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Abstract—We present a continuous-space multiscale adaptive
search (MAS) algorithm for single or multiple searchers that
finds a stationary target in the presence of uncertainty in sen-
sor diameter. The considered uncertainty simulates the influence
of the changing environment and terrain as well as adversarial
actions that can occur in practical applications. When available,
information about the foliage areas and a priori distribution of
the target position is included in the MAS algorithm. By adapt-
ing to various uncertainties, MAS algorithm reduces the median
search time to find the target with a probability of detection of
at least PD and a probability of false alarm of at most PF A . We
prove that MAS algorithm discovers the target with the desired
performance bounds PD and PF A . The unique features of the
MAS algorithm are realistic second-order dynamics of the mobile
sensors that guarantees uniform coverage of the surveyed area
and a two-step Neyman–Pearson-based decision-making process.
Computer simulations show that MAS algorithm performs sig-
nificantly better than lawnmower-type search and billiard-type
random search. Our tests suggest that the median search time in
the MAS algorithm may be inversely proportional to the number
of participating searchers. As opposed to lawnmower search, the
median search time in the MAS algorithm depends only logarith-
mically on the magnitude of uncertainty.

Index Terms—Area coverage, detection algorithms, false alarm,
probability, search theory, target, uncertainty, unmanned aerial
vehicles.

I. INTRODUCTION

S TUDY of search problems using formalized mathematical
models started more than 60 years ago. For a survey, see

[1]. During World War II, mathematical theory was applied for
the first time to locate German submarine threats in the Atlantic.
Since then, the mathematics behind the practical search prob-
lems developed into search theory. In the “classical” discrete-
space setting (see e.g., [2]–[8]), a target is located somewhere
in a region that is partitioned into a finite number of cells.
The probability distribution for the target’s position (i.e., the
probability that the target is in any particular cell) and the
detection function of a sensor (i.e., the probability of detection
versus effort spent searching a cell, given that the target resides
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in that cell) are given. The goal is to maximize the probability of
detection of the target, assuming that the amount of total effort
available for the search is fixed. A major drawback of the above
setting is its discrete nature and the assumption of perfectly
functioning sensors. Moreover, theoretical solutions given to
the discrete space search problem assume that it is possible to
move between any two cells and, thus, result in trajectories that
could be physically impossible to follow.

An alternative to the discrete search setting is the “natural”
continuous search setting developed in [9] and [10]. The theory
of continuous search [9], [10] is more suitable for practical ap-
plications, as it can be extended to include various uncertainties
in the sensor, environment, etc. However, quoting from [10]:
“It is hard to imagine a sensor track, which is randomly but
uniformly distributed in the rectangle.” In the following, we
will show that such sensor tracks can be constructed for any
number of searches.

Recently, several application-oriented search algorithms
have been developed [11]–[17]. In [11] and [18], a methodology
is developed to deploy a mobile sensor network for the purpose
of detecting and capturing a mobile target that is moving in
a straight line on the plane. The dynamics of the pursuers is
limited to a combination of circles and lines (non-holonomic
unicycle model). The authors use track before detect approach
described in [19] where the stationary proximity sensors detect
the track of the target before pursuing it. In [12], an undersea
collaborative search framework is described where the sensors
move in the search area divided into cells. The sensors take
measurements within a cell multiple times to achieve the de-
sired level of assurance that the target is not within the cell.
In [20], cooperative track detection performance is optimized
by deploying the sensors based on their future displacement,
which can be estimated from environmental forecasts and
sensor dynamic models. The target is assumed to move with
constant speed on a straight line. In [13], [14], authors present a
receding-horizon cooperative search algorithm that jointly opti-
mizes routes and sensor orientations for a team of autonomous
agents searching for a mobile target. The algorithm in [13]
reduces the continuous search problem to an optimization on
a finite graph. In [15], a framework for cooperative search
using unmanned aerial vehicle (UAV) swarms is described. The
algorithm in [15] sweeps the area with UAV’s flying side-by-
side in straight lines. In [16], [17], an entropy-based algorithm
for search and action mission is presented. Continuous agent
search paths, resulting from the algorithm in [17], overlap, re-
ducing search efficiency. None of the state-of-the-art algorithms
described in this paragraph take into account uncertainty in
terrain (e.g., areas covered with ice or snow), environment (e.g.,
wind or fog), or sensor malfunction (e.g., wrong altitude or
complete loss of some agents). Different sources of uncertainty
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alter the effective diameter of the sensor. This would leave parts
of the search area completely uncovered and further reduce the
performance of the search algorithms.

We consider the search problem where a stationary target is
placed in an area S that contains foliage F that the sensors
cannot penetrate. The a priori distribution of the location of
the target (prior function) is assumed to be given. If it is not
given, we assume it to be the uniform distribution. The mobile
sensors (searchers) move through the area S continuously and
use a sensor with a circular range to scan the area. Our goal is to
minimize the median search time in the presence of uncertainty
in sensor diameter while keeping the probability of detection
of our algorithm above a threshold PD and the probability of
false alarm of the algorithm below a threshold PFA. Uncer-
tainties in terrain, environment as well as adversarial actions
can be considered as special cases of uncertainty in sensor
diameter.

