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a b s t r a c t

In this paper we propose a metric that quantifies how far trajectories are from being ergodic with respect
to a given probability measure. This metric is based on comparing the fraction of time spent by the
trajectories in spherical sets to the measure of the spherical sets. This metric is shown to be equivalent
to a metric obtained as a distance between a certain delta-like distribution on the trajectories and the
desired probability distribution. Using this metric, we formulate centralized feedback control laws for
multi-agent systems so that agents trajectories sample a given probability distribution as uniformly as
possible. The feedback controls we derive are essentially model predictive controls in the limit as the
receding horizon goes to zero and the agents move with constant speed or constant forcing (in the case of
second-order dynamics). We numerically analyze the closed-loop dynamics of the multi-agents systems
in various scenarios. The algorithm presented in this paper for the design of ergodic dynamics will be
referred to as Spectral Multiscale Coverage (SMC).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ergodic theory studies the time-averaged behaviour of dynam-
ical systems. A system is said to exhibit ergodic dynamics if it visits
every subset of the phase spacewith a probability equal to themea-
sure of that subset. Birkhoff’s ergodic theorem states that a dynam-
ical system is ergodic if and only if the time averages of functions
along trajectories are equal to their spatial averages (see [1]). Much
of the research in ergodic theory deals with analyzing the ergodic-
ity (or lack of) for specific dynamical systems. There are relatively
few studies that deal with the problem of designing ergodic dy-
namics. This is the subject of this paper. First,weproposemetrics to
quantify how far trajectories are from being ergodic. Then, we use
this metric for the design of ergodic dynamics for multi-agent sys-
tems. An interesting application of this work is cooperative control
of mobile robotic/sensor networks to achieve uniform coverage of
a domain.

Cooperative control of mobile robotic/sensor networks is an
emerging discipline with a lot of recent research activity. This is
partly due to the various advances in robotic technologies and net-
works and partly due to the interesting mathematical challenges
that arise from cooperative control problems. A recent example for
an interesting advance in robotic technology is theMITRobofish [2]
thatmimics themovement of real fishwith few components. In the
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near future, one can envision a school of such robofish performing
cooperative tasks in the ocean like surveillance and environmen-
tal monitoring. For working prototypes of mobile sensor networks
see [3,4].

The emergence of cooperative control as a discipline can be af-
firmed by special journal issues dedicated entirely to various prob-
lems in cooperative control. See [5,6] for special issues presenting
papers that deal with a wide range of coordination tasks such as
consensus, connectivitymaintenance, formation stabilization, cov-
erage and target detection. See [7] for a special issue dedicated to
coordinated control of many, mobile, networked sensor platforms
for ocean state estimation. There is a recent book [8] that presents
basic distributed algorithms for robotic networks. This book shows
how tools and notions from different areas such as distributed
algorithms, parallel processing, graph theory, computational ge-
ometry, control and estimation are used to solve problems of ren-
dezvous, deployment, boundary estimation and tracking.

In this paper, we address the problem of coverage by multi-
agent systems—in particular the problem of uniform coverage/
sampling. Some representative papers that deal with the problem
of coverage/sampling are [9–14]. The term ‘coverage’ can mean
slightly different things to different authors. For example, in
[9–12], ‘coverage’ is more a static concept. i.e., it is a measure of
how a static configuration of agents covers a domain or samples
a probability distribution. In these papers, the problem is that of
redeployment. i.e., given the initial positions of the agents, how
do we control the motion of the agents so that they converge
to an optimal stationary location? These final stationary agent
locations are optimal in the sense that theymaximize the detection
probability of some event.
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In [13,14], the term ‘coverage’ is more of a dynamic concept
and is a measure of how well the points on the trajectories of the
agents cover a domain. That is, coverage gets better and better as
every point in the domain is visited or is close to being visited
by an agent. In [13], the authors discuss algorithms for optimal
data collection. They discuss an example of a fleet of underwater
gliders thatmovewith ocean currents and sample various dynamic
oceanographic signals. In [14], the authors study the problem of
dynamically covering a region using mobile agents. The notion of
coverage we use in this paper is closer to that in [13,14]. Moreover,
we use the notion of ‘uniform coverage’. In this paper, by ‘uniform
coverage’, we roughly mean that points on the agent trajectories
must be as uniformly distributed or evenly spaced throughout the
domain.

One approach to achieve uniform coverage is to use lawnmower
type strategies (see [15]). In a lawnmower strategy, the area to be
covered will be partitioned into equally sized areas and each agent
will be assigned to a partition. Then each agent will systemically
scan the partition assigned to it by going back and forth in parallel
lines. The problems with a lawnmower type approach are:

• It is not straightforward to implement for irregular domains.
• It is not robust to uncertainties (e.g. if one or more of the agents

fail, then it is not straightforward for the other agents to adapt
accordingly.)

• It is not naturally multiscale. A good uniform coverage al-
gorithm should detect large scale features first, followed by
smaller and smaller features.

• It is also not easy to design lawnmower type trajectories to sam-
ple non-uniform probability distributions.

The algorithm we present in this paper overcomes all the
drawbacks of a lawnmower algorithm that are mentioned above.
It can be easily implemented for irregular domains and non-
uniform probability distributions. Since our algorithm is based on
feedback control laws, it can deal with uncertainties like the failure
of one or more of the agents. Also, our algorithm is guaranteed
to be multiscale due to the novel metric we use to quantify
the uniformity of coverage. The metric we use to quantify the
uniformity of coverage was inspired by our previous work to
quantify the degree of mixedness of material in a fluid medium
(see [16,17]). The notion of uniform coverage can be related to
concepts in ergodic theory that relate time averages of functions
along trajectories to the spatial averages of functions.

