark 3.9. The same scheme applies in the more general case with arbitrary
full column rank matrix E. The only technical difference is in constructing the com-
plement E\bot . Let E = Q (R\bfzero ) \equiv 

\bigl( 
Q1 Q2

\bigr) 
(R\bfzero ) be the full QR factorization. It is then

clear that we can take E\bot = Q2, and the above procedure applies verbatim.

3.4. An example: Q2D Kolmogorov flow. We illustrate the discussion in
this section using a concrete numerical example. The goals are twofold:

(i) to show the importance of recomputing the coefficients from the full recon-
struction (1.1) to achieve an improved approximation (1.2) in the LS sense, and the
performance of the normal equations;
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(ii) to illustrate the benefits of using weights (3.1) to emphasize the importance
of a particular subset of the data snapshots, and to test the solution formula from
Theorem 3.4.

For a reconstruction \widehat xi of xi, we use the relative error \epsilon i = \| \widehat xi  - xi\| 2/\| xi\| 2 as
an accuracy measure.3 Recall that the LS procedure minimizes the sum of squares\sum 

i \| \widehat xi  - xi\| 22, so that in the case of large variations in the norms \| xi\| 2, the small-
est xi's might be poorly reconstructed; this can be improved by suitable weighting
coefficients wi.

Further, we might be interested in a particular time interval, and the data snap-
shots with the corresponding discrete indices can be given larger weights in (3.1). We
illustrate this with a CFD example.

Example 3.10. We use the simulation data of a 2D model obtained by depth-
averaging the Navier--Stokes equations for a shear flow in a thin layer of electrolyte
suspended on a thin lubricating layer of a dielectric fluid; see [48, 41] for more detailed
description of the experimental setup and numerical simulations.4 The data represent
401 snapshots of the vorticity field on a rectangular domain, discretized using a 359\times 
279 uniform grid. The DMD is computed using the Schmid DMD (Algorithm 1), and
the companion matrix based version (designated as Krylov+DFT) that works with
the original Krylov sequence and uses the discrete Fourier transformation (DFT) (see
[14]). We selected \ell modes by taking the indices of the \ell absolutely dominant Ritz
values, and with suitable weights wi we enforced higher accuracy on selected subsets
of the snapshots. Sample outputs are given in Figure 3.1.

Fig. 3.1. (Example 3.10) The relative errors \epsilon i of the reconstruction of the m = 400 snapshots
using \ell = 20 and \ell = 15 modes. In all cases, the errors of the Schmid DMD and the Krylov+DFT
algorithm (with the coefficients from the full reconstruction (1.1)) are nearly the same, so the graphs
overlap. Recomputing the coefficients using the normal equation significantly reduces the error (-.,
Krylov+DFT+NE). The blue curves show the effects of weighting to the reconstruction error. The
wi's are set to one except (i) the left and the central panels: w1 = \cdot \cdot \cdot = w50 = 10; (ii) the rightmost
panel: w200 = \cdot \cdot \cdot = w250 = 10. (Color available online.)

In Example 3.10, the coefficients computed by sparsifying the solution of (3.25)
and, more efficiently,5 by solving the normal equations (i.e., solving (3.26)) agree up to
O(10 - 14). In the next section, we analyze the subtle numerical details of the solution
of the normal equations.

3In a more general setting, the error would be measured in an appropriate energy norm; see
Remark 3.1.

4We thank Michael Schatz, Balachandra Suri, Roman Grigoriev, and Logan Kageorge from the
Georgia Institute of Technology for providing us with the data.

5cf. Remark 3.8.
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4. Sensitivity analysis of normal equations method. Although elegant and
efficient, the formula (3.9) has a drawback typical of normal equation based LS solu-
tions; it squares the condition number (\kappa 2(R

\ast R) = \kappa 2(R)2 and \kappa 2(\BbbV \ell ,mW2\BbbV \ast \ell ,m) =

\kappa 2(\BbbV \ell ,mW)2) and uses a Cholesky factorization based solver with the coefficient ma-

trix C \equiv (R\ast R) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m). In theory, by a Schur theorem [22, Theorem 5.2.1],
the Hadamard product of a positive definite matrix and a positive semidefinite matrix
with positive diagonal is positive definite, and thus C possesses the Cholesky factor.
In section 4.1 we show by example that this is not necessarily true in finite precision
(floating point) computation. Using perturbation analysis, in section 4.2 we identify
the relevant condition numbers, which behave (due to their scaling invariance) better
than the standardly used condition numbers. Further, we explain how the Hadamard
product structure of C improves this condition number and thus allows accurate
computation in cases deemed ill-conditioned by the classical perturbation theory. We
conclude this section in section 4.3, with a simple example that illustrates the need
for an alternative to the normal equations, and with a decision tree for switching to
a new proposed QR factorization based algorithm.

4.1. Limitations of normal equations. In extremely ill-conditioned cases,
however, it can happen that both computed and stored matricesR\ast R and \BbbV \ell ,mW2\BbbV \ast \ell ,m
are exactly singular (or even indefinite) so that the Cholesky factorization of C might
fail. Recall that, in finite precision computation, the Cholesky factorization may fail
even if the matrix stored in the machine memory is exactly positive definite. More-
over, the factorization may even succeed with an indefinite matrix on input. We refer
the reader to [13] for details on computing the Cholesky factorization in floating point
arithmetic.

Hence, the formula (3.9) should be deployed with great care, and its sensitivity
must be well understood as it is used in a variety of applications.

The following example, although contrived, illustrates the above discussion and
should be enough to call into question the scope of applicability of the normal equa-
tions.

Example 4.1. (All computations done in MATLAB R2015.a, with the double pre-
cision roundoff unit \bfitvarepsilon = eps=2.220446049250313e-16.) Let \ell = 3, m = 4, \xi =

\surd 
\bfitvarepsilon ,

\lambda 1 = \xi , \lambda 2 = 2\xi , and \lambda 3 = 0.2, so that the Vandermonde section \BbbV \ell ,m equals

\BbbV \ell ,m =
\Bigl( 

1.000000000000000e+00 1.490116119384766e - 08 2.220446049250313e - 16 3.308722450212111e - 24
1.000000000000000e+00 2.980232238769531e - 08 8.881784197001252e - 16 2.646977960169689e - 23
1.000000000000000e+00 2.000000000000000e - 01 4.000000000000001e - 02 8.000000000000002e - 03

\Bigr) 
,

and let the triangular factor R be

R =

\left( 
 
1 1 1
0 \xi /2 \xi 
0 0 \xi 

\right) 
 =

\Bigl( 
1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00

0 7.450580596923828e - 09 1.490116119384766e - 08
0 0 1.490116119384766e - 08

\Bigr) 
.

Set W = \BbbI m. From the singular values of \BbbV \ell ,m and R, computed as

\sigma i(\BbbV \ell ,m) \sigma i(R)
1 1.736092504099537e+ 00 1.732050807568878e+ 00
2 1.662733207986230e - 01 1.555891180151553e - 08
3 2.105723035894610e - 09 4.119745457168918e - 09

,

we see that their condition numbers are of the order of 1/
\surd 
\bfitvarepsilon , which leaves the possibil-

ity of computation (involving R and \BbbV \ell ,m) with an O(
\surd 
\bfitvarepsilon ) accuracy; in the IEEE 64 bit
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arithmetic this means seven to eight decimal places. Moreover, both \BbbV \ell ,m and R are
of full rank and the closest rank deficient matrices are at distances \sigma 3(\BbbV \ell ,m) > 10 - 9

and \sigma 3(R) > 10 - 9, respectively. Further, since both matrices are entrywise nonneg-
ative, both \BbbV \ell ,m\BbbV \ast \ell ,m and R\ast R are computed to nearly full machine precision6; the

same holds for C = (R\ast R) \circ (\BbbV \ell ,m\BbbV \ast \ell ,m). Although all three matrices are by design
positive definite and computed in each entry to full machine precision, none of them
is numerically positive definite; the Cholesky factorization fails on each of them:

?`?` chol(Vlm*Vlm')

Error using chol

Matrix must be positive definite.

?`?` chol(R'*R)

Error using chol

Matrix must be positive definite.

?`?` chol((R'*R).*(Vlm*Vlm'))

Error using chol

Matrix must be positive definite.

Hence, the normal equation solver (which assumes positive definite linear system)
might fail; and even if it succeeded the result might be unacceptably inaccurate.

On the other hand, the unweighted form (W = \BbbI m) of the formula (3.9) has
been successfully used in the computational DMD framework, despite the fact that
it is based on normal equation (an ill-advised approach) that involves potentially ill-
conditioned matrices. We offer an explanation and provide a way to estimate a priori
whether this method can produce a sufficiently accurate result.

4.2. Condition number estimates. In some cases, the structure of the per-
turbations (e.g., backward error in matrix operations in finite precision arithmetic)
allows condition numbers that are invariant under certain scalings by diagonal matri-
ces and thus potentially much smaller than the traditional condition number. This
is true, in particular, for computations with positive definite matrices, and in this
subsection we prove that scaling invariance of the relevant condition number is the
key for understanding numerical properties of the normal equations based solution of
the reconstruction problem (1.2).

4.2.1. Review of perturbation theory for the Cholesky factorization
and positive definite systems. Based on [13], we know that floating point Cholesky
factorization C = LL\ast (L lower triangular with positive diagonal) of C is feasible if 7

the matrix Cs = (cij/
\surd 
ciicjj)

\ell 
i,j=1 is well conditioned, i.e., if (roughly) \| C - 1s \| 2 < 1/\bfitvarepsilon .

Further, if \widetilde L is the computed Cholesky factor, then \widetilde L\widetilde L\ast = C+\delta C, where the backward
error \delta C = (\delta cij)

\ell 
i,j=1 of the computed factorization is such that

(4.1) max
i,j

| \delta cij | \surd 
ciicjj

\leq O(\ell )\bfitvarepsilon .

If we set DC = diag(
\surd 
cii)

\ell 
i=1, then the relation above can be written as

(4.2) \widetilde L\widetilde L\ast = C + \delta C = DC(Cs +D - 1C \delta CD - 1C )DC , Cs = D - 1C CD - 1C ,

6In this example, there are no proper subtractions, and each entry in both matrices is approx-
imated with the corresponding floating point number up to an O(\bfitvarepsilon ) relative error---practically the
best one can hope for.

7Actually, if no additional structure is assumed, here we have an ``if and only if."" This means
that, in the absence of additional properties such as sparsity or sign distribution of matrix entries,
the failure of the Cholesky decomposition means that the matrix cannot be considered numerically
positive definite.
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where the entries ofD - 1C \delta CD - 1C are estimated by (4.1). Note that Cs has unit diagonal
and that all its off-diagonal entries are in absolute value below one.