The multiscale adaptive search (MAS) algorithm developed
here is a fusion of uniform-coverage dynamics of the sensors
and a two-step decision-making algorithm. When in the ex-
plore mode, the sensors move under the spectral multiscale
coverage (SMC) dynamics developed in [21] and described in
the Appendix. SMC dynamics ensures that the trajectories of
the sensors are uniformly spaced throughout the search area
and thus making it difficult for a target to evade detection by
the sensors. Realistic second-order dynamics of the sensors is
employed. The Neyman–Pearson lemma [22], that is central in
binary hypothesis testing theory to design a decision-making
rule, allows the sensors to quickly locate target suspects. Our
two-step Neyman–Pearson decision making puts some of the
sensors into rechecking mode to take additional measurements
at suspect target positions. This strategy ensures that the
probability of false alarm is within the required threshold. It
is the combination of the SMC dynamics and the two-step
Neyman–Pearson-based decision making that makes our MAS
algorithm perform very well under various uncertainties. The
MAS algorithm is scalable to very large number of sensors
n because the computational complexity is at most n log(n)
(which is explained in Section IV). In the case of a non-uniform
prior, we demonstrate that the median search time is minimized
when the sensor’s trajectories are designed according to the
logarithm of the prior function.

We tested the MAS algorithm with 50 sensors for differ-
ent a priori target distributions, each time making 5000 in-
dependent simulations. Our computer simulations show that
besides demonstrating superior robustness in the presence of
uncertainty, the MAS algorithm vastly outperforms random
search algorithms, such as the billiard-type search described in
Section IV, see also [23], where sensors start out in random
directions, move in straight lines, and reflect when they reach
the border. Another important advantage of the MAS algorithm
is its effective use of assets: The search time is inversely
proportional to the number of sensors. We also find that the
search time of the MAS algorithms is proportional to the
logarithm of the magnitude of uncertainty, whereas the best
design of lawnmower-type algorithms described in Section VI,
see also [24], result in linear dependence of the search time on
the magnitude of uncertainty. In the following, we present a

TABLE I
SUMMARY OF PARAMETERS AND VARIABLES

detailed description of the theory behind MAS algorithm and
demonstrate its performance for various applications (Table I).

II. MAS: THE DECISION-MAKING ALGORITHM

Assume that we have n sensors and an area S where a
single target is located. S may contain foliage F which the
sensors cannot penetrate. If the target is in the foliage, it is
undetectable for the sensors. The goal is to design a search
algorithm that will detect the target with probability of false
alarm at most PFA and probability of missed detection at most
PMD. Next, we describe our decision-making algorithm with
uniform coverage dynamics (MAS search); it can be used with
any coverage strategy. Depending on the coverage algorithm,
the stopping time is adjusted to achieve the desired precision.
To create a measurement history map and keep track of the
sensor measurements made in each cell area, S is divided into
small enough cells. There are two main modes for each sensor,
explore and recheck.

1) For given PFA and PMD, sfa, and sd, we compute
the constants n0 and γ0. Later in this section, we will
discuss in detail how to find the above constants using
the Neyman–Pearson lemma.

2) For given sensor frequency f and estimate of search
stopping time Tstop, find pfa and pmd, the expected
probabilities of false alarm and missed detection per n0

measurements, respectively.
3) For given pfa and pmd, sfa, and sd, we compute the

constants n1 and γ1. Detailed discussion is given later in
this section.

4) Initialize measurement history map and list of target
suspects to zero.

5) Deploy sensors. In our examples, sensors are deployed
from a small grid on lower left corner of S. After deploy-
ment, all sensors start out in explore mode.

6) In explore mode, the sensors cover the search area using
uniform coverage dynamics (discussed in Section V) and
update the measurement history map.

7) If the number of detections at a location exceeds γ0

and the number of measurements at the location does
not exceed n0, the location is added to the list of target
suspects.
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8) Starting from the most likely targets (locations that have
the highest ratio of positive measurements), each target
suspect is assigned to an available neighboring sensor in
explore mode. The sensor that has been assigned a target
suspect changes his mode to rechecking and moves to the
location of the target on a straight line with maximum
speed.

9) In recheck mode, the sensor performs n0 measure-
ments flying slowly above a target suspect position then
switches to explore mode.

10) If the ratio of detections to the number of measurements
exceeds γ1/n1, keep the location in the list of target
suspects, otherwise remove it from the list.

11) When the number of measurements at a location becomes
n1, check if the number of detections at the location
exceeds γ1. If yes, declare that the target is found and
stop the search.

12) If the algorithm reaches stopping time Tstop without
declaring a detection, the algorithm declares that the
target is in the foliage.

13) Repeat steps 4) to 12) to get statistics of search times.
14) Repeat steps 2) to 13) to adjust the stopping time Tstop, if

needed.
The simplified scheme of the MAS algorithm is illustrated

in Fig. 1.
The initial estimate for the stopping time for the MAS search

algorithm can be calculated using the following equation, which
was obtained empirically:

Tstop = β
|S|
δ2

log
(

1
max(PFA + PMD, α)

)
(1)

where constant β depends on the coverage algorithm of the
sensor as it moves in S. Next, we explain the heuristics behind
formula (1).