There are many applications of mobile multi-agent systems
where it is useful to design their dynamics so that their trajectories
are as uniformly distributed as possible in the domain of interest.
A couple of scenarios where it is useful to have such dynamics are:

1. Ocean sampling: As described in [3,7,13], design of autonomous
ocean-sampling networks is an active area of research. The
central objective in these projects is to collect data that best
reveals the ocean processes and dynamics. They use fleets
of underwater gliders in the ocean that take measurements
of various oceanographic fields like temperature, salinity and
flow. To estimate the state of the ocean at all spatial scales,
it is useful that the trajectories of the gliders are as uniformly
distributed so that spatial averages of the oceanographic fields
can be estimated accurately and efficiently.

2. Target detection: For military applications and search-and-
rescue operations, target detection using audio/video signals
is an important task. For such tasks, it is desirable that there
is little space between the trajectories of the mobile sensors
so that it becomes difficult for a target to evade detection by
the sensors. Of particular interest is the problem of minimizing
the time for target detection when the sensor range is very
small compared to the domain size and in the presence of
uncertainty in terrain and sensor observations. It has been

demonstrated that in the presence of uncertainty, uniform
coverage based search strategies outperform lawnmower-type
search strategies (see [15]).
The rest of the paper is structured as follows. In Section 2, we

present the metric that quantifies how far a set of trajectories are
frombeing ergodic. It is thismetric thatwe use to quantify uniform
coverage. In Section 3, we use this metric to design dynamics (or
feedback control) for multi-agent systems that move according
to either first-order dynamics or second-order dynamics. We
numerically analyze the behavior of the closed-loop dynamics
for various scenarios. The algorithm presented in this paper for
the design of ergodic dynamics will be referred to as Spectral
Multiscale Coverage (SMC).

2. Metrics for ergodicity (or uniformity of trajectories)

There areN mobile agents andwe assume that theymove either
by first-order or second-order dynamics. We need an appropriate
metric to quantify how well the trajectories are sampling a given
probability distribution µ. We assume that µ is zero outside a
rectangular domain U ⊂ Rn and that the agent trajectories are
confined to the domain U . For a dynamical system to be ergodic,
we know that the fraction of the time spent by a trajectory in a
subset must be equal to the measure of the set. Let B(x, r) = {y :
‖y − x‖ ≤ r} be a spherical set and χ(x,r) be the indicator function
corresponding to the set B(x, r). Given trajectories xj : [0, t] → Rn,
for j = 1, 2, . . . ,N , the fraction of the time spent by the agents in
the set B(x, r) is given as

dt(x, r) = 1
Nt

N∑

j=1

∫ t

0
χ(x,r)(xj(τ ))dτ .2 (1)

The measure of the set B(x, r) is given as

µ̄(x, r) =
∫

U
µ(y)χ(x,r)(y)dy. (2)

For ergodic dynamics (see [1]), we must have

lim
t→∞

dt(x, r) = µ̄(x, r). (3)

Since the equality above must be true for almost all points x and
for all radii r , this motivates defining the metric

E2(t) =
∫ R

0

∫

U
(dt(x, r) − µ̄(x, r))2dxdr, where R > 0. (4)

The exact value of the upper limit for the integration of r is not
important and does not affect any of the results we present in this
paper. E(t) is a metric that quantifies how far the time-averages of
indicator functions on spherical sets are from being equal to their
spatial averages. Equivalently, it quantifies how far the fraction of
the time spent by the agents in spherical sets is from being equal
to the measure of the spherical sets. Now consider the distribution
Ct defined as3

Ct(x) = 1
Nt

N∑

j=1

∫ t

0
δ(x − xj(τ ))dτ . (5)

2 For spheres B(x, r) that lie entirely within the rectangular domain U , the
fraction dt (x, r) is computed as in (1). For spheres B(x, r) that do not lie entirely
within the domain U, dt (x, r) is computed as if each agent trajectory has mirror
images about the boundaries of the domain U . Equivalently dt (x, r) is computed as
the spherical integral of the even extension of the distribution Ct defined in (5). See
Appendix A for more details.
3 Strictly speaking, Ct is a distribution and cannot be defined pointwise as a

function of x. However, with conventional abuse of notation, we express Ct in terms
of the Dirac delta distribution δ(.) as if it were a function.
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δ(.) is the Dirac delta distribution. The usual inner product (with
respect to the Lebesgue measure) of Ct with a bounded function f
is given as

〈Ct , f 〉 = 1
Nt

N∑

j=1

∫ t

0
f (xj(τ ))dτ = 1

Nt

∫ t

0

N∑

j=1

f (xj(τ ))dτ . (6)

Note that the distribution Ct can be thought of as a probability
distribution because we have

〈Ct , 1〉 = 1
Nt

N∑

j=1

∫ t

0
1dτ = Nt

Nt
= 1. (7)

Also note that we have

dt(x, r) = 〈Ct , χ(x,r)〉. (8)

Let fk be the Fourier basis functions that satisfy Neumann boundary
conditions on the rectangular domainU and k is the corresponding
wave-number vector. For instance, on a rectangular domain U =
[0, L1] ×[ 0, L2], we have,

fk(x) = 1
hk

cos(k1x1) cos(k2x2), where

k1 = K1π

L1
and k2 = K2π

L2
,

for K1, K2 = 0, 1, 2, . . . and where

hk =
(∫ L1

0

∫ L2

0
cos2(k1x1) cos2(k2x2)dx1dx2

)1/2

,

(9)