By [17, Theorem 3.1], we can write \widetilde L = L(\BbbI +\Gamma ), where \BbbI +\Gamma is lower triangular

with positive diagonal and the size of the multiplicative error (note: \delta L \equiv \widetilde L - L = L\Gamma )
can be bounded by

(4.3) \| \Gamma \| 2 \leq O(\ell log2 \ell )\bfitvarepsilon \| C - 1s \| 2 \leq O(\ell log2 \ell )\bfitvarepsilon \kappa 2(Cs).

Further, if we solve the linear system Cx = b \not = 0 using the Cholesky factor in the
forward and backward substitutions, then the computed solution \widetilde x satisfies (see [13,
Theorem 2.1])

(4.4)
\| DC(\widetilde x - C - 1b)\| 2

\| DC\widetilde x\| 2
\leq g(\ell )\bfitvarepsilon \kappa 2(Cs),

where g(\ell ) is a modest function of the dimension. Note that this implies component-
wise error bound for each \widetilde xi \not = 0:

(4.5)
| \widetilde xi  - (C - 1b)i| 

| \widetilde xi| 
\leq 
\biggl[ \| DC\widetilde x\| 2\surd 

cii| \widetilde xi| 

\biggr] 
g(\ell )\bfitvarepsilon \kappa 2(Cs), where

\biggl[ \| DC\widetilde x\| 2\surd 
cii| \widetilde xi| 

\biggr] 
\geq 1.

For further discussion we refer the reader to [13].
Hence, it is the scaled condition number \kappa 2(Cs) that determines the sensitivity

to perturbations and the accuracy of the computed amplitudes, and not \kappa 2(C). This
is important because of the following theorem by Van der Sluis [50].

Theorem 4.2. Let H \in \BbbC n\times n be a positive definite Hermitian matrix, DH =
diag(

\surd 
Hii), and Hs = D - 1H HD - 1H . Then \kappa 2(Hs) \leq nminD \kappa 2(DHD), where the

minimum is taken over all diagonal matrices D.

Remark 4.3. \kappa 2(Cs) can be at most \ell times larger than \kappa 2(C), and it can be much
smaller.

4.2.2. An estimate of the scaled condition number \bfitkappa \bftwo (\bfitC \bfits ). In our case,
C = A\circ B, with A = R\ast R, B = \BbbV \ell ,mW2\BbbV \ast \ell ,m, and it is important to understand how
\kappa 2(Cs) depends on A and B.

Theorem 4.4. Let A and B be Hermitian positive semidefinite matrices with pos-
itive diagonal entries, and let C = A \circ B. If As = (aij/

\surd 
aiiajj), Bs = (bij/

\sqrt{} 
biibjj),

and Cs = (cij/
\surd 
ciicjj), then

(4.6) max(\lambda min(As), \lambda min(Bs)) \leq \lambda i(Cs) \leq min(\lambda max(As), \lambda max(Bs)).

In particular, \| C - 1s \| 2 \leq min(\| A - 1s \| 2, \| B - 1s \| 2) and \kappa 2(Cs) \leq min(\kappa 2(As), \kappa 2(Bs)). If
A or B is diagonal, all inequalities in this theorem become equalities.

Proof. The key observation is that Cs = As \circ Bs, and the proof completes by
invoking [22, Theorem 5.3.4], which states the following general property of the Ha-
damard product:

\lambda min(As)\lambda min(Bs) \leq min
i
(As)ii\lambda min(Bs) \leq \lambda i(Cs) \leq max

i
(As)ii\lambda max(Bs)

\leq \lambda max(As)\lambda max(Bs),

in which we can also swap the roles of As and Bs. Finally, note that (As)ii = 1 for
all i.

D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

69
.2

31
.4

.7
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3266 ZLATKO DRMA\v C, IGOR MEZI\'C, AND RYAN MOHR

Remark 4.5. It should be intuitively clear that the Hadamard product C = A\circ B
of a positive definite and a positive semidefinite matrix with nonzero diagonal should
not worsen the scaled condition number, i.e., that \kappa 2(Cs) is expected to be better than
both \kappa 2(As) and \kappa 2(Bs). Indeed, Cs has unit diagonal and the off-diagonal entries

are (Cs)ij =
cij\surd 
ciicjj

=
aij\surd 
aiiajj

bij\surd 
biibjj

= (As)ij(Bs)ij , where by the (semi)definiteness

of A and B both factors on the right-hand side are in modulus below one. That
is, the Hadamard product increases the dominance of the diagonal of Cs over any
off-diagonal position, as compared to the dominance of the corresponding diagonal
entries in As and Bs. Hence, it is possible that \kappa 2(Cs)\ll min(\kappa 2(As), \kappa 2(Bs)).

In the following example we illustrate such a situation, where R\ast R and \BbbV \ell ,m\BbbV \ast \ell ,m
are so close to the boundary of the cone of positive definite matrices that they nu-
merically appear as indefinite, but their Hadamard product possesses a numerical
Cholesky factor.

Example 4.6. With the notation of Example 4.1, we use the same \BbbV \ell ,m but change
the matrix R to

R =

\left( 
 
1 1 1
0 \xi \xi 
0 0 \xi /2

\right) 
 =

\Bigl( 
1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00

0 1.490116119384766e - 08 1.490116119384766e - 08
0 0 7.450580596923828e - 09

\Bigr) 
.

If we repeat the experiment with the Cholesky factorizations, we obtain

?`?` chol(Vlm*Vlm')

Error using chol

Matrix must be positive definite.

?`?` chol(R'*R)

Error using chol

Matrix must be positive definite.
?`?` TC = chol((R'*R).*(Vlm*Vlm'))

TC =

1.000000000000000e+00 1.000000000000000e+00 1.000000002980232e+00

0 1.490116119384765e-08 1.999999880790710e-01

0 0 4.079214149695062e-02

The condition number of TC is estimated to 8.2 \cdot 108, and its inverse is used in back-
ward and forward substitutions when solving the normal equations; see (3.9). Note,
however, that in this case \kappa 2(Cs)\bfitvarepsilon > 2, and perturbation theory [13, 17] provides no
guarantee for the accuracy of the computed Cholesky factor. (In fact, in Example
4.12 below, we argue that TC is a pretty bad approximation.)

Corollary 4.7. Let C \equiv (R\ast R) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m), Cs = (cij/
\surd 
ciicjj). Further,

let R = Rc\Delta r and \BbbV \ell mW = \Delta v(\BbbV \ell mW)r with diagonal scaling matrices \Delta r and \Delta v

such that Rc has unit columns and (\BbbV \ell mW)r has unit rows (in Euclidean norm).
Then \kappa 2(Cs) \leq min(\kappa 2(Rc)

2, \kappa 2((\BbbV \ell ,mW)r)
2).

Proof. Note that, with the notation A = R\ast R, B = \BbbV \ell ,mW2\BbbV \ast \ell ,m, we can apply
Theorem 4.4, where we have As = R\ast cRc, Bs = (\BbbV \ell mW)r(\BbbV \ell ,mW)\ast r .

4.2.3. Error analysis of computing \bfitC in floating point arithmetic. The
condition number \kappa 2(Cs) from Corollary 4.7 will determine the accuracy if we can
compute C so that the error \delta 0C in computing C explicitly is such that | \delta 0cij | /\surd ciicjj
is small for all i, j.

Proposition 4.8. Let A = X\ast X, B = Y \ast Y with X \in \BbbC mx\times \ell , Y \in \BbbC my\times \ell , and
let C = A \circ B, and \widetilde C = C + \delta 0C = computed(computed(X\ast X) \circ computed(Y \ast Y )).
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Then, for all i, j,

| \delta 0cij | \leq (O(mx\bfitvarepsilon ) +O(my\bfitvarepsilon ) +O(mxmy\bfitvarepsilon 
2))
\surd 
ciicjj .

Proof. We follow the standard steps of floating point error analysis:

computed(X\ast X) = A+ \delta A, | \delta A| \leq O(mx\bfitvarepsilon )| X\ast | | X| ; | \delta aii| \leq O(mx\bfitvarepsilon )aii,

and, by the Cauchy--Schwarz inequality, | \delta aij | \leq O(mx\bfitvarepsilon )
\surd 
aiiajj . An analogous claim

holds for the matrix computed(Y \ast Y ) = B + \delta B. Altogether,

\widetilde cij = (aij + \delta aij)(bij + \delta bij)(1 + \epsilon ij) = (cij + \delta aijbij + aij\delta bij + \delta aij\delta bij)(1 + \epsilon ij),

where (since cii = aiibii and | bij | \leq 
\sqrt{} 
biibjj) | \delta aijbij | \leq O(mx\bfitvarepsilon )

\surd 
aiiajj

\sqrt{} 
biibjj =

O(mx\bfitvarepsilon )
\surd 
ciicjj . The remaining error terms are bounded in the same way.

In finite precision computation, we work with \widetilde C = C + \delta 0C, so that the back-
ward error (4.1), (4.2) applies to \widetilde C. The scaled condition number \kappa 2( \widetilde Cs) ( \widetilde Cs =

(\widetilde cij/
\sqrt{} 
\widetilde cii\widetilde cjj)) will be moderate if \kappa 2(Cs) is moderate, so all conclusions apply to \widetilde C

as well. Since both \delta 0C and \delta C are of the same type, the overall perturbation in C
and its Cholesky factor is bounded in the same way. We omit the details for the sake
of brevity.

4.2.4. Numerical examples. According to Theorem 4.2 and Remark 4.3,
\kappa 2(Cs) is potentially much smaller than \kappa 2(C), and, by the discussion in section 4.2,
the results may be much better than predicted by the classical perturbation theory
based on \kappa 2(C). And, we can very precisely determine whether the normal equation
solution will succeed by computing/estimating \kappa 2(Cs). In addition to the contrived
Example 4.1 and Example 4.6, we use concrete dynamical systems to show how our
theoretical analysis applies in nontrivial computations. We first use the same type of
turbulence data as in Example 3.10.

Example 4.9. The data8 consists of nt = 1201 snapshots of dimensions nx \times ny

(nx = ny = 128), representing the (scalar) vorticity field. The nx \times ny \times nt tensor is
unfolded into nx \cdot ny\times nt matrix (x1, . . . ,xnt), and Xm is of dimensions 16384\times 1200.