Our simulations show, see also Fig. 2, that the tail of the
distribution of detection times (for all settings) can be fitted by
the following exponential function shifted in time to account
for deployment

f(t) =
1
tm

e−
t

tm (2)

where tm is a constant proportional to |S|/δ2. Note, that
to obtain the formula for the stopping time, small search
times are not relevant. Assume that f(t) is our probability
distribution. Then, the corresponding cumulative distribution
function F (t) = 1 − e−(t/tm). We can find the stopping time
t = Tstop/β by solving

F (t) = min (1 − (PFA + PMD), 1 − α)

which is equivalent to

1 − e−
t

tm = min (1 − (PFA + PMD), 1 − α) .

Thus,

t = tm log
(

1
max(PFA + PMD, α)

)
.

Empirically, we obtained that for MAS search β = 2.3.

Fig. 1. Simplified scheme of the MAS algorithm. ntot denotes the total
number of measurements taken at a given location and ndet denotes the number
of positive readings (detections) obtained at this location.

Fig. 2. Fitting the tail of the distribution of stopping times (example from
Section IV). The solid curve is a fit given by (2).
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In general, the stopping time of the algorithm can be adjusted
in various ways. One way is to obtain statistics of stopping
times of the algorithm, then compute the corresponding values
of PT

FA and PT
MD based on statistics for each stopping time T .

Now, the stopping time for the desired PFA and PMD can be
extrapolated.

Next, we describe how to find the constants n0, γ0, n1, and
γ1 used in our algorithm.

Recall that PMD is the probability of declaring that the target
is in foliage, given that the target is in S and PFA is the
probability of declaring that the target is somewhere in S, given
that the target is not in that location. In the simulation setting, it
translates to the following, as seen in [25]. Let NR denote the
number of realizations of the whole search scenario, NFA—the
number of times the algorithm declared finding a target given
that the target was not there, ND—the number of times the
target was detectable (in S), and NMD—the number of times
the target was detectable and the algorithm declared that it was
in the foliage. Then, we have

PFA = lim
NR→∞

NFA

NR

PMD = lim
NR→∞

NMD

ND
.

In course of the algorithm, the sensor moves in S, taking
measurements with frequency f . For an easier description of
our decision-making procedure, let us group several measure-
ments in one location and consider it a step. We chose this
name as an analogy to a discrete search scenario where in
each step, the sensor is allowed to make several independent
measurements (at that location). Assume that each step in-
cludes n0 independent measurements and detection of target
is declared if at least γ0 + 1 of the measurements are 1 s.
The Neyman–Pearson criterion (see [22]) allows us to find
n0 and γ0 that maximize the probability of detection while
the probability of false alarm stays under some prescribed
bound (PFA). The Neyman–Pearson lemma (see [22]) implies
that the minimal n0 and γ0 are the solutions to the following
optimization problem:

PFA = P [k > γ0] + ρP [k = γ0]

=
n0∑

k=γ0+1

(
n0

k

)
sk

fa(1 − sfa)n0−k

+ ρ

(
n0

γ0

)
sγ0

fa(1 − sfa)n0−γ0 (3)

1 − PMD = P [k > γ0] + ρP [k = γ0]

=
n0∑

k=γ0+1

(
n0

k

)
sk

d(1 − sd)n0−k

+ ρ

(
n0

γ0

)
sγ0

d (1 − sd)n0−γ0 . (4)

We first find minimal γ0 satisfying (3) when ρ = 0. Because
at this point n0 is unknown, γ0 = γ0(n0) is a function of n0.
Next, from the (3), we find ρ = ρ(n0). Finally, we substitute
γ0(n0) and ρ(n0) into (4) and find the minimal n0 for which the
equation still holds. Taking n0 measurements at each location
guarantees that probability of missed detection of the algorithm

will be less than or equal to PMD. It does not however guar-
antee that the probability of false alarm of the algorithm is
less than or equal to PFA. Taking n0 measurements will be
a preliminary criteria in our decision-making algorithm: If at
least γ0 + 1 readings are 1 s, the sensor will assume that there is
a target suspect at that location. To achieve probability of false
alarm less than or equal to PFA, the sensors will take additional
measurements.

Denoting the total number of steps taken by N , we can
express the upper bound pfa for probability of false alarm for
each step as follows:

(1 − pfa)N = 1 − PFA (5)

where N can be estimated as fTstop/1.14n0. From (5), we get

pfa = 1 − (1 − PFA)
1.14n0
fTstop . (6)

pfa provides an upper bound for the probability of false alarm
for each step needed for the algorithm to achieve probability of
false alarm at most PFA. The probability of missed detection
for one step is the probability of declaring that the target is in
foliage when the target is in S. Denoting by pmd, the upper
bound for probability of missed detection for each step, we get

pmd = 1 − (1 − PMD)
1.14n0
fTstop . (7)

pmd provides an upper bound for the probability of missed
detection for each step. Using the Neyman–Pearson criterion
again, we obtain the constants n1 and γ1, that will be used by
the algorithm in making the final decision. n1 will be the upper
bound on the number of measurements that the sensor may take
at one step. With given pfa and pmd, we find optimal n1 and γ1

as follows. From Neyman–Pearson lemma (see [22]), we have

pfa =P [k > γ1] + ρP [k = γ1]