The division by the factor hk ensures that fk has L2 norm equal
to one. Therefore fk is an orthonormal basis. Now, computing the
Fourier coefficients of the distribution Ct , we have

ck(t) = 〈Ct , fk〉 = 1
Nt

N∑

j=1

∫ t

0
fk(xj(τ ))dτ . (10)

The Fourier coefficients of µ are given as

µk = 〈µ, fk〉. (11)

Let φ(t) be the distance between Ct and µ as given by the Sobolev
space norm of negative index (H−s, for s = (n+1)

2 and where n is
the dimension of the space). i.e.,

φ2(t) = ‖Ct − µ‖2
H−s =

∑

K∈Z∗n
Λk|sk(t)|2,

where sk(t) = ck(t) − µk, Λk = 1
(1 + ‖k‖2)s

and Z∗n = [0, 1, 2, . . .]n.

(12)

Requiring φ2(t) to converge to zero is the same as requiring
time-averages of the Fourier basis functions along trajectories to
converge to the spatial averages of the basis functions. In other
words φ2(t) quantifies howmuch the time averages of the Fourier
basis functions deviate from their spatial averages, but with more
importance given to large-scalemodes than the small-scalemodes.
A related metric to capture deviation from ergodicity that uses
wavelet basis functions is described in [18]. The metrics defined
above were motivated by our previous work in [16,17] to quantify
mixing in fluid flows or the degree of uniformity of material
distributed throughout a domain. It can be shown that the two
metrics E(t) and φ(t) are equivalent, i.e., there exist bounded
constants such that

c1φ2(t) ≤ E2(t) ≤ c2φ2(t). (13)

For a proof on the equivalence of these two metrics, see
Appendix A. In the rest of the paper, we will be using φ2(t) as the
metric for uniform coverage (or ergodicity).

3. Design of ergodic dynamics: Spectral Multiscale Coverage
(SMC)

The agents move either by first-order or second-order dynam-
ics. First-order dynamics is described by,
ẋj(t) = uj(t), (14)
and second-order dynamics is described by
ẍj(t) = uj(t). (15)
The objective is to design feedback laws uj(t) = Fj(x) so that
the agents have ergodic dynamics. We do this by designing the
feedback so that the metric for uniform coverage (φ2(t)) is driven
to zero. We formulate a model predictive control (or receding
horizon control) problem where we try to maximize the rate of
decay of the coverage metric at the end of a short time horizon.
In receding horizon control, the current control action is chosen
by solving a finite horizon optimal control problem. The solution
to the optimization problem gives an optimal control solution and
the value of the optimal control at the beginning of the horizon
is used at the current time. This procedure is repeated at every
time instant. The term ‘receding horizon’ comes from the fact that
the horizon recedes ahead in time after each time instant. In our
approach here, we derive the feedback law in the limit as the size
of the receding horizon goes to zero and use the resulting feedback
law at every time instant. For notational convenience, let us define
the quantities

Ck(t) :=
N∑

j=1

∫ t

0
fk(xj(τ ))dτ = Ntck(t)

Mk(t) := Ntµk
Sk(t) := Ck(t) − Mk(t) = Ntsk(t)

and Φ(t) := 1
2

∑

K

Λk|Sk(t)|2 = 1
2
N2t2φ2(t).

(16)

The following limits are useful in our discussions.

sk(0) := lim
t→0

sk(t) =




lim
t→0

N∑
j=1

∫ t
0 fk(xj(τ ))dτ

Nt
− µk





=

N∑
j=1

fk(xj(0))

N
− µk. (by L’Hospital’s rule). (17)

And it follows that

φ2(0) := lim
t→0

φ2(t) =
∑

K

Λk

∣∣∣∣∣∣∣∣∣

N∑
j=1

fk(xj(0))

N
− µk

∣∣∣∣∣∣∣∣∣

2

. (18)

3.1. First-order dynamics

Let us introduce the additional variables Wk(t) := Ṡk(t). The
dynamics of the extended system which includes the positions of
the agents and the variables Sk(t) andWk(t) can be described as

ẋj(τ ) = uj(τ )

Ṡk(τ ) = Wk(τ ) =
N∑

j=1

fk(xj(τ )) − Nµk

Ẇk(τ ) =
N∑

j=1

∇fk(xj(τ )) · uj(τ ).

(19)

∇fk(.) is the gradient vector field of the basis functions fk. For the
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basis functions with Neumann boundary conditions as in (9), we
have

∇fk(x) = 1
hk

[
−k1 sin(k1x1) cos(k2x2)
−k2 cos(k1x1) sin(k2x2)

]
. (20)

At a given time t , let us solve the optimal control problem over the
time horizon [t, t + (t]. The cost-function we are going to use is
the first time-derivative of Φ(τ ) at the end of the horizon. i.e., we
aim to drive the agents to positions which lead to the highest rate
of decay of the coverage metric. Also note that minimizing the
first time-derivatives of φ2(t) and Φ(t) leads to the same optimal
control solutions. The cost-function that we want to minimize is
given as

C(t, (t) = Φ̇(t + (t) =
∑

K

ΛkSk(t + (t)Wk(t + (t). (21)

