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In this paper we derive two rigorous properties of residence-time distributions for flows in pipes and
mixers motivated by computational results of Khakharet al. @Chem. Eng. Sci.42, 2909 ~1987!#,
using some concepts from ergodic theory. First, a curious similarity between the isoresidence-time
plots and Poincare´ maps of the flow observed in Khakharet al. is resolved. It is shown that in long
pipes and mixers, Poincare´ maps can serve as a useful guide in the analysis of isoresidence-time
plots, but the two are not equivalent. In particular, for long devices isoresidence-time sets are
composed of orbits of the Poincare´ map, but each isoresidence-time set can be comprised of many
orbits. Second, we explain the origin of multimodal residence-time distributions for nondiffusive
motion of particles in pipes and mixers. It is shown that chaotic regions in the Poincare´ map
contribute peaks to the appropriately defined and rescaled axial distribution functions. ©1999
American Institute of Physics.@S1054-1500~99!02401-5#
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Residence-time distributions have been in use as diagnos
tic tools for mixing in Chemical Engineering devices for a
long time. In the past 15 years, a theory of mixing in
laminar flows, Chaotic Advection, has been developed
with one of the most important diagnostic tools being
Poincaré maps. In this paper we analyze the similarities
and differences between these two concepts, using e
godic theory invoked by the link between the residence
times and average velocities along particle paths. The
residence-time plots contain information about the axial
motion, while the Poincarémaps contain more informa-
tion about the cross-sectional motion, and essentially no
information about the axial motion. We also establish two
different mechanisms for the multimodality of finite-time
residence-time distributions observed in earlier works.

I. INTRODUCTION

In this paper we derive two rigorous properties
residence-time distributions for laminar flows in pipes a
mixers motivated by computational results of Khakharet al.1

Residence times have been in use for a long time as an
portant diagnostic tool in a number of engineering devic
see, e.g., Refs. 2–6. Poincare´ maps, on the other hand, hav
been used for studying dynamics of particles in laminar fl
flows since the beginning of the chaotic advection studie5,7

In the present work we show that these two methods are
long devices, related via time averages of the velocity in
direction of the axis of the pipe. Using this observation,
discuss the similarity of residence-time plots and Poinc´
maps observed in Ref. 1. We show that a set in the cr
section of the pipe on which the residence times are cons
1731054-1500/99/9(1)/173/10/$15.00

wnloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP 
-
;

d

in
e

e
s-
nt

is composed of the orbit of the Poincare´ map. Many orbits
can be within one such set. Thus in some sense Poin´
maps carry more information than residence-time plots.
the other hand, Poincare´ maps do not contain any informa
tion about the axial motion, while residence-time plots~or,
equivalently as we show below, velocity time-average plo!
do. In addition, and again using the time averages of
velocity, we discuss the distribution of particles along t
axis of the pipe, and residence-time distributions for chao
flows in pipes. It is shown that chaotic zones in the Poinc´
map of the flow contribute peaks to the particle probabil
density and residence-time probability density.

II. STEADY, PERIODIC FLOWS IN PIPES

A. Residence times

Khakharet al.1 considered a mixing device known as th
partitioned-pipe mixer. It is a continuous flow device con
sisting of a pipe partitioned into a sequence of semi-circu
ducts by means of rectangular plates positioned orthogon
with respect to each other; see Fig. 1. We refer to a lengt
pipe containing two plates as one ‘‘element’’ of the mixe
Hence, the mixer can be viewed as a number of eleme
placed end-to-end. We denote the total length of the pipe
L and the length of its basic element byl. Note thatL/ l is an
integer.

The fluid to be mixed is forced through the pipe b
means of an axial pressure gradient while the pipe is rota
about its axis relative to the plates. The mixing device
typically operated under creeping flow conditions, and
flow is steady.
© 1999 American Institute of Physics
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Do
Khakharet al.1 have calculated the flow through the b
sic cell in the Stokes approximation to be

v r5
dr

dt
5br ~12r n!sin~2u!,

vu

r
5

du

dt
52b@22~21n!r n#sin2 u,

vz5
dz

dt
5

16p

p228
(
k51

3

~r 2k212r 2!