=
n1∑

k=γ1+1

(
n1

k

)
sk

fa(1 − sfa)n1−k

+ ρ

(
n1

γ1

)
sγ1

fa(1 − sfa)n1−γ1 (8)

1 − pmd =P [k > γ1] + ρP [k = γ1]

=
n1∑

k=γ1+1

(
n1

k

)
sk

d(1 − sd)n1−k

+ ρ

(
n1

γ1

)
sγ1

d (1 − sd)n1−γ1 . (9)

To find n1, we find minimal γ1 = γ1(n1) satisfying (8) when
ρ = 0. Next, from the (9), we find ρ = ρ(n1). Finally, we
substitute γ1 and ρ(n1) into (9) and find the minimal n1 for
which the inequality still holds.

III. INCREASING EFFICIENCY BY MODIFYING THE PRIOR

In [26], it was shown that for random search, the probability
of detecting the target at (x, y) given the density function
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of search effort φ(x, y) can be described by the following
exponential law of random search

D (x, y, φ(x, y)) = 1 − exp [w(x, y)φ(x, y)] .

Here, w(x, y) can be regarded as a local measure of de-
tectability at (x, y). Note, that if the sensor sweeps the area
with sensor of a fixed range w(x, y) = W is assumed to be
constant. Denote p(x, y) the a priori probability distribution of
the position of the target. To optimize the search effort in [26],
it was proved that for an optimal φ(x, y), there is a constant
λ > 0 such that

• if φ(x, y) > 0, p(x, y)w(x, y) exp[w(x, y)φ(x, y)] = λ,
• if φ(x, y) = 0, p(x, y)w(x, y) ≤ λ.
Denote A(Φ) = {(x, y) : φ(x, y) > 0}. In the above terms

for (x, y) ∈ A(Φ), the optimal φ(x, y) can be expressed as

φ(x, y) =
1

w(x, y)
log

p(x, y)w(x, y)
λ

. (10)

Since, Φ, the total search effort is the integral of φ(x, y) over
A(Φ), from (10), it follows that to optimize φ(x, y), one has to
find the value of λ that will result in∫∫

A(Φ)

φ(x, y)dxdy = Φ.

Geometrically, this can be interpreted as cutting a horizontal
stripe from the graph of φ(x, y) up till y = log λ. We show that
without the constraints of “random search”, a similar approach
can be used to increase the search efficiency.

Denote by p(t) the probability of the target being detected by
time t. For a small interval of time δt

p(δt) = 1 − (1 − sd)δtf (11)

where sd is the probability of detecting the target by a single
measurement and f is the frequency with which the sensor
takes the measurements. Assuming that the sensor radius does
not change with time, we can write p(δt) = w(δt)δt with some
continuous function w(t).

w(0) = lim
δt→0

1 − (1 − sd)δtf

δt(
1 − (1 − sd)ft

)′
(0) = − f log(1 − sd)(1 − sd)ft(0)

= − f log(1 − sd) (12)

so

w(0) = −f log(1 − sd). (13)

Note, that exponential law is true for the non-detection
probability. Denote by ND(t) the probability of the event that
the target have not been detected by time t. Then,

ND′(t) = lim
δt→0

ND(t + δt) − ND(t)
δt

= lim
δt→0

(1 − p(δt)) ND(t) − ND(t)
δt

= − w(0)ND(t)
= f log(1 − sd)ND(t). (14)

Fig. 3. Reduction of high peaks in P (dashed curve), by replacing it with
log(P/λ) > 0 (solid curve).

Fig. 4. Automatic procedure to select λ.

To prevent the sensor from covering unevenly the high prob-
ability areas, we modify the prior using logarithm and use a
cutoff probability to prevent the sensors from going into areas
where the probability of the target being there is close to zero.
Fig. 3 illustrates how the high peaks are reduced by taking log-
arithm of the prior, or for short, log prior. In Fig. 4, the log prior
distribution is analyzed for the non-uniform distribution from
Fig. 5. The black circles around the peaks of the probability
distribution in Fig. 6 show the place from where the log prior
distribution is set to zero. Given the original prior p(x, y), we
automatically construct a log prior as follows. Every value
p(x, y) is replaced by

p(x, y) → max [log (p(x, y)/λ) , 0] (15)

where λ is selected as shown below.
For a fixed value of λ, we define intrinsic miss detection

as integral of p(x, y) over the area where the log prior equals
zero {(x, y) : max[log(p(x, y)/λ), 0] = 0}. Fig. 4 shows the
intrinsic miss detection as a function of λ. Now, by setting the
value of intrinsic miss detection sufficiently low, we can obtain
λ. In Fig. 4, the grey circle shows the value of λ for which the
intrinsic miss detection is 0.04, i.e., 4% of detectable targets
will never be found (as they will be outside of two circular areas
in Fig. 6). When the modified prior is used to compute MAS
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Fig. 5. Search area S with 5000 targets generated according to a non-uniform
prior. A fraction of the targets is under foliage, which is shown in grey.