The controls are subject to the constraint ‖uj(τ )‖2 ≤ umax.
It is convenient to write the optimal control solution in terms
of the costates (Lagrange multipliers) and the Hamiltonian. The
dynamics of the costates are given by the costate equations and the
Hamiltonian is a function of the states, costates and the controls.
The optimal control solution u∗

j (τ ) is the value of an admissible
control uj(τ ) that minimizes the Hamiltonian. For more details on
how to form the Hamiltonian and costate equations when solving
optimal control problems see [19]. In our notation the costates are
γj(τ ) ∈ Rn and ρk(τ ), σk(τ ) ∈ R for all K . For our particular
problem, the Hamiltonian4 takes the form

H(x, S,W , u, τ ) =
N∑

j=1

γj(τ ) · uj(τ ) +
∑

K

ρk(τ )Wk(τ )

+
∑

K

σk(τ )

(
N∑

j=1

∇fk(xj(τ )) · uj(τ )

)

. (22)

Now the dynamics for the costates are given as

γ̇j(τ ) = −∂H
∂xj

= −
∑

K

σk(τ )(∇2fk(xj(τ ))uj(τ )),

ρ̇k(τ ) = − ∂H
∂Sk

= 0,

σ̇k(τ ) = − ∂H
∂Wk

= −ρk(τ ).

(23)

∇2fk(.) is the Hessian matrix of the basis functions. The terminal
conditions for the costates are given as

γj(t + (t) = 0,
ρk(t + (t) = ΛkWk(t + (t),
σk(t + (t) = ΛkSk(t + (t).

(24)

The optimal controls u∗
j are such that

u∗
j (τ ) = arg min

‖uj(τ )‖2≤umax
H(x, S,W , u, τ )

= −umax
βj(τ )

‖βj(τ )‖2
, if βj(τ ) -= 0,

and where βj(τ ) = γj(τ ) +
∑

K

σk(τ )∇fk(xj(τ )).

(25)

It can be shown by basic calculus arguments (see Appendix B.1)
that in the limit as (t goes to zero, u∗

j (t) is given as

4 For convenience, in our notation we suppress the dependence of the
Hamiltonian on the costates.

u∗
j (t) = −umax

Bj(t)
‖Bj(t)‖2

, if Bj(t) -= 0,

where Bj(t) =
[
∑

K

ΛkSk(t)∇fk(xj(t))

]

.

(26)

This is the feedback law we will use to achieve ergodic dynamics.

3.1.1. Alternative interpretation of the control design
The problem of choosing the controls uj(t) at time t such that

it minimizes φ(t + dt) for some small dt is the same as that of
minimizing Φ(t + dt). Assuming continuity of uj(.), from basic
calculus, we know that

Φ(t + dt) ≈ Φ(t) + Φ̇(t)dt + 1
2
Φ̈(t)dt2 =: Φ̃(t, dt). (27)

Now, the first time-derivative of Φ(t) is given as

Φ̇(t) =
∑

K

ΛkSk(t)Wk(t). (28)

Note that since the cost-function Φ(t) involves time-integrals of
functions of agent positions, the current values for the controls
(uj(t)) do not directly influence the current value for the first time-
derivative Φ̇(t). But of course, the choice of the controls uj(t) at the
current time can affect the value for the first time-derivative Φ̇(t)
at a later time. Now, the second time-derivative of Φ(t) is given as

Φ̈(t) =
∑

K

Λk(Wk(t))2 +
∑

K

ΛkSk(t)Ẇk(t). (29)

Substituting the expression for the derivatives ofWk in the expres-
sion for Φ̈ , we get

Φ̈(t) =
∑

K

Λk(Wk(t))2 +
∑

K

ΛkSk(t)

[
N∑

j=1

∇fk(xj(t)) · uj(t)

]

=
∑

K

Λk(Wk(t))2 +
N∑

j=1

Bj(t) · uj(t), (30)

where Bj(t) is as defined in (26). Clearly, the choice of uj(t) that
minimizes Φ̃(t, dt) subject to the constraint ‖uj(t)‖2 ≤ umax is

u∗
j (t) = −umax

Bj(t)
‖Bj(t)‖2

. (31)

In otherwords, the above choice of the feedback lawminimizes the
second time-derivative of Φ subject to the constraint ‖uj(t)‖2 ≤
umax. It can be shown that

lim
t→0

u∗
j (t) = −umax

bj(0)
‖bj(0)‖2

,

where bj(0) =
[
∑

K

Λksk(0)∇fk(xj(0))

]

,

(32)

and sk(0) is as defined in (17).

3.1.2. Simulation
In our first example, the objective is to uniformly cover a square

domain excluding some regions represented as shaded regions
in Fig. 1. Such a situation arises in problems of surveillance by
mobile sensor networks. In such a scenario, the shaded regions
can be thought of as areas where no sensor measurements can
be made due to foliage and therefore there is no value in the
sensors spending time over these regions. The target probability
distributionµ is set up as follows. First, we define a terrain function
as:

Ter(x) =
{
1, if x is outside foliage
0, if x is inside foliage. (33)
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(a) Time, t = 0.0. (b) Time, t = 6.0. (c) Time, t = 12.0.

(d) Time, t = 18.0.

Fig. 1. Snapshots at various times of the agent trajectories generated by the SMC algorithmwith first-order dynamics. One can observe themultiscale nature of the algorithm.
The spacing between the trajectories becomes smaller and smaller as time proceeds.

Now, µ is defined as

µ(x) = Ter(x)∫
U Ter(y)dy

. (34)

The snapshots in Fig. 1 were generated with a simulation of
3 agents and with the feedback law in (26). The domain U is a
unit square domain [0, 1] × [0, 1], the total simulation time is
T = 18, and umax = 5.0. The basis functions fk used are as in (9)
for K1, K2 = 0, 1, . . . , 50.5 The initial positions of the agents are
chosen randomly.