3
sin@~2k21!u#

~2k21!@42~2k21!2#
,

wheren5A11/321 andb are constants, andb is related to
the speed of rotation of the wall of the pipe. In computatio
the above flow field is used in the first half of the basic ce
and then rotated by 90 degrees and used for the second
of the cell. The assumptions used in the model are not ph
cally accurate. However, the phenomenology of the cha
flow—the existence of the isolated islands and chao
zones—stays the same even if a careful numerical simula
of a realistic mixer is performed.8,9 Our analysis is theoreti
cal and numerical computation is used only to illustrate
theory, so we will use the above simple model. Hobbset al.9

have performed both full-scale numerical simulations of
Kenics static mixer and the effect of problem paramet
such as injection location on its performance.10 We hope that
the tools developed here and tested on a simple model
be of help in future numerical studies of this sort.

As a result of the periodicity in thez direction~assuming
a mixer of infinite length!, it is natural to consider a Poincar´
map defined as follows. The cross-section to the flow
taken to be the beginning of a particular element of
mixer, and the Poincare´ map associates to each point in t
cross-section its point at the end of the element of the m
according to its motion along a fluid path line. We sh
denote thus defined Poincare´ map byP. In the flow there is a
dimensionless parameter,b, which is referred to as themix-
ing strength. In Figs. 2~a! and 2~b! we show Poincare´ maps
for b52 andb58, respectively.

The exit age distributionis a quantity of interest in this
system. It is the number of particles, plotted vertically, v
sus the time that they remain in the mixer, plotted horizo
tally. These plots were observed in Ref. 1 to be multipeak
In Fig. 2 we also show isoresidence-time plots taken fr

FIG. 1. Schematic of one element of the partitioned-pipe mixer.
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Khakharet al.1 for ~c! b52 and ~d! b58. These are con-
tours in the cross-section corresponding to points that rem
in the mixer for the same amount of time.

Both the exit age distributions and isoresidence-ti
plots were computed integrating a uniform grid of points
the cross-section. Note the similarities between the Poinc´
sections~a! and ~b! with the isoresidence-time plots~c! and
~d! in Fig. 2. Khakharet al. assert that the corresponden
should be even closer as the length of the mixer increa
We will discuss these issues in terms of a new framew
based on average velocities. Moreover, we will do this fo

FIG. 2. Poincare´ map for PPM at~a! b52 and~b! b58. Isoresidence times
from Khakharet al. at ~c! b52 and~d! b58.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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large class ofunsteadyduct flows described in the next se
tion.

1. Steady flows

v~z1 ,z2 ,z3!5~ ż1~z1 ,z2 ,z3!,ż2~z1 ,z2 ,z3!,ż3~z1 ,z2 ,z3!!

andv(z1 ,z2 ,z3) in devices of the above described type are
the form

ż15v1~z1 ,z2 ,z3!,

ż25v2~z1 ,z2 ,z3!, ~1!

ż35v3~z1 ,z2 ,z3!,

with v(z1 ,z2 ,z31 l )5v(z1 ,z2 ,z3), wherel is the length of a
basic periodic cell. The time that a particle spends cross
the cell is denoted byt(z10,z20), where (z10,z20)5@z1(0),
z2(0)] is the position in the cross-section of the partic
starting fromz350 at time 0. Note thatt is a function on the
phase space of the Poincare´ map described above, i.e.,
associates a real number to each of the points in the cr
sectionz350 of the pipe.

B. Isoresidence-time plots and Poincare ´ maps

The residence time of a particle starting at (z10,z20,0) at
time t50 in a pipe of lengthL is given by

T L~z10,z20!5 (
i 50

L/ l 21

t~Pi~z10,z20!!. ~2!

For very long pipes, we are interested in the rescaled, n
dimensional version of the residence time, defined as

T r
L5
T L

t̄L/ l
,

wheret̄ is the average oft over the cross-section. Now w
have

lim
L→`

T r
L~z10,z20!5

1

t̄
lim

L→`

l

L (
i 50

L/ l 21

t~Pi~z10,z20!!