Fig. 6. Density of log(P/λ) > 0. Dots represent detectable targets.

trajectories, the sensors are confined to the areas where the
target is likely to be located. The sensors are better distributed
and they do not waste time going through the prior maxima over
and over again.

IV. PERFORMANCE OF THE MAS SEARCH ALGORITHM

In Fig. 7, we present performance plots of our decision-
making algorithm described in Section II. Fixing constants n0,
sd, and sfa, we can compute all corresponding pairs PFA,
PMD using (3) and (4). For fixed sd and sfa, each color repre-
sents a constant n0, shown on the picture. The pairs (sd, sfa)
that we use are characteristics of realistic sensors computed
in [27]. Fig. 7 illustrates the tradeoff between precision of the
algorithm and the number of measurements it has to take. The
smaller are the probabilities of PFA and PMD, the bigger is
the n0. Fig. 7 also shows that our decision-making algorithm
is highly efficient, for reasonable choice of PFA and PMDn0

stays fairly small. For example, the high-precision PFA = 0.1
and PMD = 0.1 can be achieved with n0 between 3 and 5 when
sd = 0.8 and sfa = 0.2.

Next, we show that the computational complexity of the
MAS search algorithm is at most n log(n). It takes O(n)
operations to compute trajectories for the n sensors as described
in Section V, see [21]. The algorithm has to update trajectories
every time after a sensor switches into recheck mode which
still results in O(n) computational complexity, since there is
an upper bound on the search time Tstop. When a sensor
has to be assigned to recheck a target suspect, the algorithm

performs a sorting of sensors according to their distance to the
target suspect to find the closest available sensor. Since the
complexity of a simple sorting algorithm is O(n log(n)), see
[9], the computational complexity of the MAS algorithm is at
most O(n log(n)).

We tested the MAS search algorithm for 50 sensors on a
rectangular area S shown in Fig. 5. The sensors are deployed
in vertices of a 10 × 5 small grid in lower left corner of S.
Foliage is shown in light grey and the prior distribution is shown
by dots. The sensors move with realistic second- order dynam-
ics (max velocity = 10 m/s, max acceleration = 5 m/s2). Each
sensor has an uncertain circular sensor range with diameter
uniformly distributed between 5 and 10 m that changes every
50 s. Sensor frequency f = 2 Hz. The probabilities of detection
and false alarm for a single sensor are sd = 0.8 and sfa = 0.2,
respectively. The goal is to minimize search time while satis-
fying the requirements PD,group ≥ 0.9 and PFA,group ≤ 0.1.
We tested the MAS algorithm with randomly generated targets
drawn from the uniform prior, shown in Fig. 8, and with random
targets drawn from a non-uniform prior, shown in Fig. 5. When
the sensors move according to MAS coverage strategy, it is
guaranteed that the distribution of points along the trajectories
approaches the desired probability distribution of the prior. So,
when the prior is non-uniform and the probability distribution
is concentrated around several sharp peaks, the sensors using
MAS coverage will spend much time in high probability areas
close to the peaks and the areas with lower probability will
get covered much slower. Moreover, if the peaks are sharp
enough, the sensors will continue taking measurements even
after enough measurements have been taken to decide that the
target is not there.

Figs. 9–11 show typical coverage of the search area by
50 sensors in cases of uniform, non-uniform, and log non-
uniform priors, respectively, for MAS search. Fig. 9 illustrates
that the MAS algorithm provides a good coverage of the search
area. As compared to the coverage of non-uniform prior in
Fig. 10, coverage of log prior in Fig. 11 is more contained to
high probability areas and covers them more efficiently.

We performed 5000 experiments for uniform, non-uniform,
and log non-uniform priors, respectively, to obtain statistics of
MAS search. In Fig. 12 are histograms of MAS search per-
formed on S with non-uniform prior and with log non-uniform
prior. The histograms for the cases of both non-uniform and log
non-uniform priors have a high peak close to median detection
time and a high single bin at the end of the distribution. The
peak around median detection time can be explained by the fact
that in the case of the non-uniform distributions, the targets are
contained in relatively small areas with high probability and the
sensors cover these areas by about the median detection time.
Despite the fact that median detection times are similar for in
cases of non-uniform prior (213 s) and log non-uniform prior
(203 s), the median search time for the case of non-uniform
prior is 15% bigger (459 s) than the the median search time
for the case of log non-uniform prior (400 s). The median
absolute deviation of MAS detection time applied with non-
uniform prior is 40% bigger than when log non-uniform prior
is used, while PMD stays the same and PFA is almost twice
smaller for the log non-uniform prior. This means that the log
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Fig. 7. Receiver operating characteristic curves in terms of PMD and PFA.

Fig. 8. Search area S with 5000 targets generated according to the uniform
prior. A fraction of the targets is under foliage, which is shown in grey.