The differential equations for the closed-loop dynamics of the
extended system as described by (19) are solved using a fixed
time-step 4th order Runge–Kutta method. Note that the Neumann
boundary condition of the basis functions fk guarantees that the
velocity component normal to the boundary at the boundaries of
the domain is always zero and therefore the agents never escape
the domain.

From the snapshots in Fig. 1, one can see the multiscale nature
of the algorithm. The spacing between the trajectories becomes
smaller and smaller as time proceeds. One should note that the
trajectories are not such that they completely avoid going over
the foliage regions as in collision avoidance. Rather, the algorithm

5 For numerical purposes, we need to have a cutoff for the number of Fourier
efficients used. The exact effect of this cutoff on the performance of the algorithm
is a challenging and interesting problem. Roughly speaking, for a lower cutoff, the
gaps left between the trajectories of the agents will be bigger than those obtained
with a higher cutoff.

generates trajectories such that the fraction of the time spent over
the foliage regions is close to zero.

Fig. 2 shows aplot of the decay of the coveragemetricφ2(t)with
time. The decay is not monotonic and in particular for larger times,
the decay is irregular. This is partly due to the finite number of basis
functions used and the fixed time-stepping used for solving the
differential equations. Fig. 2 shows a plot of the fraction of the time
spent by the agents outside the foliage regions. It clearly shows that
this fraction approaches one, as time proceeds, confirming that the
agents spend very little time in the foliage regions. Fig. 3 shows
a plot of the norm of the vectors Bj(t). As one can see, although
‖Bj(t)‖2 comes close to zero often, it never stays close to zero.

3.2. Second-order dynamics

The dynamics of the extended system that includes the posi-
tions and velocities of the agents and the variables Sk(t) andWk(t)
is described as:
ẋj(τ ) = vj(τ )

v̇j(τ ) = uj(τ )

Ṡk(τ ) = Wk(τ )

Ẇk(τ ) =
N∑

j=1

∇fk(xj(τ )) · vj(τ ).

(35)

The forces on the agents are subject to the constraint ‖uj(τ )‖2 ≤
Fmax. We are going to use the same model predictive control ap-
proach as with first-order dynamics. The cost-function we are go-
ing to use here is a weighted sum of the first time-derivative of
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Fig. 2. Results with first-order dynamics: The plot on the top shows the decay
of coverage metric φ2(t) with time. The decay is not monotonic. The plot on the
bottom shows the fraction of the time spent by the agents outside the foliage. This
fraction gets closer and closer to one as time proceeds.

Fig. 3. Results with first-order dynamics: The plot shows the norm of the vectors
Bj(t) defined in (26). As one can see, ‖Bj‖2, comes close to zero often, but never
remains identically close to zero.

Φ(τ ) and the time-integral of the kinetic energy of the agents. i.e.,

C(t, (t) = Φ̇(t + (t) + c
2

∫ t+(t

t

N∑

j=1

vj(τ ) · vj(τ )dτ

=
∑

K

ΛkSk(t + (t)Wk(t + (t)

+ c
2

∫ t+(t

t

N∑

j=1

vj(τ ) · vj(τ ). (36)

In the cost-function, c is a parameter that decides how much the
kinetic energy is penalized. The higher the value of c , the lowerwill
be the resulting velocities of the agents. Let αj(τ ) ∈ Rn, βj(τ ) ∈ Rn

and ρk(τ ), σk(t) ∈ R for all K be the costates. Then the Hamilto-
nian takes the form

H(x, v, S,W , u, τ ) = c
2

N∑

j=1

vj(τ ) · vj(τ ) +
N∑

j=1

αj(τ ) · vj(τ )

+
N∑

j=1

βj(τ ) · uj(τ ) +
∑

K

ρk(τ )Wk(τ )

+
∑

K

σk(τ )

(
N∑

j=1

∇fk(xj(τ )) · vj(τ )

)

. (37)

Now the costate equations are given as

α̇j(τ ) = −∂H
∂xj

= −
∑

K

σk(τ )
(
∇2fk(xj(τ ))vj(τ )

)
,

β̇j(τ ) = −∂H
∂vj

= −cvj(τ ) − αj(τ ) −
∑

K

σk(τ )∇fk(xj(τ )),

ρ̇k(τ ) = − ∂H
∂Sk

= 0,

σ̇k(τ ) = − ∂H
∂Wk

= −ρk(τ ).

(38)

The terminal constraints are given as

αj(t + (t) = βj(t + (t) = 0,
ρk(t + (t) = ΛkWk(t + (t),
σk(t + (t) = ΛkSk(t + (t).

(39)

The optimal controls u∗
j are such that

u∗
j (τ ) = arg min

‖uj(τ )‖2≤Fmax
H(x, v, S,W , u, τ )

= −Fmax
βj(τ )

‖βj(τ )‖2
, if βj(τ ) -= 0. (40)

By some basic calculus arguments (see Appendix B.2), we can show
that in the limit as (t goes to zero, we get:

u∗
j (t) = −Fmax

(
cvj(t) + Bj(t)

)

‖cvj(t) + Bj(t)‖2
,

where Bj(t) =
[
∑

K

ΛkSk(t)∇fk(xj(t))

]

.