5
t* ~z10,z20!

t̄
, ~3!

where

t* ~z10,z20!5 lim
n→`

1

n (
i 50

n21

t~Pi~z10,z20!!

is the time average oft under the dynamics ofP. Now, by
Birkhoff’s ergodic theorem,11 t* is constant on the orbits o
the Poincare´ mapP. Thus for the limit of infinite lengthL of
the mixer, sets of constant rescaled residence times are
posed of the orbits of the Poincare´ mapP. To make numeri-
cal computation easier, we can present the above resu
terms of the average velocity of particles. As

l 5E
0

t~z10 ,z20!

v3~ t,z10,z20!dt,
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wherev3(t,z10,z20) is the axial velocity that a particle star
ing at (z10,z20) has at timet, we obtain

t~z10,z20!5
l

1

t~z10,z20!
E

0

t~z10 ,z20!

v3~ t,z10,z20!dt

,

with the provision that when the denominator is zero, t
left-hand side is defined to be infinity. Denoting by^v3&

FIG. 3. The average velocities:~a! b58, 10 cells,~b! b58, 100 cells,~c!
b58, 1000 cells.
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3(z10,z20) the average velocity experienced by the parti
starting at (z10,z20) as it traverses the basic element of t
mixer, we have

t~z10,z20!5
l

^v3&~z10,z20!
.

It is not hard to show that

t* ~z10,z20!5
l

v3* ~z10,z20!
,

where

v3* ~z10,z20!5 lim
t̄→`

1

t̄
E

0

t̄
v3~ t,z10,z20!dt

is the time average of the axial velocity a particle wou
experience in an infinite pipe. Thus

lim
L→`

T r
L~z10,z20!5

l

t̄
S 1

^v3&
D *

~z10,z20!

5
l

t̄v3* ~z10,z20!
5

^v̄3&

v3* ~z10,z20!
. ~4!

It is interesting to consider the change of the structure of
residence-time plots fromL/ l 51 to L/ l 5`. As shown
above, this can be done by showing the plots of aver
velocities of particles after one basic element has been
versed, two basic elements have been traversed, etc. In
3~a! we show the plot of average velocities after 10 pi
lengths. It is clear that the average velocities are quite n
uniform and this indicates poor mixing. The features of t
Poincare´ map can already be seen. In Figs. 3~b! and 3~c! we
show the velocity time-average plot after 100 and 1000 p
lengths, respectively. The similarity with the Poincare´ map is
clear, but these plots reveal that within the chaotic zone th
are still zones where velocity averages are significantly
ferent, colored blue. The points colored green have sp
more time near the walls in the period studied, while t
points colored blue have spent more time near the two
nonmixed islands. The difference in average velocities
tween the particles colored blue and those colored gr
shows how the average velocity plots give more informat
about mixing than the Poincare´ maps. It is important to poin
out that the appropriate way of presenting these results is
through contour plots or density plots, as the chaotic na
of the data prevents efficient interpolation. We find that
best way to understand the process is to plot colored do
the initial positions.

In Fig. 4 we show the average velocity histograms
the caseb58, 1000 cells andb58, 3000 cells. It is seen
that the nonuniformity of time averages in the chaotic zon
represented by the bimodal nature of the histogram aro
0.1 for 1000 cells. When the number of cells is 3000,
distribution becomes effectively unimodal and is cente
around the mean value of the average velocity in the cha
zone. However, there are still many small peaks in the
togram which are due to different, small chaotic zones.
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The average velocity plot is shown in Fig. 5 forb52,
1000 cells. It seems that the average velocity in the cha
zone is uniform and thus mixing is good there. Of course,
existence of large islands prevents good mixing through
the cross-section in this case. While it is obvious that mix
is worse in this case, the question arises of whether the o
all mixing property of the flow can be characterized by
single number. This question was addressed in Refs. 12
13, where it was shown that the efficiency of mixing of d
ferent flows can be measured using Kolmogorov–Sinai
tropy. Subsequent computations showed thatb52 case in-
deed has lower Kolmogorov–Sinai entropy thatb58 case.

III. UNSTEADY, SYMMETRIC FLOWS IN PIPES

In this section we will develop a theory of residen
times for unsteady flows in pipes that is analogous to the
that we have developed in the previous section for ste
flows periodic along the axis of a pipe.

FIG. 4. Histogram of the average velocities:~a! b58, 1000 cells and~b!
b58, 3000 cells.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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A. Quasiperiodic flows

Consider a laminar, time-dependent flow in a pipe
arbitrary shape~see Fig. 6!.