After performing a DMD analysis, we have computed the values of the condition
numbers of C \equiv (R\ast R) \circ (\BbbV \ell ,m\BbbV \ast \ell ,m) and Cs as follows: \kappa 2(C) > 1087 \gg \kappa 2(Cs) \approx 
8.50e+01. Using (4.3), we can conclude that the Cholesky factor of C can be computed
to high accuracy, despite the fact that \kappa 2(C) \gg 1/\bfitvarepsilon . A closer look reveals that the
high condition number is due to grading; i.e., it is in the diagonal DC . More precisely,
as a result of the Ritz values being from both sides of the unit circle, the diagonal
entries of C vary over several orders of magnitude, from (roughly) 1.6e+00 to 4.5e+87.
The absolute values of the computed Ritz values go (roughly) from 0.63 to 1.08.

Following the discussion in Remark 4.5 and Examples 4.1 and 4.6, the bound of
Corollary 4.7 is in this example (luckily) an extreme overestimate because \kappa 2(Rc)

2 \approx 
3.05e+13, \kappa 2((\BbbV \ell ,m)r)

2 \approx 9.62e+14. However, Example 4.1 illustrates the danger of
potential failure of the formula (3.9).

Example 4.9 illustrates the theory in this section---high spectral condition num-
bers of R\ast R and \BbbV \ell ,m\BbbV \ast \ell ,m do not preclude accurate solution of the normal equations.

What matters is that both \kappa 2(Rc)
2 \approx 3.05e+13 and \kappa 2((\BbbV \ell ,m)r)

2 \approx 9.62e+14 are

8We used this dataset in [14] for testing a new algorithm for representing the snapshots using
the Koopman modes.
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below 1/\bfitvarepsilon \approx 4.50e+15, so both factors in the Hadamard product are positive defi-
nite. Note how close these condition numbers are to the critical value at which the
(numerical) positive definiteness cannot be guaranteed. In the next example, the con-
dition number of \BbbV \ell ,m\BbbV \ast \ell ,m crosses the critical threshold, but normal equations can
be used thanks to the preconditioning mechanism discussed in section 4.2.2 and the
error estimates in sections 4.2.1 and 4.2.3.

Example 4.10. Chua's circuit is an electronic circuit that exhibits chaos, and it
is an excellent example for mathematical study of the chaos-producing mechanism
[27, 28]. We ran a simulation of the circuit for t \in [0, 50], with the initial condition
( - 0.5, 0.5, 0) and rearranged the time snapshots (taken with time step \delta t = 10 - 3) in
a tall 147903\times 700 Hankel matrix H, thus obtaining an approximate Krylov sequence
(the columns of H, xi = H(:, i)) of the Koopman operator as in [2, 8]. The MATLAB
function chol() failed to compute the Cholesky factor of \BbbV \ell ,m\BbbV \ast \ell ,m; the condition
number of the scaled matrix (as defined in section 4.2.1) was estimated as 6.9e+16.
Nonetheless, since \kappa 2(R

\ast 
cRc) \approx 1.4e+07, using Corollary 4.7 and Proposition 4.8, we

know that the normal equations approach is feasible; in fact, \kappa 2(Cs) < 100.

Example 4.11. The Ikeda discrete dynamical system [23, 24], which models the
evolution of laser light across a nonlinear optical resonator, provides another nontrivial
example that illustrates the applicability of our theory, the limitations of the normal
equations approach,9 and the need for a more robust method. We used the real
(two-dimensional) form of the Ikeda map (see, e.g., [35])

xn+1 = \bfitphi +\bfitpsi (xn cos(\bfitrho  - \bfitomega 
1+x2

n+y2
n
) - yn sin(\bfitrho  - \bfitomega 

1+x2
n+y2

n
))

yn+1 = \bfitpsi (xn sin(\bfitrho  - \bfitomega 
1+x2

n+y2
n
) - yn cos(\bfitrho  - \bfitomega 

1+x2
n+y2

n
))

, n = 0, 1, . . . ,

with \bfitphi = 1, \bfitpsi = 0.6, \bfitrho = 0.4, \bfitomega = 6, and initial condition (x0, y0). We generated
3500 snapshots and arranged them in the 5802 \times 600 Hankel matrix, similarly as in
Example 4.10. Keeping these parameters fixed, any of the scenarios illustrated in
Examples 4.1 and 4.6 can be realized with suitable choices of initial conditions. So,
for instance, with (x0, y0) = (1, 2), both \BbbV \ell ,m\BbbV \ast \ell ,m and R\ast R are so ill-conditioned that

Cholesky factorizations fail, but the Cholesky factorization of C = (R\ast R)\circ (\BbbV \ell ,m\BbbV \ast \ell ,m)
completed without error. However, the condition number of the scaled matrix Cs is
\kappa 2(Cs) \approx 1.3\cdot 1015 (\kappa 2(C) \approx 3.5\cdot 1016) and no accuracy can be expected in the standard
sixteen digit arithmetic. On the other hand, the accuracy of the QR factorization
based methods is governed by

\sqrt{} 
\kappa 2(Cs), which means that (roughly) eight digits of

accuracy are feasible.10 If we start with (x0, y0) = ( - 2000, - 2500), then none of
\BbbV \ell ,m\BbbV \ast \ell ,m, R\ast R and C = (R\ast R) \circ (\BbbV \ell ,m\BbbV \ast \ell ,m) can be considered numerically definite;
finite precision Cholesky factorizations fail, and, in particular, the normal equations
method based on the Cholesky factorization of C fails. In this example, \kappa 2(Cs) \approx 1017.
It should be noted that these results are highly sensitive to implementation details11

and initial conditions; if we change y0 to  - 2501, the normal equations have the
condition number \kappa 2(Cs) \approx 7.2 \cdot 108, which allows reasonable accuracy in double
precision, but none in the single precision (eight digit) arithmetic.

9See [7, section 2.1.4].
10The advantage of this smaller condition number is even more important in single precision

arithmetic, which is an attractive option in large scale computation using massively parallel GPU
architectures; see, e.g., [47].

11We used a QR-compressed implementation of the DMD; see Remark 3.3.
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ON LS PROBLEMS WITH APPLICATIONS TO DMD A3269

4.3. A decision tree. Equipped with the results from section 4.2, we can devise
a strategy that chooses the most efficient procedure to deliver the output to the
accuracy warranted by the data on the input. Our goal is to develop a reliable
software tool that is capable of computing to reasonable accuracy even in the most
extreme cases. Since the scaled condition number \kappa 2(Cs) has been identified as the
key parameter; we can safely proceed with solving the normal equations if we know
a priori that it is moderate. One way to establish that is to use the upper triangular
factor R in the QR factorization Z\ell = Q (R\bfzero ) of the approximate eigenvectors (e.g.,
Ritz vectors or the refined Ritz vectors) that are usually computed as normalized,
i.e., \| Z\ell (:, i)\| 2 = 1 and Rc \equiv R. Independent of that normalization, by Corollary 4.7,
the condition number that matters is \kappa 2(Rc) \equiv \kappa 2((Z\ell )c), where (Z\ell )c denotes the
matrix Z\ell after normalizing its columns.

Recall that the condition number of an \ell \times \ell triangular matrix can be efficiently
estimated at an O(\ell 2) cost; see, for instance, the subroutine XPOCON() in LAPACK.

Moreover, since Z\ell = Uk
\widetilde B\ell (see Remark 3.2) and since R can be computed directly

from the O(k\ell 2) QR factorization of the k \times \ell matrix \widetilde B\ell , we can estimate \kappa 2(Rc) at
the cost of O(k\ell 2). If R is already available (computed for some other use), then the
cost of estimating \kappa 2(Rc) is only O(\ell 2), and in that case we consider the estimate
available as well. Hence, if one estimates that \kappa 2(Rc)

2 \ll 1/\bfitvarepsilon , then one can safely use
the normal equation solution (3.9).

If an estimate for \kappa 2(Rc)
2 is not available (e.g., R not computed) or if one con-

cludes that \kappa 2(Rc)
2 \gtrapprox 1/\bfitvarepsilon , then one goes on and computes C and an estimate for

\kappa 2(Cs), which is then tested against the threshold 1/\bfitvarepsilon . We can organize this in a
decision tree as in Algorithm 2. It is designed for the case when the dimensions are
sufficiently large and the efficiency of the formula (3.9) is desirable, but not at any
price---it is deployed only if it can warrant a certain level of accuracy.

Algorithm 2. Decision tree for selecting a solution method for (3.11).

Input:
\bullet R, \Lambda , \ell , m
\bullet Tolerance level tol \in (1, 1/\bfitvarepsilon ) for acceptable condition number estimate.

1: if R available and \kappa 2(Rc)
2 \leq tol then

2: Solve (3.11) by normal equations, \bfitalpha = [(R\ast R) \circ (\BbbV \ell ,mW\BbbV \ast \ell ,m)] - 1[(\BbbV \ell ,mW \circ 
(Z\ast \ell XmW))e]

3: else
4: Compute C = (Z\ast \ell Z\ell ) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m) and estimate \kappa 2(Cs)
5: if \kappa 2(Cs) \leq tol then
6: Solve (3.11) by normal equations, \bfitalpha = [(Z\ast \ell Z\ell )\circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m)] - 1[(\BbbV \ell ,mW\circ 

(Z\ast \ell XmW))e]
7: else
8: Solve (3.11) using QR factorization based solver, without squaring the condition number.

9: end if
10: end if

In the next section, we discuss Line 8 in Algorithm 2. The next example illus-
trates the problem and motivates the need for an efficient implementation of the QR
factorization of S.

Example 4.12. (Continuation of Example 4.6.) From Proposition 3.6, the (upper
triangular) Cholesky factor of (R\ast R) \circ (\BbbV \ell ,m\BbbV \ast \ell ,m) can be equivalently obtained from
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the QR factorization of S = \BbbV T
\ell ,m \odot R. If we compute S explicitly and compute its

QR factorization, normalized to have positive diagonal,12 then

A20 ZLATKO DRMA\v C, IGOR MEZI\'C, AND RYAN MOHR

Moreover, since Z\ell = Uk
\widetilde B\ell (see Remark 3.2) and since R can be computed directly

from the O(k\ell 2) QR factorization of the k \times \ell matrix \widetilde B\ell , we can estimate \kappa 2(Rc)
at the cost of O(k\ell 2). If R is already available (computed for some other use), then
the cost of estimating \kappa 2(Rc) is only O(\ell 2) and in that case we consider the estimate
available as well. Hence, if one estimates that \kappa 2(Rc)

2 \ll 1/\bfitvarepsilon , then one can safely use
the normal equation solution (3.9).

If an estimate for \kappa 2(Rc)
2 is not available (e.g. R not computed) or if one con-

cludes that \kappa 2(Rc)
2 \gtrapprox 1/\bfitvarepsilon , then one goes on and computes C and an estimate for

\kappa 2(Cs), which is then tested against the threshold 1/\bfitvarepsilon . We can organize this in a
decision tree as in Algorithm 2. It is designed for the case when the dimensions are
sufficiently large and the efficiency of the formula (3.9) is desirable, but not at any
price -- it is deployed only if it can warrants certain level of accuracy.