(41)

Another way to interpret the control law in (41) is to see that it is
the control law that makes the second time-derivative of C(0, t)
as negative as possible. The results shown in Fig. 4 were generated
with a simulation of 4 agents, with weighting parameter c = 0.2
and Fmax = 50.0. The total simulation time is T = 48.0 and the do-
main is a unit square as before, but with a different foliage region.
The basis functions used are the same as before. The initial posi-
tions of the agents are chosen randomly and the initial velocities
are zero. (The initial velocities could also be chosen randomly—the
algorithmwouldwork the same.) As opposed to first-order dynam-
ics, it is not guaranteed that the agents are always confined in the
domain even though the force component normal to the bound-
aries is zero at the boundary. To resolve this, we force the agents
inward toward the domain with maximum force whenever they
leave the domain.
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(a) Time, t = 0.0. (b) Time, t = 16.0. (c) Time, t = 32.0.

(d) Time, t = 48.0.

Fig. 4. Snapshots at various times of the agent trajectories generated by the SMC algorithm with second-order dynamics.

Fig. 5 shows aplot of the decay of the coveragemetricφ2(t)with
time. The initial rate of decay is small because the initial velocities
of the agents are zero and it takes some time for them to start
moving at a reasonable velocity. Fig. 5 also shows a plot of the
fraction of the time spent by the agents outside the foliage regions.
Fig. 6 shows a plot of the norm of the vectors Bj(t) and as before
they never stay close to zero.

3.3. Remarks on convergence

Spatial averages of functions can be estimated by computing
the time averages of functions along trajectories generated by the
SMC algorithm. Given a test function f , its spatial average can be
estimated as

f̄ (t) = 1
Nt

N∑

j=1

∫ t

0
f (xj(τ ))dτ . (42)

Then the sampling error at time t is computed as

e(t) = |f̄ (t) − 〈µ, f 〉|. (43)
To study the convergence of the sampling error, we are going to
assume a uniform prior on the unit square domain and use the test
function

f (x) = x21 + x22. (44)
Figs. 7 and 8 show the sampling error as a function of time
with trajectories generated by the SMC algorithm with first-order
dynamics and second-order dynamics respectively. The different
lines correspond to various values of N (number of agents). The

plots shown in Figs. 7 and 8 are error curves averaged over 100
different realizations and are shown on a log–log scale. These
plots indicate that the sampling error is roughly O(t−1). This is
similar to quasi-Monte Carlo sampling which has error O(t−1) as
opposed to regularMonte Carlo samplingwhich has errorO(t−1/2).
(Here of course, time t plays the role of number of samples.) This
is not surprising because quasi-Monte Carlo methods are based
on low-discrepancy sequences and similarly the SMC algorithm
attempts to generate points on agent trajectories such that they
have uniform density throughout the domain. Recall that the
discrepancy of a sequence is said to be low if the number of points
in the sequence falling in a arbitary set B is almost proportional
to the measure of the set B. Therefore, the coverage metrics (E(t)
and φ(t)) can also be interpreted as metrics for the discrepancy
of the points on the agent trajectories and the SMC algorithm is
constantly attempting to reduce this discrepancy.

To understand the O(t−1) convergence, it is helpful to look
closer at the dynamics of the Sk and Wk variables with the
feedback control as described in the previous sections. Fig. 9 shows
the evolution of the vector (Sk(t),Wk(t)) under the closed-loop
first-order dynamics for different values of K . As one can see,
the variables Sk(t) and Wk(t) exhibit oscillatory dynamics and
appear to remain bounded at all times. If Sk(t) remains bounded
for all times, it follows that |sk(t)| is O(t−1) and therefore the
sampling error corresponding to a test function f which can be
represented as a finite combination of Fourier modes would be
O(t−1). However, proving that Sk(t) for all K remains bounded at
all times is a challenging problem and will be the subject of future
work.
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Fig. 5. Results with second-order dynamics: The plot on the top shows decay of
coverage metric φ2(t) with time. Decay is not monotonic. The initial rate of decay
is small because the initial velocities of the agents are zero and it takes some time
for them to start moving at a reasonable velocity. The plot on the bottom shows the
fraction of the time spent by the agents outside the foliage. One can see that this
fraction gets closer and closer to one as time proceeds.

4. Discussion

We have proposed centralized feedback control laws for
multi-agent systems to achieve uniform coverage of a given
domain. The algorithm presented in this paper is fairly easy to
implement and more importantly very easy to apply to domains
of various geometries. A change in the geometry requires only
defining an appropriate terrain function as in (33), computing the
corresponding target probability distribution µ and its Fourier
coefficients µk. Also, for a fixed number of basis functions, the
computational complexity of the algorithm is O(N). It must also be
noted that the time taken to compute the feedback laws increases
linearly with the number of Fourier coefficients used. Therefore it
would be useful to develop techniques to compute the feedback
laws efficiently.

Various numerical simulations have demonstrated the effec-
tiveness of the algorithm. One could solve the optimal control
problem over a non-zero time horizon instead of deriving the feed-
back law in the limit as the receding horizon goes to zero. But
this is a computationally intensive problem. The feedback laws we
have derived are remarkably effective while being easy to imple-
ment and compute. Proving asymptotic decay of the uniform cov-
erage metric φ2(t) with the proposed feedback laws for arbitrary
probability distributions µ, remains an open problem. In particu-
lar, it needs to be shown that the vector Bj(t) defined in (26) never
approaches and stays at zero. However, numerical simulations

Fig. 6. Resultswith second-order dynamics: The plot shows the normof the vectors
Bj(t) defined in (41).