We assume that the velocity is independent of the v
able running along the axis of the pipe. For this, some sy
metry of the pipe geometry is necessary; see Ref. 14.
shown in Ref. 14 such a symmetry implies that the thr
dimensional flow has a stream function, and that coordina
z1 , z2 , z3 can be found so that in these new coordinates
flow can be written as

FIG. 5. The average velocities,b52, 1000 cells.

FIG. 6. Geometry of the curved pipe.
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ż152
]c

]z2
~z1 ,z2 ,t !,

ż25
]c

]z1
~z1 ,z2 ,t !, ~5!

ż35 f ~z1 ,z2 ,t !.

For example, in the case of helical symmetry we would ha
z15r 2, z25u2z, z35z, wherer , u, z are the standard cy
lindrical coordinates.15 Franjione and Ottino16 refer to a
steady version of Eq.~5! asduct flows. It can be seen that the
first two equations in Eq.~5! decouplefrom the third ~i.e.,
the dynamics of the first two equations is unaffected byz3).
As is well-known, the dynamics of fluid particles in th
cross-section of the pipe, described by the first two equati
in the unsteady duct flow~5!, can be chaotic since they hav
the form of a one and a half degree of freedom Hamilton
system. The dynamics of the third variable depends enti
on the dynamics ofz1 and z2, which are bounded. Thez3

coordinate may be unbounded, or the flow could be perio
in z3.

The nature of the time dependence of Eq.~5! will be
important for our analysis. Generally, the techniques we
velop can be applied to velocity fields having quasiperio
time dependence. By this we mean that Eq.~5! can be writ-
ten in the form

ż152
]c

]z2
~z1 ,z2 ,v1t,...,vnt !,

ż25
]c

]z1
~z1 ,z2 ,v1t,...,vnt !, ~6!

ż35 f ~z1 ,z2 ,v1t,...,vnt !,

wherev1 ,...,vn are n frequencies, and each component
Eq. ~6! is periodic in the argumentsv i t, with periods 2p/v i ,
for i 51,...,n.

Our analysis is more conveniently carried out in the co
text of an associated Poincare´ map. In constructing this map
it is useful to employ a standard dynamical systems ‘‘tric
that expresses Eq.~6! as a timeindependentvelocity field
through enlarging the set of differential equations by int
ducing the phases of the different frequency component
new variables. In this case Eq.~6! becomes

ż152
]c

]z2
~z1 ,z2 ,u1 ,...,un!,

ż25
]c

]z1
~z1 ,z2 ,u1 ,...,un!,

ż35 f ~z1 ,z2 ,u1 ,...,un!,
~7!

u̇15v1 ,

A

u̇n5vn .

Since u i(t)5v i t1u i0, i 51, . . . ,n, we see that Eq.~7! is
equivalent to Eq.~6!. We construct the Poincare´ map using
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Eq. ~7!. Consider any frequency component, sayvn ~other-
wise, re-index the frequencies!, with associated periodT
52p/vn . A cross-section to Eq.~7! is

S[$~z1 ,z2 ,z3 ,u1 , . . . ,un21 ,un!u un50%.

In order to make the formulae less cumbersome, we in
duce the following notation:

z[~z1 ,z2 ,z3!, z0[~z10,z20,z30!,

u[~u1 , . . . ,un21!, u0[~u10, . . . ,u~n21!0!,

v[~v1 , . . . ,vn21!.

The Poincare´ map, denotedM, of S into itself is then
defined as

M :S→S,
~8!

~z0 ,u0!°S z~T,z0 ,u0!,u012p
v

vn
D ,

wherez(t,z0 ,u0) is the solution of thez12z22z3 compo-
nent of Eq.~7! through the point (z0 ,u0) at t50. In other
words, the computation of the Poincare´ map involves fixing
one frequency and finding the position of the particle af
one period in that frequency.