Algorithm 2. Decision tree for selecting a solution method for (3.11).

Input:
\bullet R, \Lambda , \ell , m
\bullet Tolerance level tol \in (1, 1/\bfitvarepsilon ) for acceptable condition number estimate.

1: if R available and \kappa 2(Rc)
2 \leq tol then

2: Solve (3.11) by normal equations, \bfitalpha = [(R\ast R) \circ (\BbbV \ell ,mW\BbbV \ast \ell ,m)] - 1[(\BbbV \ell ,mW \circ 
(Z\ast \ell XmW))e]

3: else
4: Compute C = (Z\ast \ell Z\ell ) \circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m) and estimate \kappa 2(Cs)
5: if \kappa 2(Cs) \leq tol then
6: Solve (3.11) by normal equations, \bfitalpha = [(Z\ast \ell Z\ell )\circ (\BbbV \ell ,mW2\BbbV \ast \ell ,m)] - 1[(\BbbV \ell ,mW\circ 

(Z\ast \ell XmW))e]
7: else
8: Solve (3.11) using QR factorization based solver, without squaring the condition number.

9: end if
10: end if

In the next section, we discuss Line 8 in Algorithm 2. The next example illus-
trates the problem and motivates the need for an efficient implementation of the QR
factorization of S.

Example 4.12. (Continuation of Example 4.6) From Proposition 3.6, the (upper
triangular) Cholesky factor of (R\ast R) \circ (\BbbV \ell ,m\BbbV \ast \ell ,m) can be equivalently obtained from

the QR factorization of S = \BbbV T
\ell ,m \odot R. If we compute S explicitly and compute its

QR factorization, normalized to have positive diagonal,12 then
?`?` [Q,TQR] = qr(S,0) ; TQRn = diag(sign(diag(TQR)))*TQR

TQRn =

1.000000000000000e+00 1.000000000000000e+00 1.000000002980232e+00

0 2.107342425544703e-08 1.414213575017149e-01

0 0 1.471869344809795e-01

Note that the difference between TQRn and the theoretically identical matrix TC, com-
puted in Example 4.6, is significant. Since \kappa 2(S) \approx 1.6 \cdot 108, we know that TQR is
provably more accurate than TC.

12This normalization is done only for easier comparison with the Cholesky factor computed in
Example 4.6.

Note that the difference between TQRn and the theoretically identical matrix TC, com-
puted in Example 4.6, is significant. Since \kappa 2(S) \approx 1.6 \cdot 108, we know that TQR is
provably more accurate than TC.

The consequence of this difference in applications of the computed triangular
factor is easily illustrated by the following simple computation (that is used for solv-
ing (3.9)). We set \vec{}g \equiv g = 1./(1:ell*m)', G = reshape(g,ell,m), and we set
b=(conj(Vlm).*(R'*G))*ones(m,1). After solving for \bfitalpha with TC and TQR, the com-
puted solutions and the corresponding relative (with respect to \| \vec{}g\| 2) residuals show
striking differences:
?`?` [alpha\.TC alpha\.TQR]=[TC``(TC'``b) TQR``(TQR'``b)]

ans =

-8.043848500219065e+08 -3.089216637627713e+07

8.043849072032555e+08 3.089216822956897e+07

-5.618134924384464e+01 -8.532918510394528e-01

?`?` [rez\.TC ; rez\.TQR]

ans =

9.404744232190256e+00

4.137855517443713e-01

Although small dimensional and entirely synthetic, Examples 4.6 and 4.12 should
be convincing enough to call for the development of an algorithm that solves the LS
problem without the explicitly computed (R\ast R)\circ (\BbbV \ell ,m\BbbV \ast \ell ,m). We tackle this problem
in the next section. For the sake of brevity, we will consider the case W = \BbbI m. The
more involved general weighted case is left for future work.

5. QR factorization based solvers. A numerically more robust procedure for
solving the LS problem (3.11) needs the QR factorization of the \ell m \times \ell matrix S,
with the complexity of O(m\ell 3) if an off-the-shelf procedure is deployed, e.g., qr from
MATLAB or xGEQRF, xGEQP3 from LAPACK. This O(m\ell 3) factor will then dominate
the overall cost of the LS solution, even if one decides to solve (3.11) using the SVD
of S. (Since S is tall and skinny, the SVD of S is computed more efficiently if the
computation starts with the QR factorization and proceeds with the SVD of the
triangular factor.)

Squaring the condition number of S in the explicit formula (3.9) representing
(3.12) is avoided if we use the tall QR factorization S = QSRS ; then

13

(5.1) \bfitalpha = R - 1S (Q\ast S\vec{}g).

In section 5.1, we first adopt the corrected seminormal approach and propose its
structure exploiting implementation, assuming we have RS . Then, in section 5.2 we
present a novel recursive algorithm for computing the QR factorization S = QSRS ,
with error analysis in section 5.3 and details of implementation in real arithmetic in
section 5.4.

Note that for computing Q\ast S\vec{}g we do not need the explicitly formed factor QS .
Indeed, since Q\ast S is built from a sequence of elementary unitary matrices (Householder

12This normalization is done only for easier comparison with the Cholesky factor computed in
Example 4.6.

13In this section we use the notation from section 3.2.
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reflectors or Givens rotations) so thatQ\ast SS = RS , it suffices to apply the same matrices
to \vec{}g as if it were the (\ell +1)st column of S; a detailed algorithm is discussed in Remark
5.2. If, at a later stage in an application, the problem needs to be solved with a new
value of \vec{}g, then QS must be stored for later use.

5.1. Corrected seminormal approach. If we want to avoid the additional
cost for computing Q\ast S\vec{}g, in particular in view of the efficient formula (3.15) for S\ast \vec{}g,
then we can settle for using the QR factorization of S only for implicit computing of
the Cholesky factor of (R\ast R) \circ (\BbbV \ell ,m\BbbV \ast \ell ,m) in (3.9), to avoid the problems illustrated
in Examples 4.1 and 4.6. Then, the seminormal solution [6] is

(5.2) \bfitalpha = R - 1S (R - \ast S (S\ast \vec{}g)).

This method only partially alleviates the problem of ill-conditioning. It computes a
more accurate triangular factor than the pure normal equations approach (using the
Cholesky factor of S\ast S, which may even fail), but in general it is not guaranteed to
be much better than the normal equations solver. Note, however, that in Example
4.12 the formula (5.2) gives an approximate solution alpha TQR with better residual
that the normal equation based solution alpha TC.

However, if supplemented by a correction step, the seminormal solution becomes
nearly as good as (sometimes even better than) the QR factorization based solver
[6]. The correction procedure, done in the same working precision, first computes the
residual r = \vec{}g  - S\bfitalpha , and then computes the correction \delta \bfitalpha as

(5.3) \delta \bfitalpha = R - 1S (R - \ast S (S\ast r))

and the corrected solution \bfitalpha \ast = \bfitalpha + \delta \bfitalpha . This process can be repeated. For an error
analysis in favor of this scheme, see [6].

In an efficient software implementation, we use the structure of S and organize
the data to increase locality; i.e., we prefer matrix multiplications. A prototype of
the computational scheme is given in Algorithm 3. (In Lines 2, 3, 5, and 6 we give
hints to an implementer, regarding high performance implementation based on the
libraries BLAS and LAPACK.)

Algorithm 3. Corrected seminormal solution of (3.11).

Input: R, \Lambda , G, S (Here the notation from section 3.2 applies.)
Output: Corrected solution \bfitalpha \ast 
1: Compute the triangular factor RS in the QR factorization of S.
2: gS = [(\BbbV \ell ,m \circ (R\ast G))e] \{ Note that gS = S\ast \vec{}g. Use xTRMM from BLAS 3.\} 
3: \bfitalpha = R - 1S (R - \ast S gS)\{ Use xTRSM or xTRTRS or xTRSV from LAPACK.\} 
4: r\square = G - R

\bigl( 
\bfitalpha \Lambda \bfitalpha \Lambda 2\bfitalpha . . . \Lambda m - 1\bfitalpha 

\bigr) 
\equiv G - Rdiag(\bfitalpha )\BbbV \ell ,m

5: rS = [(\BbbV \ell ,m \circ (R\ast r\square ))e] \{ Note that rS = S\ast r. Use xTRMM from BLAS 3.\} 
6: \delta \bfitalpha = R - 1S (R - \ast S rS) \{ Use xTRSM or xTRTRS or xTRSV from LAPACK.\} 
7: \bfitalpha \ast = \bfitalpha + \delta \bfitalpha 

Note that Algorithm 3 neither computes nor stores any information on the \ell m \times \ell 
orthonormal QS , and that, except Line 1, all computation is in the framework of the
original data matrices of dimensions \ell \times \ell and \ell \times m, involving matrix operations
already available in high performance libraries BLAS and LAPACK.

An illustration of the theoretically confirmed fact that the seminormal approach
nearly matches the QR factorization based solution is given in the following example.
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Example 5.1. (Continuation of Example 4.12.) Using the same data as in Exam-
ple 4.12, we compute the approximate solutions alpha QR using the formula (5.1) and
alpha CSN using Algorithm 3. The results are self-explanatory.

A22 ZLATKO DRMA\v C, IGOR MEZI\'C, AND RYAN MOHR

Cholesky factor of S\ast S, which may even fail), but in general it is not guaranteed to
be much better than the normal equations solver. Note, however that in Example
4.12 the formula (5.2) gives an approximate solution alpha TQR with better residual
that the normal equation based solution alpha TC.

However, if supplemented by a correction step, the semi-normal solution becomes
nearly as good as (sometimes even better than) the QR factorization based solver
[6]. The correction procedure, done in the same working precision, first computes the
residual r = \vec{}g  - S\bfitalpha , and then computes the correction \delta \bfitalpha as

(5.3) \delta \bfitalpha = R - 1S (R - \ast S (S\ast r))

and the corrected solution \bfitalpha \ast = \bfitalpha + \delta \bfitalpha . This process can be repeated. For an error
analysis in favor of this scheme see [6].

In an efficient software implementation, we use the structure of S and organize
the data to increase locality, i.e. prefer matrix multiplications. A prototype of the
computational scheme is given in Algorithm 3. (In lines 2., 3., 5. and 6. we give hints
to an implementer, regarding high performance implementation based on the libraries
BLAS and LAPACK.)

Algorithm 3. Corrected semi-normal solution of (3.11).