Fig. 9. Typical coverage of the uniform prior by 50 sensors.

non-uniform prior results in more efficient coverage. When
there are high peaks in the prior, we have seen that modifying
the prior to log prior can significantly boost the performance of
the MAS algorithm. The high peaks at the end of the distribu-
tions in Figs. 12 and 13 consist of the cases when the stopping
time Tstop is reached, i.e., the algorithm declares that the target
is in the foliage. The histogram of MAS search performed on
S for uniform prior in Fig. 13 declines very slowly and does
not contain high peaks except the single bin at the end of the
distribution. This means that the coverage provided by the MAS

Fig. 10. Typical coverage of P by 50 sensors.

Fig. 11. Typical coverage of log(P/λ) > 0 by 50 sensors.

algorithm is very homogeneous at all times which in turn means
that the MAS search algorithm is very efficient.

Fig. 14 illustrates that 1 − PMD = PD,group and PFA =
PFA,group converges above and below the required limits,
respectively, as the number of realizations of MAS search
increases. So, our search algorithm, indeed, performs with
the desired precision for uniform, non-uniform, and log non-
uniform priors.

In Fig. 15, we can see the median search time converges as
the number of realizations increases.

In Table II, we compare statistics for MAS search without
uncertainty, MAS search with periodically changing uncertain
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Fig. 12. Histograms of MAS search for non-uniform prior and log-non-
uniform prior.

Fig. 13. Histogram of MAS search for uniform prior.

sensor radius, and billiard search when sensors start out in ran-
dom directions and move in straight lines, reflecting when they
reach the border. We ran computer simulations of MAS search
conducting 5000 independent experiments for each scenario.
Computer simulations show that median detection time, median
search time, and median absolute deviation of MAS search in
presence of uncertainty are very close to the corresponding
MAS search data without uncertainty in sensor radius.

Fig. 14. PD,group and PFA,group obtained from our simulations statistics
as the number of experiments increases.

Fig. 15. Median search time of MAS algoithm.

The median absolute deviation of MAS search time is
1.5 times smaller than that of billiard search; median search
time of MAS search is 1.6 times smaller than that of billiard
search; median detection time of MAS search is 1.7 times
smaller than that of billiard search.

V. UNIFORM COVERAGE DYNAMICS (SMC)

In MAS search, when the sensors are in search mode, they
move according to the SMC algorithm (see [21] and [28]).
This algorithm prescribes centralized feedback control laws
for n sensors so that they achieve uniform coverage of the
prescribed domain. The algorithm uses a metric that quantifies
how far sensor trajectories are from being ergodic with respect
to a given probability measure. This metric for ergodicity is
a measure of how uniformly the points on the sensor trajec-
tories cover a domain. The feedback controls applied on the
moving sensors are essentially optimal controls that minimize
the uniform coverage metric at the end of an infinitesimal time
horizon. In the Appendix, we formally define the metric for
ergodicity (or uniform coverage) and describe how the feedback
laws for the motion of the sensors are computed. The algorithm
in [21] allows to design optimal dynamics for sensors with
the goal to cover any part of a given area S. For instance, if
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TABLE II
COMPARISON OF MAS SEARCH UNDER DIFFERENT CONDITIONS

Fig. 16. Search area (1 km2) with uncertain terrain. Sensor diameter as a
function of position shown here is unknown to the sensors.

the location of the target is described by a probability distri-
bution P , the part of S where P > 0 has to be covered. We
tested the uniform coverage dynamics used in MAS search, for
50 sensors and the area S shown in Fig. 5, where the foliage is
shown in light grey. We tested the algorithm for the case when
the prior probability distribution of the target P is uniform and
for the case when the location of the target corresponds to a
prior distribution shown in Fig. 5. As illustrated in Figs. 9 and
10, the uniform coverage motion design of the MAS algorithm
guarantees superior coverage when the a priori distribution is
both uniform and non-uniform. Note that the sensors move
with realistic second-order dynamics and that the distribution
of points on the trajectories approaches the a priori distribu-
tion. As seen in Fig. 10, the motion of the sensors depends
on the a priori distribution: The high-probability regions are
always covered better. By covering S according to a probability
distribution, the uniform coverage dynamics saves time by not
going to regions where the probability distribution of the target
is zero.

VI. SEARCH WITH UNCERTAIN TERRAIN

Consider the search problem where the prior distribution
of the target is uniform and the sensor range depends on the
terrain but is unknown to the sensor, i.e., the terrain is uncertain.
There is no foliage and all other parameters are the same as
in Section IV. Fig. 16 is an example of an uncertain terrain
in a 1000 × 1000 m square region that we will use in this
section. Here, the sensor diameter varies between Dmin and
Dmax = 10 m, and the uncertainty in terrain is defined as
ε = 1 − (Dmin/Dmax). In Fig. 16, Dmin = 0 and the sensor
diameter varies, depending on the location, from zero (shown
in the darkest shade) to 10 m (shown in the lightest shade),
so the terrain uncertainty is 100%. When terrain is uncertain,

Fig. 17. Ratio of the search stopping times for lawnmower and MAS strate-
gies as a function of the search precision (probability of the search success at
stopping) for different magnitudes of terrain uncertainty.