 

Fig. 7. Results with first-order dynamics: The sampling error e(t) is computed as
in (43) and averaged over 100 different realizations. The plots show the averaged
sampling error as a function of time on a log–log scale. The dashed curves represent
the actual error while the solid lines represent the least squares linear fits to the
log–log plots. The negative slopes for the linear fits are 0.9514, 0.9878 and 0.9963
respectively for N = 1,N = 2 and N = 4. This indicates that the error is roughly
O(t−1).

suggest that this is unlikely. Rigorous proofs for this will be the
subject of future work. Future work also includes modifications of
the algorithm to achieve decentralization so that the agents can
achieve uniform coverage just by local interactions.
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Fig. 8. Results with second-order dynamics: The averaged sampling error e(t) is
computed and plotted as described for Fig. 7. The negative slopes for the linear fits
are 0.9499, 0.9818 and 0.9890 respectively for N = 1,N = 2 and N = 4. This
indicates that the error is roughly O(t−1).
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Appendix A. Multiscale interpretation of the metric for unifor-
mity of trajectories

U ⊂ Rn is a rectangular domain given as [0, L1]×[0, L2]× · · ·×
[0, Ln]. Let δσ be a delta sequence. i.e. given a bounded function
f : U → R and for x0 ∈ U , we have

lim
σ→0

∫

U
δσ (x − x0)f (x)dx = f (x0). (A.1)

Let us define the distribution Ct
σ such that for all x ∈ U , we have

Ct
σ (x) := 1

Nt

N∑

j=1

∫ t

0
δσ (x − xj(τ ))dτ . (A.2)

It can be seen that for any bounded function f , we have

lim
σ→0

〈
Ct

σ , f
〉
= 〈Ct , f 〉, (A.3)

where Ct is as defined in (6). Let fk be the Fourier basis functions
that satisfy Neumann boundary conditions on the rectangular
domain U . i.e.,

fk(x) = 1
hk

n∏

i=1

cos (kixi) , where

ki = Kiπ

Li
and for Ki, K2 = 0, 1, 2, . . . and where

hk =
(∫

U

n∏

i=1

cos2 (kixi) dx

)1/2

.

(A.4)

The division by the factor hk ensures that fk is an orthonormal basis.
Now let Dt

σ be the even extension of Ct
σ outside the domain U .

Equivalently

Dt
σ (x) =

∑

K

cσ
k (t)fk(x), (A.5)

where
cσ
k (t) = 〈Ct

σ , fk〉. (A.6)
Now, we define the integral operator [I(r)] such that

[I(r)]Ct
σ (x) :=

∫

B(x,r)
Dt

σ (y)dy, for all x ∈ U (A.7)

where B(x, r) = {y : ‖y− x‖ ≤ r}. Given a probability distribution
µ, we shall define the following metric:

F 2(Ct
σ − µ) :=

∫ R

0

(∫

U

(∫

B(x,r)
(Dt

σ (y) − µe(y))dy
)2

dx

)

dr (A.8)

Fig. 9. Evolution of the vector (Sk(t),Wk(t)) for different values of K under the SMC algorithm with first-order dynamics. The variables exhibit oscillatory dynamics and
remain bounded for all times.
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where µe is similarly the even extension of µ. The metric F
compares the spherical integrals of the distributionsDt

σ andµe. The
metric F can be equivalently written as

F 2(Ct
σ − µ) =

∫ R

0
〈[I(r)](Ct

σ − µ), [I(r)](Ct
σ − µ)〉. (A.9)

Since we have

[I(r)]fk(x) = ik(r)fk(x), (A.10)

where ik(r) is as defined in (A.23), it follows that

F 2(Ct
σ − µ) =

∫ R

0

(
∑

K

i2k(r)
(
cσ
k (t) − µk

)2
)

dr

=
∑

K

ak
(
cσ
k (t) − µk

)2

where ak =
∫ R

0
i2k(r)dr.

(A.11)

Note that the metric for ergodicity E(t) is given as

E2(t) = lim
σ→0

F 2(Ct
σ − µ), (A.12)

because we have

lim
σ→0

[I(r)]Ct
σ (x) = dt(x, r), (A.13)

where dt(x, r) is the fraction of the time spent by the agents in the
set B(x, r) if B(x, r) ⊂ U . If B(x, r) does not lie entirely within the
domain U, dt(x, r) is the fraction of the time spent by the agents
and their mirror images in the set B(x, r). Therefore

E2(t) = lim
σ→0

F 2(Ct
σ − µ)

= lim
σ→0

∑

K

ak
(
cσ
k (t) − µk

)2

=
∑

K

ak (ck(t) − µk)
2 , (A.14)

where

ck(t) = 〈Ct , fk〉 and µk = 〈µ, fk〉. (A.15)

Moreover, it can be shown that there exists bounded constants
c1, c2 > 0 such that

c1
(1 + ‖k‖2)s

≤ ak ≤ c2
(1 + ‖k‖2)s

,

for s = (n + 1)
2

,

(A.16)

and where n is the dimension of the space. Thus, we have that

c1φ2(t) ≤ E2(t) ≤ c2φ2(t) (A.17)

where

φ2(t) = ‖Ct − µ‖2
H−s =

∑

K

[ck(t) − µk]2

(1 + ‖k‖2)s
. (A.18)

A.1. Proof for inequality (A.16)

fk is the solution of the Helmholtz equation

(fk + λkfk = 0, (A.19)

for λk = ∑n
i=1 k

2
i . It is well know that solutions of the Helmholtz

equation satisfy the following mean value theorem (see [20]).