Input: R, \Lambda , G, S (Here applies the notation from section 3.2.)
Output: Corrected solution \bfitalpha \ast 
1: Compute the triangular factor RS in the QR factorization of S.
2: gS = [(\BbbV \ell ,m \circ (R\ast G))e] \{ Note, gS = S\ast \vec{}g. Use xTRMM from BLAS 3.\} 
3: \bfitalpha = R - 1S (R - \ast S gS)\{ Use xTRSM or xTRTRS or xTRSV from LAPACK.\} 
4: r\square = G - R

\bigl( 
\bfitalpha \Lambda \bfitalpha \Lambda 2\bfitalpha . . . \Lambda m - 1\bfitalpha 

\bigr) 
\equiv G - Rdiag(\bfitalpha )\BbbV \ell ,m

5: rS = [(\BbbV \ell ,m \circ (R\ast r\square ))e] \{ Note, rS = S\ast r. Use xTRMM from BLAS 3.\} 
6: \delta \bfitalpha = R - 1S (R - \ast S rS) \{ Use xTRSM or xTRTRS or xTRSV from LAPACK.\} 
7: \bfitalpha \ast = \bfitalpha + \delta \bfitalpha 

Note that Algorithm 3 does not compute nor store any information on the \ell m \times \ell 
orthonormal QS , and that, except Line 1., all computation is in the framework of
the original data matrices of dimensions \ell \times \ell and \ell \times m, involving matrix operations
already available in high performance libraries BLAS and LAPACK.

An illustration of the theoretically confirmed fact that the semi-normal approach
nearly matches the QR factorization based solution is given in the following example.

Example 5.1. (Continuation of Example 4.12) Using the same data as in Exam-
ple 4.12, we compute the approximate solutions alpha QR using the formula (5.1) and
alpha CSN using Algorithm 3. The results are self-explanatory.

?`?` [alpha\.TC alpha\.TQR alpha\.QR alpha\.CSN]

ans =

-8.04384850..e+08 -3.089216637627713e+07 -3.089216717302755e+07 -3.089216717302752e+07

8.04384907..e+08 3.089216822956897e+07 3.089216902631945e+07 3.089216902631943e+07

-5.61813492..e+01 -8.532918510394528e-01 -8.532919080311419e-01 -8.532919080311413e-01

Hence, for the full benefit of the corrected semi-normal equation approach, it is
desirable to have an efficient QR factorization algorithm that can exploit the particular
structure of S and thus lower the O(m\ell 3) cost of a structure-oblivious straightforward
factorization. With such a factorization, one can solve the LS problem (3.11) using
(5.1) or the corrected semi-normal approach as in Algorithm 3.

Hence, for the full benefit of the corrected seminormal equation approach, it is
desirable to have an efficient QR factorization algorithm that can exploit the particular
structure of S and thus lower the O(m\ell 3) cost of a structure-oblivious straightforward
factorization. With such a factorization, one can solve the LS problem (3.11) using
(5.1) or the corrected seminormal approach as in Algorithm 3.

In section 5.2, we achieve that goal and show how the recursive structure of the
block rows of S can be exploited to compute its QR factorization at the cost of
O(\ell 3 log2 m).

5.2. QR factorization of \bfitS . We now provide the details of the new algorithm
for computing the QR factorization of S. The recursive structure of the algorithm
is first described in section 5.2.1 for the simplest case of m = 2p, with the details of
the kernel routine given in section 5.2.2. Section 5.2.3 provides the scheme with an
arbitrary number of snapshots m.

5.2.1. The case \bfitm = 2\bfitp . The basic idea, using a binary elimination tree, is
illustrated in (5.4) for m = 16, and it is, in a sense, analogous to the FFT divide and
conquer scheme.

Algorithm 4. Recursive QR factorization of S in (3.11) for m = 2p.

Input: Upper triangular R \in \BbbC \ell \times \ell ; diagonal \Lambda \in \BbbC \ell \times \ell ; number of snapshots m = 2p.
Output: The 2p\ell \times \ell unitary QS = \widehat Qp and the upper triangular QR factor RS = Tp

of S \in \BbbC 2p\ell \times \ell in (3.11).
(5.4)

\bft \bfa \bfb \bfl \bfe \bfo \bff \bft \bfh \bfe \bfe \bfl \bfi \bfm \bfi \bfn \bfa \bft \bfi \bfo \bfn \bfp \bfr \bfo \bfc \bfe \bfs \bfs \bff \bfo \bfr m = 24

T4 \leftarrow  - T3 \leftarrow  - T2 \leftarrow  - T1 \leftarrow  - R\bfLambda 0

\bfzero \bfzero \bfzero \bfzero \nwarrow R\bfLambda 1

\bfzero \bfzero \bfzero \nwarrow T1\bfLambda 2 R\bfLambda 2

\bfzero \bfzero \bfzero \bfzero R\bfLambda 3

\bfzero \bfzero \nwarrow T2\bfLambda 4 T1\bfLambda 4 R\bfLambda 4

\bfzero \bfzero \bfzero \bfzero R\bfLambda 5

\bfzero \bfzero \bfzero T1\bfLambda 6 R\bfLambda 6

\bfzero \bfzero \bfzero \bfzero R\bfLambda 7

\bfzero \nwarrow T3\bfLambda 8 T2\bfLambda 8 T1\bfLambda 8 R\bfLambda 8

\bfzero \bfzero \bfzero \bfzero R\bfLambda 9

\bfzero \bfzero \bfzero T1\bfLambda 10 R\bfLambda 10

\bfzero \bfzero \bfzero \bfzero R\bfLambda 11

\bfzero \bfzero T2\bfLambda 12 T1\bfLambda 12 R\bfLambda 12

\bfzero \bfzero \bfzero \bfzero R\bfLambda 13

\bfzero \bfzero \bfzero T1\bfLambda 14 R\bfLambda 14

\bfzero \bfzero \bfzero \bfzero R\bfLambda 15

\leftarrow \rightarrow 

\bfa \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm 

1 : T0 = R ; \widehat Q0 = \BbbI \ell 
2 : \bff \bfo \bfr i = 1 : p \bfd \bfo 

3 : [Qi, Ti ] = qr(

\left(   Ti - 1

Ti - 1\bfLambda 2i - 1

\right)   )

\% economy size QRF, Qi \in \BbbC 2\ell \times \ell 

4 : \widehat Qi =

\left(     
\widehat Qi - 1 \bfzero 

\bfzero \widehat Qi - 1

\right)     Qi

5 : \bfe \bfn \bfd \bff \bfo \bfr 

Note that the core operation in an ith step of the above scheme is the QR factorization
of the 2\ell \times \ell structured matrix (in (5.4), Line 3 of the algorithm, and marked by a
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ON LS PROBLEMS WITH APPLICATIONS TO DMD A3273

pair of arrows
\leftarrow 
\nwarrow in the table)

(5.5)

\biggl( 
Ti - 1

Ti - 1\Lambda 2i - 1

\biggr) 
=

\left( 
  

\ast \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
 \star  \star  \star  \star 
0  \star  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right) 
  , i.e., implicitly of

\left( 
   

Ti - 1
0(2i - 1 - 1)\ell ,\ell 
Ti - 1\Lambda 2i - 1

0(2i - 1 - 1)\ell ,\ell 

\right) 
   ,

and, thus, it can be computed more efficiently than in the general case of a 2\ell \times \ell 
dense matrix. The QR factorizations of the remaining pairs in an ith column are
obtained simply by scaling the triangular factor of this prototype QR factorization of
(5.5) by a corresponding power of \Lambda .

Remark 5.2. If we want to solve the LS problem using (5.1), then in Algorithm
4, instead of accumulating QS , we include applying Q\ast i to the corresponding parts of
\vec{}g. The algorithm then reads

T0 = R
for i = 1 : p do

[Qi, Ti ] = qr

\Biggl( \Biggl( 
Ti - 1

Ti - 1\Lambda 2i - 1

\Biggr) \Biggr) 
\{ Thin QR factorization. Qi is 2\ell \times \ell .\} 

for j = 0 : 2i : 2p  - 2i do

\vec{}g(j\ell + 1 : (j + 1)\ell ) = Q\ast i

\biggl( 
\vec{}g(j\ell + 1 : (j + 1)\ell )

\vec{}g((j + 2i - 1)\ell + 1 : (j + 2i - 1 + 1)\ell )

\biggr) 

end for
end for

Note that after this sequence of updates, the array \vec{}g(1 : \ell ) contains the vector Q\ast S\vec{}g
from (5.1); the LS solution is then computed as the solution of the triangular system
Tp\bfitalpha = \vec{}g(1 : \ell ).

5.2.2. Details of the QR factorization of (5.5). The seemingly simple task
to compute the QR factorization of two stacked triangular matrices (5.5) is an excellent
case study for turning an algorithm into an efficient software implementation. For that
reason, we give detailed descriptions of the main phases of the development. However,
we omit the details of assembling QS , which follow easily from Line 4 in (5.4).

Algorithm 5 illustrates a straightforward scheme to annihilate the \ell (\ell +1)/2 entries
in the lower block in (5.5); it works for the general case of two independent upper
triangular matrices stacked on top of each other, and its cost is \ell 3 +O(\ell 2) flops.
The nested loops in Algorithm 5 access the matrix B columnwise. Changing the loops
into

for i = 1 : \ell \{ for j = i : \ell \{ 4 : . . . ; 5 : . . . end for\} end for \} 

will change the access to row-wise. The proper choice of loop ordering depends on
the layout of the data matrices in the computer memory.

To enhance data locality, the annihilation strategy in Algorithm 5 can be modified
so that the communication between the arrays A and B is reduced to once per column;
it suffices to concentrate the mass of a column of B into a single entry (e.g., using
a single Householder reflector) and then move it up into the corresponding diagonal
entry of A using a single Givens rotation. This yields Algorithm 6.
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Algorithm 5. Givens QR factorization of the type (5.5).

Input: Upper triangular matrices A,B \in \BbbC \ell \times \ell 

Output: The upper triangular factor in the QR factorization of

\biggl( 
A
B

\biggr) 
=

\left( 
  

\ast \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
 \star  \star  \star  \star 
0  \star  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right) 
  

1: Q = \BbbI 2\ell 
2: for j = 1 : \ell do
3: for i = 1 : j do

4: Compute 2 \times 2 Givens rotation \scrG such that \scrG 
\biggl( 
A(j, j)
B(i, j)

\biggr) 
=

\biggl( \sqrt{} 
| A(j, j)| 2 + | B(i, j)| 2

0

\biggr) 

5:

\biggl( 
A(j, j : \ell )
B(i, j : \ell )

\biggr) 
:= \scrG 

\biggl( 
A(j, j : \ell )
B(i, j : \ell )

\biggr) 
; (Q(:, i), Q(:, j)) := (Q(:, i), Q(:, j))\scrG \ast 

6: end for
7: end for

Algorithm 6. Householder+Givens QR factorization of the type (5.5).