We will mainly be interested in the motion of particle
down the pipe. Thez3 component of the Poincare´ map is
given by

z3~T,z0 ,u0!5z301E
0

T

f ~z~ t,z0 ,u0!,vt1u0 ,vnt !dt,

~9!

and the displacement in thez3 direction aftern11 discrete
time steps is given by

z3
n115z3

n1 j ~zn,un!, ~10!

where

j ~zn,un![E
0

T

f ~z~ t,zn,un!,vt1un,vnt !dt ~11!

denotes the ‘‘jump’’ in thez direction after each discret
time step. From this expression, and the definition of
Poincare´ mapM, it is easy to see that

z3
n115Fn~z10,z20,u0!,

5 (
k50

n21

j ~z1
k ,z2

k ,uk!5 (
k50

n21

j ~Mk~z0 ,u0!!; ~12!

this notation will be used throughout the rest of this pape
We want to point out an important property of Eq.~12!.

In particular, it is only a function of the variablesz10, z20,
andu0. The z30 variable only enters as a parameter. This
because thez3 component of the velocity field (f ) depends
only onz1, z2, andt. This is important since we will want to
apply the Birkhoff ergodic theorem to the functionj, which
will require j to be defined on a bounded domain~which is
simply the cross-sectional variables of the pipe and
phases of the frequency components!.
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B. Isoresidence-time plots and Poincare ´ maps

Here we derive a relationship between isoresidence-t
plots and Poincare´ maps of unsteady duct flows, and provid
an approximate method of calculation of residence ti
which shortens the calculation time significantly.

We will assume thatz30 is the same for all the particles
Let j * denote the time average ofj, defined by

j * ~z10,z20,u0!5 lim
n→`

Fn~z10,z20,u0!

n
.

The quantityj̄ is defined as

j̄ 5E j dz10dz20du0 ,

and let^ j & denote the space average ofj defined by

^ j &5E jp dz10dz20du0 ,

where p5p(z10,z20,u0) denotes the initial distribution o
points.

We shall consider the case whenu j * (z10,z20,u0)u.c
.0, andj bounded. LetNL(z10,z20,u0) be the first passage
time ~residence time, first exit time! for the point
(z10,z20,u0), i.e.,

z3
n.L,

where L is the total length of the pipe. At iteraten
5NL(z10,z20,u0) and z3

n,L for every n less than
NL(z10,z20,u0). Consider the renormalized residence time

Nr
L~z10,z20,u0!5

NL~z10,z20,u0! j̄

L
.

The main result of this section is the following

lim
L→`

Nr
L~z10,z20,u0!5

j̄

j * ~z10,z20,u0!
. ~13!

This formula has interesting consequences, which we n
discuss.

By Birkhoff’s ergodic theorem~see, e.g., Ref. 11!,
j * (z10,z20,u0) must be constant on the orbits of the cros
sectional Poincare´ map M. Therefore, isoresidence sets o
which Nr

L is constant are, for the limit of an infinite pipe
composed of orbits of the cross-sectional Poincare´ mapM. It
also follows from this result that almost all the points in t
chaotic region of the cross-sectional Poincare´ map will have
the same residence time since in these regionsM can be
assumed to be ergodic, and soj * (z10,z20,u0) is constant
there.

This result is actually quite a practical tool. Residenc
time plots are useful in a variety of applications in chemic
engineering, mechanical engineering and elsewhere. Be
designing a long pipe, one would like to know what th
residence times for a particular device~heat exchanger
mixer! will be. Typically, in complex geometries, analytica
models are not available. So, isoresidence-time sets are c
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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puted numerically. For long devices this requires a lot
computer time, as the time to get out of the pipe becom
very long.

Consider a singly periodic flow with frequencyv. Let us
define the axial Strouhal number,Sax by

Sax5
vL

2pUax
,

whereUax is the characteristic axial velocity. Note that w
can defineSax as

Sax5
L

j *̄

so that it represents the average residence time~i.e., the av-
erage number of iterations of the Poincare´ map it takes to
exit the pipe!. The cross-sectional Strouhal numberScs can
be defined as

Scs5
vR

2pUcs
,

whereUcs is the characteristic cross-sectional velocity, a
R the radius of the pipe.Scs represents the average number
iterations of the Poincare´ map it takes to traverse the cros
section of the pipe. Now assumeScs!Sax . This condition
will assure that the cross-section is explored thoroughly
fluid particles in only a fraction of the average time nec
sary to exit the device. They are to be met easily if the fl
is laminar so characteristic velocities are small,Uax andUcs

are of the same magnitude, andL@R. The situation is even
more favorable ifUax!Ucs . Because of these conditions,
well-resolved cross-sectional Poincare´ map can be obtained
in a time that is short compared with the average exit tim
Thus regions of chaotic behavior and regions of regular
havior can be uncovered. As the motion in the chaotic zo
is assumed to be ergodic, the time average ofj there can be
obtained by integratingj over the area of the chaotic zon
i.e.,

j * 5E
Achaotic

j ~z10,z20,u0!dz10dz20du0 .