the best strategy for the sensor is to uniformly cover the
entire search area. We will compare two coverage strategies
fused with our decision-making algorithm: The lawnmower
algorithm and the MAS algorithm. Here, we will use the version
of the lawnmower coverage, in which the sensor is moving in
the area in parallel lines and the locations where the sensor takes
measurements form a triangular lattice. The distance between
two neighboring lattice points is rLM

√
3, where rLM is the

sensor radius used in lawnmower path construction.
We will test two lawnmower algorithms. In algorithm Lawn-

mower 1, rLM = 0.5Dmax(1 − 0.5ε) is set to be the mean
sensor radius when the terrain has 100% uncertainty. In al-
gorithm Lawnmower 2, rLM = 0.25Dmax(1 − 0.5ε). In our
search scenario, the stopping time of the algorithm is the time
when the sensor finds the target. If we run a large number M
of search simulations for Lawnmower 1 and MAS algorithms
on the terrain given in Fig. 16, for any given search precision p
one can calculate, based on the statistics, the smallest stopping
times T needed to achieve it. That is, the number of searches
that successfully found the target by time T divided by M
equals p. Now, for any given search precision, we can compare
the corresponding stopping times for Lawnmower 1 and MAS
search strategies. In Fig. 17, we plotted the ratio of stopping
times as a function of search precision for Lawnmower 1 and
MAS for uncertainty ε in terrain 20%, 50%, and 100%, respec-
tively. From the plot, one can see that at very low and very high
precision levels, the MAS algorithm finds the target faster than
the lawnmower algorithm. If we intersect light grey, dark grey,
and black curves on Fig. 17 with the horizontal line at 1, we can
see that there is a precision interval in which the lawnmower
algorithm finds the target faster, this means that if we knew the
uncertainty in terrain beforehand, it would be possible to design
a lawnmower algorithm that would find the target faster than
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Fig. 18. Ratio of the search stopping times for lawnmower and MAS strate-
gies as a function of the search precision (probability of the search success at
stopping) for different designs of lawnmower trajectories.

the MAS algorithm for a given precision level. However, as the
precision level gets higher, the MAS algorithm will ultimately
beat the lawnmower. In Fig. 17, this fact is illustrated by the
steep right end of each curve with vertical asymptote. This
means that any lawnmower algorithm has an upper limit to
its precision level. The limit in precision level in lawnmower
comes from the fact that for the pre-computed lawnmower path
there always will be targets that the lawnmower will never find.
In Fig. 18, solid line shows the ratio of the search stopping times
for MAS search (executed with 5 sensors and 100% uncertainty
in terrain) and Lawnmower 1; dashed line shows the ratio of
the search stopping times for MAS search (executed with five
sensors and 100% uncertainty in terrain) and Lawnmower 2.
The ratio of the search stopping times for five sensors (solid
curve in Fig. 18) is very similar to the ratio of the search
stopping times for one sensor (light gray curve in Fig. 17)
which indicates that the MAS search time is scalable with the
number of sensors. As shown in Fig. 18, the Lawnmower 2
coverage, that is four times as dense as Lawnmower 1, does
not have better stopping time than Lawnmower 1 when the
precision is less than 0.73. For precisions between 0.82 and
0.84, Lawnmower 2 performs better than the MAS algorithm.
The minimum of the ratio of stopping times of Lawnmower 2
and MAS search is about the same as the ratio of stopping times
of Lawnmower 1 and MAS search, which is about 0.7. This
illustrates that higher precision can be achieved by choosing a
denser Lawnmower path, however the same choice of path will
perform very poorly if we decide that lower precision is enough.

The MAS search algorithm is universal in the sense that its
trajectories will always achieve a required precision and it will
outperform the lawnmower algorithm for every precision ex-
cept for a very small interval of precision where the lawnmower
is a little bit faster. This shows that lawnmowerlike algorithms
with pre-computed paths may be a very poor choice of coverage
algorithm if the terrain is uncertain, as they may not be able to
reach the required precision at all. The MAS search on the other
hand will always be able to achieve the desired precision with
stopping times that will be most likely much better than those
of the lawnmower.

Fig. 19. Median search time (solid curves) and search stopping time (dashed
curves) for lawnmower (grey) and MAS (black) strategies as a function of
a measure of terrain uncertainty. Median search time of the MAS search
converges logarithmically with the measure of uncertainty.

Finally, let us compare the performance of MAS and lawn-
mower algorithms as a function of the measure of terrain
uncertainty 1/δ. Here, δ = (Dmin/Dmax)2 = (1 − ε)2 is the
fraction of the sensor footprint area that is detectable. As
we found earlier in this section, for a given precision (say
90%), we can design a lawnmower algorithm that will have
the same stopping time as the MAS algorithm (design the
best lawnmower). Fig. 19 shows a log-log plot of the median
search time of MAS search (solid black curve) and median
search time of the best lawnmower search (solid grey curve)
as a function of the measure of terrain uncertainty. We found
that in order to match the MAS stopping time, the lawnmower
parameter rLM has to be chosen as rLM = 0.5Dmaxδ

0.26.
Fig. 19 shows that lawnmower stopping time is almost matched
to the MAS stopping time. Median search time of the MAS
search grows logarithmically (∼ log(1/δ)) whereas the search
time of lawnmower grows as a square root (∼√

1/δ) of the
measure of uncertainty. This, again, shows the advantage of
MAS search as compared to the best lawnmower design when
the terrain is uncertain.