Input: Upper triangular matrices A,B \in \BbbC \ell \times \ell 

Output: The upper triangular factor in the QR factorization of

\biggl( 
A
B

\biggr) 
=

\left( 
  

\ast \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
 \star  \star  \star  \star 
0  \star  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right) 
  

1: for j = 1 : \ell do
2: if j > 1 then
3: Compute Householder reflector \scrH = \BbbI  - \beta ww\ast such that \scrH B(1 : j, j) =

\pm \| B(1 : j, j)\| 2e1
4: B(1, j) = \pm \| B(1 : j, j)\| 2
5: if j < \ell then
6: Update B: B(1 : j, j +1 : \ell ) = B(1 : j, j +1 : \ell ) - \beta w(w\ast B(1 : j, j +1 : \ell ))
7: end if
8: end if

9: Compute 2 \times 2 Givens rotation \scrG such that \scrG 
\biggl( 
A(j, j)
B(1, j)

\biggr) 
=

\biggl( \sqrt{} 
| A(j, j)| 2 + | B(1, j)| 2

0

\biggr) 

10:

\biggl( 
A(j, j : \ell )
B(1, j : \ell )

\biggr) 
:= \scrG 

\biggl( 
A(j, j : \ell )
B(1, j : \ell )

\biggr) 
;

11: end for

The operations in Algorithm 6 are illustrated in the scheme (5.6).

\left(   
\ast \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
 \star  \star  \star  \star 
0  \star  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right)   1,1 - \rightarrow 

\left(    
\bullet \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
\bfzero  \star  \star  \star 
0  \star  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right)    1:2,2
=\Rightarrow 

\left(    
\bullet \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
0 \divideontimes  \star  \star 
0 0  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right)    1,2 - \rightarrow 

\left(    
\bullet \ast \ast \ast 
0 \bullet \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
0 0  \star  \star 
0 0  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right)    1:3,3
=\Rightarrow 

\left(    
\bullet \ast \ast \ast 
0 \bullet \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
0 0 \divideontimes  \star 
0 0 0  \star 
0 0 0  \star 
0 0 0  \star 

\right)    1,3 - \rightarrow 

\left(    
\bullet \ast \ast \ast 
0 \bullet \ast \ast 
0 0 \bullet \ast 
0 0 0 \ast 
0 0 0  \star 
0 0 0  \star 
0 0 0  \star 
0 0 0  \star 

\right)    1:4,4
=\Rightarrow 
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\left(    
\bullet \ast \ast \ast 
0 \bullet \ast \ast 
0 0 \bullet \ast 
0 0 0 \ast 
0 0 0 \divideontimes 
0 0 0 0
0 0 0 0
0 0 0 0

\right)    1,4 - \rightarrow 

\left(    
\bullet \ast \ast \ast 
0 \bullet \ast \ast 
0 0 \bullet \ast 
0 0 0 \bullet 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

\right)    . Legend :
1,j - \rightarrow Givens rotation; Lines 9--10.
1:j,j
=\Rightarrow Householder reflector; Lines 3--8.

(5.6)

The above scheme is now a starting point for a block-oriented algorithm that delivers
true high performance computation. Suppose our matrices are block partitioned with
block size b so that the total number of blocks is \wp = \lceil \ell /b\rceil ; the leading \wp  - 1 diagonal
blocks are b\times b, and the size of the last block is (\ell  - (\wp  - 1)b)\times (\ell  - (\wp  - 1)b). Then
we can simply imagine that, e.g., in (5.6) each \ast ,  \star , \bullet ,\divideontimes , 0 represents a b \times b matrix
(instead of being a scalar); the blocks in the last row and column may have one or
both dimensions (\ell  - (\wp  - 1)b). For such a block partition, we use the notation A[i, j],
B[i, j] to denote the submatrices (blocks) at the position (i, j), and A[i1 : i2, j1 : j2]
is defined analogously to the scalar case.

Remark 5.3. In high performance libraries such as LAPACK, Householder reflec-
tors are aggregated so that several of them can be applied more efficiently, with a bet-
ter flop-to-memory-reference ratio. If in Line 4 of Algorithm 7 the matrix B[1 : j, j]
has b columns, then the QR factorization is achieved by a sequence of left multiplica-
tions \scrH b \cdot \cdot \cdot \scrH 2\scrH 1B[1 : j, j], where \scrH i = \BbbI  - \beta iwiw

\ast 
i with wi(1 : i - 1) = 0, wi(i) = 1.

The compact form \scrH = \BbbI  - \scrW b\scrT b\scrW \ast b of \scrH = \scrH 1\scrH 2 \cdot \cdot \cdot \scrH b is then computed recursively
as
\scrW 1 = (w1), \scrT 1 = \beta 1; \scrW j = (\scrW j - 1 wj),

\scrT j =
\biggl( 
\scrT j - 1  - \beta j\scrT j - 1\scrW \ast j - 1wj

0 \beta j

\biggr) 
, j = 2, . . . , b.

For more details we refer the reader to [40], and for a guidelines for an efficient imple-
mentation we suggest studying the structure of the subroutine xGEQRF in LAPACK;
essentially, the computation in Lines 4 and 6 of Algorithm 7 is already contained as
a part of xGEQRF.

5.2.3. The case of general \bfitm . We now generalize the recursive scheme of
Algorithm 4 to general dimension m \not = 2p. First, introduce simple notation: S will be
considered as a block row partitioned with the ith block S[i] = R\Lambda i - 1. The submatrix
of S consisting of consecutive blocks from the i1th to the i2th will be denoted by S[i1:i2].
Note that S[i1:i2] = S[1:i2 - i1+1]\Lambda 

i1 - 1.
As a motivation, note that the QR factorization of S[1:16] in the scheme (5.4)

contains among its intermediate results the QR factorization also, e.g., ofS[1:2] (the
factor is T1), of S[1:4] (the factor is T2), of S[1:8] (the factor is T3), and of S[9:12] (the
factor is T2\Lambda 

8 as S[9:12] = S[1:4]\Lambda 
8). Also, Ti is the triangular factor of the leading 2i

block rows of S.
To exploit this, write m as a binary number m \equiv b = (b\lfloor log2 m\rfloor , . . . , b1, b0)2, i.e.,

(5.7) m =

\lfloor log2 m\rfloor \sum 

i=0

bi2
i \equiv 

j\ast \sum 

j=1

2ij , \lfloor log2 m\rfloor = ij\ast > ij\ast  - 1 > \cdot \cdot \cdot > i2 > i1 \geq 0,

and introduce the block partition of S as follows:

(5.8) ST =
\Bigl( 
ST
[1:2

ij\ast ]
ST
[2

ij\ast +1:2
ij\ast +2

ij\ast  - 1 ]
. . . ST

[2
ij\ast +\cdot \cdot \cdot +2i2+1:2

ij\ast +\cdot \cdot \cdot +2i1 ]

\Bigr) 
.
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Algorithm 7. Block-oriented Householder+Givens QR factorization of the type
(5.5).

Input: Upper triangular matrices A,B \in \BbbC \ell \times \ell and the block parameter b.

Output: The upper triangular factor in the QR factorization of

\biggl( 
A
B

\biggr) 
=

\left( 
  

\ast \ast \ast \ast 
0 \ast \ast \ast 
0 0 \ast \ast 
0 0 0 \ast 
 \star  \star  \star  \star 
0  \star  \star  \star 
0 0  \star  \star 
0 0 0  \star 

\right) 
  

1: \wp = \lceil \ell /b\rceil ; b\prime = \ell  - (\wp  - 1)b. Introduce block partitions in A and B.
2: for j = 1 : \wp do
3: if j > 1 then
4: Compute the QR factorization B[1 : j, j] = \scrH (\scrR 0 ) of B[1 : j, j] as follows:

4.1: The upper triangular factor \scrR overwrites the leading submatrix of
B[1, j].

4.2: Write the accumulated product of Householder reflectors \scrH in the
compact form \scrH = \BbbI  - \scrW \scrT \scrW \ast . (See Remark 5.3.)

5: if j < \wp then
6: Update B: B[1 : j, j+1 : \wp ] = B[1 : j, j+1 : \wp ] - \scrW \scrT \ast (\scrW \ast B[1 : j, j+1 : \wp ])
7: end if
8: end if

9: Compute the QR factorization

\biggl( 
A[j, j]
B[1, j]

\biggr) 
= \scrQ 

\biggl( \widehat \scrR 
0

\biggr) 
so that the upper triangular

factor \widehat \scrR overwrites A[j, j]. Use, e.g., Algorithm 6.
10: if j < \wp then

11: Update A and B:

\biggl( 
A[j, j + 1 : \wp ]
B[1, j + 1 : \wp ]

\biggr) 
:= \scrQ \ast 

\biggl( 
A[j, j + 1 : \wp ]
B[1, j + 1 : \wp ]

\biggr) 
;

12: end if
13: end for

The QR factorization of the largest block S
[1:2

ij\ast ]
can be computed by theO(\lfloor log2 m\rfloor \ell 3)

Algorithm 4, and the triangular factor of each of the subsequent blocks in (5.8) is,
up to column scaling by an appropriate power of \Lambda , available among the intermediate
results, as discussed above. These are designated as local triangular factors. This
consists of the first reduction step, which results in at most \lfloor log2 m\rfloor + 1 local \ell \times \ell 
upper triangular factors. In the second step, these are reduced, by building global
triangular factors to a single triangular matrix at the cost of at most O(\lfloor log2 m\rfloor \ell 3).

For an implementation of this procedure, it will be convenient to process the
powers 2ij in an increasing order, i.e., to scan the binary representation b from the
right to the left. The local triangular factors of the blocks
(5.9)
S[1:2i1 ], S[2i1+1:2i1+2i2 ], S[2i1+2i2+1:2i1+2i2+2i3 ], . . . , S[2i1+2i2+\cdot \cdot \cdot +2

ij\ast  - 1+1:2i1+2i2+2i3+\cdot \cdot \cdot +2
ij\ast ]

are computed by scaling the computed triangular factors of, respectively,

(5.10) S[1:2i1 ], S[1:2i2 ], S[1:2i3 ], . . . , S[1:2
ij\ast ]

with, respectively, \Lambda 0,\Lambda 2i1 ,\Lambda 2i1+2i2 , . . . ,\Lambda 2i1+2i2+\cdot \cdot \cdot +2
ij\ast  - 1

, and are built into the
global triangular factor by a sequence of updates. The procedure is summarized in
Algorithm 8. For the sake of simplicity, we did not include computation of Q\ast S\vec{}g, which
can be easily added following the procedure outlined in Remark 5.2. The details of
assembling QS (explicitly, or implicitly by storing Householder vectors as in xGEQRF,
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xGEQP3, xORGQR, xORMQR in LAPACK) are omitted because they are technical details
in software development which are beyond the scope of this paper and are a subject
of our separate work.