This time average is constant throughout the chaotic zo
The exit time for any initial condition in that zone for lon
pipe is given approximately by

NL~z10,z20,u0!'
L

j * ~z10,z20,u0!

5
L

*Achaotic
j ~z10,z20,u0!dz10dz20du0

.

The time averages ofj on regular orbits can be obtained b
taking the average ofj over the orbit.

We now give a proof of Eq.~13!. We need to show tha
for any sequence of pipe lengths$Li%, such thatLi→` when
i→`, for everye.0 there existsI such thati>I implies
wnloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP 
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UNr
Li~z10,z20,u0!2

j̄

j * ~z10,z20,u0!
U,e.

So, pick such a sequence,$Li%, and e. Note that we can
always findz2(z10,z20,u0 ,Li) such that

FNLi~z10 ,z20 ,u0!~z10,z20,u0!1z2~z10,z20,u0 ,Li !5Li ,
~14!

wherez2 is defined by the above equation.z2 is bounded for
every integeri, and almost every initial condition, as

FNLi~z10 ,z20 ,u0!21~z10,z20,u0!

,Li<FNLi~z10 ,z20 ,u0!~z10,z20,u0!,

so

z2~z10,z20,u0 ,Li !< max
~z10 ,z20 ,u0!

j ~z10,z20,u0!.

Now, by the Birkhoff ergodic theorem,

FNLi~z10 ,z20 ,u0!~z10,z20,u0!

5NLi~z10,z20,u0! j * ~z10,z20,u0!1z1~z10,z20,u0 ,Li !,

for almost every initial condition, where

lim
i→`

z1~z10,z20,u0 ,Li !

NLi~z10,z20,u0!
50.

Let

z5z11z2 .

Now, for everyd.0, we can chooseI such that

Uz~z10,z20,u0 ,Li !

NLi~z10,z20,u0!
U,d, ~15!

for every i .I . Choose

d,minS u j * u,
e~ j * !2

j̄ 1eu j * u
D . ~16!

Equations~14!, ~15! and ~16! now can be used to show tha
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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UNr
Li~z10,z20,u0!2

j̄

j * ~z10,z20,u0!
U

5UNLi~z10,z20,u0! j̄

L i
2

j̄

j * ~z10,z20,u0!
U

5U NLi~z10,z20,u0! j̄

NLi~z10,z20,u0! j * 1z~z10,z20,u0 ,Li !

2
j̄

j * ~z10,z20,u0!
U

5U z~z10,z20,u0 ,Li !

NLi~z10,z20,u0!
j̄

~ j * !21
z~z10,z20,u0 ,Li !

NLi~z10,z20,u0!
j *
U,U j̄ d

~ j * !22d j *
U,e,

~17!

for every i .I . The above argument is valid, by Birkhoff’
ergodic theorem, for almost every initial conditio
(z10,z20,u0). Thus our proof is complete.

IV. AXIAL DISTRIBUTION OF PARTICLES

In the previous section, we have analyzed reside
times of particles in a class of unsteady duct flows. Anot
question is natural in this context: what is the distribution
particles along the axis when time is very large. As we no
earlier, it was observed by Khakharet al.1 that such a distri-
bution can be multimodal for some steady chaotic flows
pipes. Here we investigate this question in the context
unsteady duct flows.