VII. CONCLUSION

We have presented the MAS algorithm that can be imple-
mented on a domain with any given geometry and finds a
target with probability of detection of at least PD and prob-
ability of false alarm of at most PFA. The domain may also
contain foliage that the sensors cannot penetrate. The MAS
search algorithm features a novel two-step decision-making
algorithm that is based on the Neyman–Pearson lemma and
realistic second-order dynamics of sensors. We use the SMC
algorithm described in [21] to compute sensor trajectories that
provide uniform coverage of the domain. By uniform coverage,
we roughly mean that points on the sensor trajectories must
be uniformly distributed or evenly spaced throughout the do-
main. The MAS search algorithm is fairly easy to implement
and has computational complexity O(n log(n)). Because the
SMC coverage is expected to distribute the sensors uniformly
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throughout the domain at any given point in time, the MAS
search algorithm is very robust to the uncertainty in sensor
radius. In particular, MAS search outperforms lawnmower-
type search where the trajectories are computed in advance,
provided that the distribution of sensor radius is given. An
important feature of MAS search algorithm is that it is capable
of computing the sensor trajectories for virtually any geometry
of the search domain. The MAS search algorithm in presence of
uncertainty vastly outperforms random search (Billiard search)
as shown in Table II. We conjecture that in contrast with random
search the MAS algorithm maximizes its effective use of assets:
The median search time is inversely proportional to the number
of sensors.

APPENDIX

SPECTRAL MULTISCALE COVERAGE

There are n sensors and their dynamics is described by

ẍj(t) = −cẋj(t) + uj(t) (16)

where c > 0 is a damping coefficient to model the resistance
due to air or water, and uj(t) is the control (or force) applied
on each moving sensor. Given trajectories xj : [0, t] → R

n, for
j = 1, 2, . . . , n, we define the distribution Ct as

Ct(x) =
1

Nt

N∑
j=1

t∫
0

δ (x − xj(τ)) dτ. (17)

δ(.) is the Dirac delta distribution. The inner product of Ct

with a bounded function f is given as

〈Ct, f〉 =
1

Nt

N∑
j=1

t∫
0

f (xj(τ)) dτ =
1

Nt

t∫
0

N∑
j=1

f (xj(τ)) dτ.

(18)

Let fk be the Fourier basis functions that satisfy Neumann
boundary conditions on a rectangular domain U and k is the
corresponding wave-number vector. For instance, on a rectan-
gular domain U = [0, L1] × [0, L2], we have

fk(x) =
1
hk

cos(k1x1)cos(k2x2), where

k1 =
K1π

L1
and k2 =

K2π

L2
,

for K1, K2 = 0, 1, 2 . . . . and where

hk =

⎛
⎝ L1∫

0

L2∫
0

cos2(k1x1)cos2(k2x2)dx1dx2

⎞
⎠

1/2

.

(19)

The division by the factor hk ensures that fk has L2

norm equal to one. Therefore, fk is an orthonormal basis.

Now, computing the Fourier coefficients of the distribution Ct,
we have

ck(t) = 〈Ct, fk〉 =
1

Nt

N∑
j=1

t∫
0

fk (xj(τ)) dτ. (20)

The Fourier coefficients of the prior probability distribution
P are given as

μk = 〈P, fk〉. (21)

The metric for ergodicity (or uniformity of coverage) we use
is given by a Sobolev space norm of negative index (H−s, for
s = (d + 1)/2, d = dimension of the space). i.e.,

φ2(t) = ‖Ct − P‖2
H−s =

∑
K

Λk |sk(t)|2 ,

where sk(t) = ck(t) − μk and Λk =
1

(1 + ‖k‖2)s . (22)

Requiring φ2(t) to converge to zero is the same as requiring
time averages of the Fourier basis functions functions along
trajectories to converge to the spatial averages of the basis
functions. In other words, φ2(t) quantifies how much the time
averages of the Fourier basis functions deviate from their spatial
averages, but with more importance given to large-scale modes
than the small-scale modes. For more justification on the use of
this as a metric for uniform coverage, see [21] and [28].

The objective of the uniform coverage algorithm is to find
feedback laws so as to drive the metric φ2(t) to zero. Let umax

be the maximum force that can be applied on the moving sensor.
It can be shown that the control uj(t) that makes the second
time derivative of φ2(t) as negative as possible is given as

uj(t) = − umax
Bj(t)

‖Bj(t)‖2

,

where Bj(t) =

[∑
k

Λksk(t)∇fk (xj(t))

]

and Λk =
1

(1 + ‖k‖2)s . (23)

This feedback control law can also be shown to be the
optimal control that minimizes the uniform coverage metric at
the end of an infinitesimal time horizon. Note that the feedback
law is in terms of the Fourier coefficients ck(t). Therefore, the
algorithm requires the constant updating of integrals of the type

Ck(t) =
n∑

j=1

t∫
0

fk (xj(τ)) dτ (24)

for all wave-numbers K.
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