Remark 5.4. The scheme of Algorithm 8 can be easily adapted to work, e.g.,
in base 3, i.e., m = 3p and, in general, using the representation of m in base 3.
Such details/variations become important for a custom-made implementation on a
particular hardware.

Algorithm 8. Recursive QR factorization of S in (3.11).

Input: Upper triangular R \in \BbbC \ell \times \ell ; diagonal \Lambda \in \BbbC \ell \times \ell ; number of snapshots m
Output: Upper triangular QR factor RS = \BbbT j - 1 of S in (3.11)
1: Compute the binary representation (5.7) of m: m \equiv b = (b\lfloor log2 m\rfloor , . . . , b1, b0)2
2: Let \lfloor log2 m\rfloor = ij\ast > ij\ast  - 1 > \cdot \cdot \cdot > i2 > i1 \geq 0 be as in (5.7)
3: T0 = R
4: if i1 = 0 then
5: \BbbT 1 = T0; j = 2; \wp = 1
6: else
7: \BbbT 0 = []; j = 1; \wp = 0
8: end if
9: for k = 1 : ij\ast do

10:

\Biggl( 
Tk

0

\Biggr) 
= qr

\Biggl( \Biggl( 
Tk - 1

Tk - 1\Lambda 2k - 1

\Biggr) \Biggr) 
\{ Local triangular factor. Use algorithms from

section 5.2.2.\} 
11: if k = ij then
12: if \BbbT j - 1 \not = [] then

13:

\Biggl( 
\BbbT j

0

\Biggr) 
= qr

\Biggl( \Biggl( 
\BbbT j - 1
Tk\Lambda 

\wp 

\Biggr) \Biggr) 
\{ Global triangular factor. Use algorithms from

section 5.2.2.\} 
14: else
15: \BbbT j = Tk

16: end if
17: j := j + 1; \wp := \wp + 2k

18: end if
19: end for

5.3. Numerical stability. For an efficient implementation, the computational
scheme, e.g., in Algorithm 5 will be modified to enhance spatial and temporal locality
of data, e.g., using tiling or blocking techniques as in Algorithm 7, or parallelized
for multicore hardware. It can be shown that with any such modification, the above
computation is backward stable in the sense that the computed triangular factor is
an exact factor of S + \delta S, where the backward error \delta S is columnwise small, i.e.,

(5.11) \| \delta S(:, j)\| 2 \leq \eta \| S(:, j)\| 2, j = 1, . . . , \ell ; \eta \leq f(\ell ,m)\bfitvarepsilon ,

where f(\ell ,m) is a modest polynomial that depends on the details of a particular
implementation.14

14Note that (5.11) is a much stronger statement than the usually used backward error bound
\| \delta S\| F \leq g(\ell ,m)\bfitvarepsilon \| S\| F .
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This follows from the simple fact that in Algorithms 4 and 8 (using Algorithm
5 with any ordering of Givens rotations, or Algorithms 6 and 7 as a kernel compu-
tational routine) we actually multiply the initial S from the left by a sequence of
elementary unitary matrices; this is nothing else but independent unitary transforma-
tions (backward stable) of the columns of S. Hence, each column of S has backward
error that is small relative to that same column; in this way even the tiniest columns
are preserved, independently of the remaining possibly much larger ones.

Due to (5.11), the condition number that determines the accuracy of the de-
composition is \kappa 2(Sc), where Sc is obtained from S by scaling its columns15 so that

\| Sc(:, j)\| 2 = 1 for all j. More precisely, if \widetilde RS = RS + \delta RS is the computed factor,
then \delta RS = \Gamma RS (i.e., \delta RS(:, j) = \Gamma (:, 1 : j)RS(:, j), for all j) and, following [16,
section 6.],

\| \Gamma \| F \leq 
\surd 
8\ell \eta 

1 - \eta 
\| S\dagger c\| 2 +O((\eta \| S\dagger c\| 2)2) \leq 

\surd 
8\ell \eta \kappa 2(Sc) +O((\eta \| S\dagger c\| 2)2).

In terms of the initial data, the condition number of column-equilibrated S is esti-
mated as follows.

Corollary 5.5. With the notation of Corollary 4.7, it holds that

\kappa 2(Sc) =
\sqrt{} 

\kappa 2(Cs) \leq min(\kappa 2(Rc), \kappa 2((\BbbV \ell ,m)r))(5.12)

\leq 
\surd 
\ell min( min

D=diag
\kappa 2(RD), min

D=diag
\kappa 2(D\BbbV \ell ,m)).

Proof. It follows from Proposition 3.6 that Cs = S\ast cSc; hence \kappa 2(Sc) =
\sqrt{} 

\kappa 2(Cs),
and the first inequality follows from Corollary 4.7. The second inequality follows from
the classical result [50].

This can be used to estimate the accuracy of Line 8 in Algorithm 2: if
min(\kappa 2(Rc), \kappa 2((\BbbV \ell ,m)r)) in (5.12) is below an appropriate threshold, a certain level
of accuracy can be guaranteed a priori.

5.3.1. Importance of pivoting. For better accuracy of the solutions of trian-
gular equations (forward and backward substitutions in (5.2)), it would be advanta-
geous to have column pivoted (rank revealing) QR factorization of S, i.e., that RS has
strong diagonal dominance. Further, if S is ill-conditioned, then the rank revealing
QR factorization can be used to determine the numerical rank of S and, by truncating
RS , to compute an approximate LS solution with certain level of sparsity. For the
reader's convenience, we briefly review this procedure.

Let rank(S) = rS < \ell , so that in the column pivoted QR factorization

(5.13) SP = QSRS =

\biggl( 
R[11] R[12]

0 0

\biggr) 
= QS,r

\bigl( 
R[11] R[12]

\bigr) 
, QS,r = QS(:, 1 : r).

Then the LS problem \| S\bfitalpha  - \vec{}g\| 2 \rightarrow min can be written as

\| S\bfitalpha  - \vec{}g\| 22=\| QS,r

\bigl( 
R[11] R[12]

\bigr) 
PT\bfitalpha  - QS,rQ

\ast 
S,r\vec{}g  - (\BbbI  - QS,rQ

\ast 
S,r)\vec{}g\| 22

=\| 
\bigl( 
R[11] R[12]

\bigr) 
PT\bfitalpha  - Q\ast S,r\vec{}g\| 22 + \| (\BbbI  - QS,rQ

\ast 
S,r)\vec{}g\| 22 \rightarrow min,

and the problem reduces to

(5.14) \| 
\bigl( 
R[11] R[12]

\bigr) 
PT\bfitalpha  - Q\ast S,r\vec{}g\| 2  - \rightarrow min

\bfitalpha 
.

15This scaling is only a theoretical device; the algorithm does not perform it.
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One particular vector in the solution manifold is

(5.15) \bfitalpha \diamond = P

\biggl( 
R - 1[11]Q

\ast 
S,r\vec{}g

0

\biggr) 
.

Note that \bfitalpha \diamond has at least \ell  - rS zero entries and that it is different from the shortest
solution \bfitalpha \ast = S\dagger \vec{}g. Hence, if the additional criterion is sparsity, the rank deficient LS
problem is best solved by (5.13), (5.15). In the full rank case \bfitalpha \diamond = \bfitalpha \ast .

Remark 5.6. Note that (5.14) is underdetermined and that we can add a sparsity
constraint analogously to (2.5), which is accordance with Remark 2.1. The sparsity
of the explicit solution (5.15) is a good starting point for a quest for sparse solution.

Remark 5.7. The MATLAB backslash operator (e.g., alpha=S\setminus g) solves LS prob-
lems using (5.13), (5.15); the pivoted QR factorization ([QS ,RS ,P ]=qr(S)) is com-
puted by the LAPACK subroutine xGEQP3. If sparsity is a desirable property of the so-
lution in the rank deficient case, then (5.13), (5.15) should be preferred over using the
Moore--Penrose pseudoinverse based minimum norm solution (e.g., alpha=pinv(S)*g
or alpha=lsqminnorm(S,g) in MATLAB, or calling the xGELSX and xGELSY LS solvers
in LAPACK).

The numerical rank \widetilde rS of S is detected as follows: The column pivoted QR factor-
ization computes SP = QSRS and finds the smallest index \widetilde rS such that | (RS)\widetilde rS+1,\widetilde rS+1| 
\leq \xi | (RS)\widetilde rS ,\widetilde rS | where the threshold \xi is usually O(\ell \bfitvarepsilon ). Then, in the block partition

(5.16) SP = QSRS =

\biggl( 
R[11] R[12]

0 R[22]

\biggr) 
, R[11] \in \BbbC \widetilde rS\times \widetilde rS

it holds that \| R[22]\| F \leq 
\surd 
\ell  - \widetilde rS\xi | R\widetilde rS ,\widetilde rS | , and R[22] is set to zero, thus yielding a

rank revealing decomposition of the form (5.13). The truncation of R[22] is justified
by a backward perturbation of S. The choice of the threshold \xi can be determined
by taking into account the noise level on input, or it can be used to aggressively
enforce low numerical rank (by allowing larger backward error) to obtain a faster
solver or a sparser LS solution. Indubitably, a QR factorization LS algorithm should
use pivoting, and it remains to see how to mount the pivoting device in Algorithms
4 and 8. The simplest way is to take the final upper triangular matrix RS on exit
and recompute its QR factorization with the Businger--Golub [9] column pivoting;
the more elegant way is to build the pivoting in the algorithm. It can be easily seen
that the pivoting can be turned on at any (or every) stage in both algorithms; the
permutations are accumulated/composed and pushed backward in the original matrix
S. If the overhead due to pivoting at all stages is not acceptable, then we can settle
for only the last step when computing the last upper triangular matrix.

Remark 5.8. Both the normal equations and the QR factorization based ap-
proaches (including the corrected seminormal equations) can be enhanced with
Tikhonov regularization either using the QR (using the inverse of R\ast SRS + \mu \BbbI , where
\mu is a regularization parameter) or using the SVD of S. As we mentioned at the be-
ginning of section 5, the QR factorization of S also allows efficient SVD of S (via the
SVD of its triangular factor): If S = QSRS and if the SVD of RS is RS = UR\Sigma SV

\ast 
R,

then the regularized solution is \bfitalpha (\mu ) = VRdiag(\sigma i/(\sigma 
2
i +\mu 2))\ell i=1U

\ast 
R(Q

\ast 
S\vec{}g), where \sigma i is

the ith largest singular value of S and Q\ast S\vec{}g is computed during the QR factorization
of S, as explained in Remark 5.2. The regularization parameter is tuned based on the
information on the noise. For the DMD analysis in the presence of noise see [12], and
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for the corresponding numerical linear algebra framework see [15, sections 5.4 and
5.5].