[H(r)]fk(x) :=
∫
S(x,r) fk(y)dy

Area(S(x, r))

= Γ
( n
2

)
J(n−2)/2(r

√
λk)

(r
√

λk/2)(n−2)/2
fk(x), (A.20)

where S(x, r) = {y : ‖y − x‖ = r}. J(n−2)/2 is a Bessel function of
the first kind and Γ is the gamma function. Therefore, we have

[I(r)]fk(x) =
∫

B(x,r)
fk(y)dy

=
∫ r

0
[H(s)]fk(x).Area(S(x, s))ds. (A.21)

Using the formula for Area(S(x, s)) = 2πn/2s(n−1)

Γ ( n
2 )

, we get

[I(r)]fk(x) =
∫ r

0

Γ
( n
2

)
J(n−2)/2(s

√
λk)

(s
√

λk/2)(n−2)/2
fk(x).

2πn/2s(n−1)

Γ
( n
2

) ds

=
(

(2π)n/2

(
√

λk)(n−2)/2

∫ r

0
J(n−2)/2

(
s
√

λk

)
sn/2ds

)
fk(x)

=
(

(2π)n/2

(
√

λk)n
J(n/2)(r

√
λk)(r

√
λk)

n/2
)
fk(x), (A.22)

where we use the derivative identity d[xmJm(x)]/dx = xmJm−1(x).
Therefore

[I(r)]fk(x) = ik(r).fk(x), where

ik(r) :=
(

(2π)n/2

(
√

λk)n
J(n/2)(r

√
λk)(r

√
λk)

n/2
)

.
(A.23)

Now we have

ak :=
∫ R

0
i2k(r)dr = (2π)n

(
√

λk)2n

∫ R

0
J2(n/2)(r

√
λk)(r

√
λk)

ndr

= (2π)n

(
√

λk)n+1

∫ R

0
J2(n/2)(r

√
λk)rn

√
λkdr. (A.24)

Let us define

A(λk) := (2π)n
∫ R

0
J2(n/2)(r

√
λk)rn

√
λkdr. (A.25)

We have that

0 ≤ A(λk) ≤ U for all k, (A.26)

where U is a bounded constant. This follows from noting that

A(λk) ≤ (2π)n
√

λkRn
∫ ∞

0
J2(n/2)(r

√
λk)dr,

= (2πR)n
√

λk
V√
λk

= (2πR)nV = U, (A.27)

whereV is a bounded constant that depends only on the dimension
of the space. The integral in the above expression follows from
Formula 6.512 on Page 666 of [21]. Fig. A.10 shows a plot of A(λk)
as a function of λk for R = 1 and for n = 1, 2 and 3. Thus we have

ak ≤ U

(λk)
n+1
2

for k -= 0, (A.28)

and for W sufficiently large enough, we have

ak ≤ WU

(1 + λk)
n+1
2

= c2
(1 + λk)

n+1
2

, for all k. (A.29)

Also, for k -= 0, we can choose ε small enough so that
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Fig. A.10. Plot of A(λk)
(2π)n as a function of λk .

ak ≥ (2π)n

(
√

λk)n+1

∫ ε

0
J2(n/2)(r

√
λk)rn

√
λkdr

≥ (2π)n

(1 + λk)(n+1)/2

∫ ε

0
J2(n/2)(r

√
λk)rn

√
λkdr

≥ βn(ε)

(1 + λk)(n+1)/2 , (A.30)

where

βn(ε) := (2π)n inf
K -=0

∫ ε

0
J2(n/2)(r

√
λk)rn

√
λkdr. (A.31)

Again, we can choose ε small enough so that c1 = βn(ε) ≤ a0,
giving

c1
(1 + λk)

n+1
2

≤ ak, for all k. (A.32)

Appendix B. Solution to model-predictive problem as receding
horizon goes to zero

B.1. First-order dynamics

From (23)–(25), we have

u∗
j (τ ) = −umax

βj(τ )

‖βj(τ )‖2

where βj(τ ) = γj(τ ) +
∑

K

σk(τ )∇fk(xj(τ )).
(B.1)

The solutions of the costates γj and σk at time t up to first-order
accuracy in (t are given as

γj(t) = γj(t + (t) − γ̇j(t + (t)(t = −γ̇j(t + (t)(t,
σk(t) = σk(t + (t) − σ̇k(t + (t)(t

= ΛkSk(t + (t) + ρk(t + (t)(t.
(B.2)

From the above expressions, we have lim(t→0 γj(t) = 0 and
lim(t→0 σk(t) = ΛkSk(t). Thus we get

lim
(t→0

βj(t) =
∑

K

ΛkSk(t)∇fk(xj(t)), (B.3)

giving the feedback law in (26).

B.2. Second-order dynamics

From (38)–(40), we have

u∗
j (τ ) = −Fmax

βj(τ )

‖βj(τ )‖2
. (B.4)

The solution of the costate βj at time t up to first-order accuracy in
(t is given as

βj(t) = βj(t + (t) − β̇j(t + (t)(t
= 0 +

[
cvj(t + (t) + αj(t + (t)

]
(t

+
[
∑

K

σk(t + (t)∇fk(xj(t + (t))

]

(t. (B.5)

We have αj(t + (t) = 0 and lim(t→0 σk(t + (t) = ΛkSk(t). Thus
we get

lim
(t→0

βj(t)
‖βj(t)‖2

= cvj(t) + Bj(t)
‖cvj(t) + Bj(t)‖2

where Bj(t) =
[
∑

K

ΛkSk(t)∇fk(xj(t))

]

.

(B.6)

leading to the feedback law in (41).
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