5.4. On real data and closedness under complex conjugacy. If the data
xi in (1.2) and the operator \BbbA are real, it is desirable that the reconstruction ansatz is
a priori structurally real, even if the selected Ritz pairs (zj , \lambda j) are in general complex.
Further, in the real case, it is desirable to do the entire computation in real arithmetic,
which would substantially improve the performances of the software.

Keeping real arithmetic for real input (e.g., real matrices) and complex output
that is a priori known to have complex conjugacy symmetry (eigenvalues and eigen-
vectors of real matrices) has important benefits with respect to numerical robustness
(structure preserving that is important from the point of view of the perturbation the-
ory) and computational efficiency (real data structures and real arithmetic). These are
exploited in the state-of-the-art software for matrix computations. So, for instance, in
the LAPACK library, the driver routines for computing eigenvalues and eigenvectors
xGEEV, xGEEVX (x \in \{ S, D\} for single and double precision real matrices) use only real
arithmetic, and complex eigenvalues and eigenvectors are returned as ordered pairs of
their real and imaginary parts.

Hence, in a high performance LAPACK-based implementation of a minimizer for
(3.4), the computation with (\lambda j , zj) should be in terms of (\Re (\lambda j),\Im (\lambda j);\Re (zj),\Im (zj)).
Here \Re (\cdot ) and \Im (\cdot ) denote, respectively, the real and the imaginary part of a scalar,
vector, or matrix.

5.4.1. Real reconstruction scheme of real data. The following technical
proposition provides all the details needed for obtaining in real arithmetic an LS
solution closed under complex conjugation, and, consequently, real approximants to
the snapshots xi.

Proposition 5.9. Let all xi's be real, i.e., xi \in \BbbR n, \BbbA \in \BbbR n\times n. If the wizard has
selected the Ritz pairs so that with each complex pair (zj , \lambda j) the sum on the right-
hand side of (1.2) contains also the contribution of its conjugate (zj , \lambda j), then the
corresponding coefficients are \alpha j and \alpha j, respectively. If (zj , \lambda j) is real, then \alpha j is
real as well. As a result, the computed approximation is real.

Proof. Assume that the eigenvalues are ordered so that \lambda 1, . . . , \lambda \ell 1 are purely
real, and the remaining complex eigenvalues are listed in groups of complex conjugate
pairs \lambda j , \lambda j+1 = \lambda j , with Im(\lambda j) > 0. Let \ell 2 be the number of complex conjugate
pairs. Hence \ell = \ell 1 + 2 \cdot \ell 2, \ell 1, \ell 2 \geq 0.

Consider now a complex conjugate pair (\lambda j , zj), (\lambda j+1, zj+1) \equiv (\lambda j , zj). Since zj
and zj are linearly independent, the contribution of the directions of zj and zj+1 can
be replaced by the span of the two purely real vectors \Re (zj) and \Im (zj). Let

\Phi =
1

2

\biggl( 
1  - i
1 i

\biggr) 
, with \Phi  - 1 =

\biggl( 
1 1
i  - i

\biggr) 
.

Then
\bigl( 
\Re (zj) \Im (zj)

\bigr) 
=
\bigl( 
zj zj+1

\bigr) 
\Phi . Note that

\surd 
2\Phi is unitary and that for j =

\ell 1 + 1, \ell 1 + 3, . . . , \ell  - 1,

\Phi  - 1
\biggl( 
\lambda j 0

0 \lambda j

\biggr) 
\Phi =

\biggl( 
\Re (\lambda j) \Im (\lambda j)
 - \Im (\lambda j) \Re (\lambda j)

\biggr) 
\equiv \^\Lambda j . (Here \Im (\lambda j) > 0.)

Define block--diagonal matrix \Phi \lambda with unit diagonal 1\times 1 blocks (1) for each real Ritz
value \lambda j and 2\times 2 matrix \Phi for each complex conjugate pair \lambda j , \lambda j+1. Note that Z\ell \Phi \lambda 
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is now a real matrix,

(5.17) Z\ell \Phi \lambda =
\bigl( 
z1, . . . , z\ell 1 , \Re (z\ell 1+1), \Im (z\ell 1+1), . . . , \Re (z\ell  - 1), \Im (z\ell  - 1)

\bigr) 
,

and the real versions of the powers of\Lambda contain 2\times 2 blocks for each pair \lambda j , \lambda j+1 = \lambda j ,
(5.18)

\Phi  - 1\lambda \Lambda i - 1\Phi \lambda =

\left[ 
 \bigoplus 

Im(\lambda j)=0

(\lambda i - 1
j )

\right] 
 \bigoplus 

\left[ 
 \bigoplus 

Im(\lambda j)>0

\^\Lambda i - 1
j

\right] 
 =

\left( 
 
\bullet 
\bullet 
\bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 
\bullet \bullet 

\right) 
 \equiv \widehat \Lambda i - 1 \in \BbbR \ell \times \ell .

When used in the objective function, these transformations yield an equivalent formula

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
(W \otimes \BbbI n)

\left[ 
  

\left( 
  

x1

...
xm

\right) 
   - 

\left( 
  

Z\ell \Delta \Lambda 1

...
Z\ell \Delta \Lambda m

\right) 
  \bfitalpha 

\right] 
  

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(5.19)

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left( 
  

w1x1

...
wmxm

\right) 
   - 

\left( 
  

w1(Z\ell \Phi \lambda )(\Phi 
 - 1
\lambda \Lambda 0\Phi \lambda )

...
wm(Z\ell \Phi \lambda )(\Phi 

 - 1
\lambda \Lambda m - 1\Phi \lambda )

\right) 
  (\Phi  - 1\lambda \bfitalpha \underbrace{}  \underbrace{}  

\bfitrho 

)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

.

If we introduce a change of variables in (5.19) by letting \bfitrho = \Phi  - 1\lambda \bfitalpha , then the optimal
\bfitrho in (5.19) must be real, and then the optimal \bfitalpha = \Phi \lambda \bfitrho reads

\bfitalpha =
\bigl( 
\rho 1 . . . \rho \ell 1 , \rho \ell 1+1 + i\rho \ell 1+2, \rho \ell 1+1  - i\rho \ell 1+2, . . . , \rho \ell  - 1 + i\rho \ell , \rho \ell  - 1  - i\rho \ell 

\bigr) T
.

(5.20)

The difference between (5.19) and the original formulation (3.4) is in replacing the

diagonal scaling matrices \Lambda i - 1 with block diagonal matrices \widehat \Lambda i - 1 = \Phi  - 1\lambda \Lambda i - 1\Phi \lambda \equiv 
(\Phi  - 1\lambda \Lambda \Phi \lambda )

i - 1 containing 1 \times 1 or 2 \times 2 diagonal blocks. A similar statement holds
for (3.5), where now we have real QR factorization Z\ell \Phi \lambda = Q (R\bfzero ). Note that Z\ell \Phi \lambda is
of the same dimensions as Z\ell , but it is a real matrix, thus occupying half the storage
needed for Z\ell . In a software implementation based on, e.g., LAPACK, Z\ell \Phi \lambda will be
actually computed in the form (5.17), so that this switching to real arithmetic is
simple.

Needless to say, computing the QR factorization in real arithmetic is (this is
estimated, but can be easily demonstrated in numerical experiments with sufficiently
large dimensions) at least twice faster than in complex arithmetic. Moreover, as
discussed above, in a high performance computing environment, we initially have
Z\ell \Phi \lambda , and not its complexification Z\ell . After the real QR factorization of Z\ell \Phi \lambda , the
steps (3.5), (3.2) are performed in real arithmetic. And, finally, the fact that the
solution is guaranteed to have complex conjugacy structure (5.20) analogous to that
of the selected eigenpairs, thus yielding real approximation, makes the final argument
in favor of this formulation.

5.4.2. Algorithms of section 5.2 for real data. After rewriting the steps
(3.4)--(3.11) over \BbbR using (5.18), (5.19), it remains to adapt the algorithms described

in section 5.2 to the case of real R and with the block-diagonal matrices \widehat \Lambda i - 1 instead
of the diagonal \Lambda i - 1. Clearly, the global structure of Algorithms 4 and 8 remains
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unchanged. The difference is in the structure (5.5), which is changed as illustrated
below (three real eigenvalues (\bullet ) and two complex conjugate pairs (\blacklozenge )):

Ti - 1\Lambda 
2i - 1

=

\left( 
 
\ast \ast \ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast 
\ast \ast \ast \ast 
\ast \ast \ast 
\ast \ast 
\ast 

\right) 
 

\left( 
  

\bullet 
\bullet 
\bullet 
\blacklozenge \blacklozenge 
\blacklozenge \blacklozenge 

\blacklozenge \blacklozenge 
\blacklozenge \blacklozenge 

\right) 
  =

\left( 
  

\ast \ast \ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast 
\ast \ast \ast \ast 
\bigstar \ast \ast \ast 

\ast \ast 
\bigstar \ast 

\right) 
  , \bullet , \ast ,\blacklozenge ,\bigstar \in \BbbR .

To put it simply, each complex conjugate pair of Ritz values creates a bulge (\bigstar ).
Hence, before running algorithms described in section 5.2.2, it suffices to apply Givens
rotations to first annihilate the bulges (\bigstar ), whose number equals the total number
of complex conjugate pairs. It is easily seen that the rotations can be applied inde-
pendently; there can be at most \ell /2 rotations, so the total cost of this correction is
O(\ell 2)). Such a correction is needed only in the (2, 1) block, designated as B in section
5.2.2.

6. Concluding remarks. In this paper we have provided a new firm numerical
linear algebra framework for solving structured least squares problems that arise in
applications of the Koopman/DMD analysis of dynamical systems (e.g., in computa-
tional fluid dynamics). Although the DMD was our main motivation that triggered
this development, the applicability of our results extends to many other computational
tasks such as, e.g., multistatic antenna array processing. Using error and perturbation
analysis, we have explained the accuracy and the limitations of the normal equations
based solution. Further, we have proposed new algorithms, based on a structure ex-
ploiting QR factorization, specific to the DMD framework. The new algorithm for
computing the structured QR factorization has been presented with detailed numer-
ical analysis and implementation details that can serve as blueprints for developing
a high performance software. A LAPACK based implementation of all introduced
algorithms is under development.
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