We assume that all particles start atz350 at timet50,
and their initial distribution is defined by some dens
p(z10,z20,u0), where

E
A
p~z10,z20,u0!dz10dz20du051,

andA denotes some subset of the flow domain. The distri
tion function that gives us the amount of particles that are
stepn of the iteration, below or at someZ3 is defined as

Wn~Z3!5P~$~z10,z20,u0!uFn~z10,z20,u0!<Z3%!,

whereP denotes a probability measure defined as follows
we denote the set of initial conditions$(z10,z20,
u0)uFn(z10,z20,u0)<Z3% by AZ3

, thenP(AZ3
) is just

P~AZ3
!5E

AZ3

p~z10,z20,u0!dz10dz20du0 ,

i.e., the integral over all the initial conditions for which th
axial position aftern steps is belowZ3. We need to some
how rescale the variableZ3 in this distribution, as in the cas
of a large length of pipe; most of the particles will mov
toward infinity along the axis. The exception might be tho
with zero average velocity. Let us consider the situation
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which particles do not sample the whole cross-section~this is
typical: for example, KAM tubes can prevent completene
of mixing in the cross-section, although the cross-sectio
flow is ergodic in some zones!. Thus the time average of th
axial velocity is not going to be the same for all particles~if
the axial flow is not plug flow!. An appropriate scaling is

Y5
Z32 j̄ * n

s~n!
, ~18!

where

s2~n!5^~Fn2^Fn&!2&.

This is a common rescaling: subtract the mean distance f
the origin, and divide by the size of the cloud of particl
~i.e., standard deviation!. In the case under consideratio
here,s(n) satisfies

lim
n→`

s2~n!

n2
5^~ j * 2^ j * &!2&5

def
a,

so

s~n!;n ~19!

for large timesn. This is due to nonuniform time-average
velocities of particles.17,18 It is clear from Eq.~18! that Y is
centered atz35 j̄ * n, so it moves with the ‘‘velocity’’j av-
eraged over timeand the initial conditions. Now,

Wn~Z3!5P$~z10,z20,u0!uFn~z10,z20,u0!<Z3%

5P$~z10,z20,u0!uFn~z10,z20,u0!<sY1 j̄ * n%

5PH ~z10,z20,u0!U Fn~z10,z20,u0!2 j̄ * n

s
<YJ

5
def

Gn~Y!. ~20!

We shall call the above defined distributionGn the renor-
malized distribution. Just like any genuine distribution, it i
zero at negative infinity, as no particles are there at any fi
time, and 1 at positive infinity, as all particles are belo
positive infinity at any finite time. As opposed toWn, it has
interesting asymptotic properties whenn is very large. Con-
sider yet another distribution, that we will callG`, defined
by

G`~Y!5PH ~z10,z20,u0!U j * ~z10,z20,u0!2 j̄ *

Aa
<YJ .

~21!

It can be shown17 that the distributionGn approachesG`

whenn goes to infinity. So, let us discuss some properties
G`. First, we have

G`~Y!5P~AY!5E
AY

p~z10,z20,u0!dz10dz20du0 , ~22!

whereA(Y) is the set of all initial conditions in the cross
section such that
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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j * ~z10,z20,u0!2 j̄ *

Aa
<Y.

Now assume thatYj is such that the corresponding value
j * (z10,z20,u0)5AaYj1 j̄ * is uniform in a nonzero area
chaotic zone of the Poincare´ map ~because the motion i
supposedly ergodic there!. Furthermore, assume for simplic
ity that the initial distribution is uniform over the cross
section. Thus as can be seen from Eq.~22!, G` will have a
jump of the size

E
AYj

dz10dz20du0

at Yj , whereAYj
is the chaotic zone. Thus we have foun

that chaotic zones cause discontinuities in asymptotic di
bution functions.

The results of experiments are often presented in te
of histograms.1 In the standard probability theory formalism
this would correspond to a functionr(Y), such that

G`~Y2!2G`~Y1!5E
Y1

Y2
r~Y!dY

for any Y1 ,Y2, i.e., r(Y) is a probability density for the
particle distribution. Any discontinuity atYj in G` must be
caused by ad-function behavior ofr(Y). For finite n, the
peak is smoothened out, and thus appears as an extremu
the probability density. If there is more than one chaotic zo
for the cross-sectional Poincare´ map, this will cause more
than one extremum of the probability density, i.e., multim
dality.

This situation is shown in Fig. 7. We assume that th
isolated, in the sense that the particles do not cross o
between these zones, chaotic zones exist, denoted by I, I
III. Each of the three isolated chaotic zones contribute
peak to the probability density function.

FIG. 7. Chaotic zones in the cross-section contribute peaks to the prob
ity density of particles.
wnloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP 
i-

s

of
e

-

e
er
nd
a

V. CONCLUSIONS

We have derived some rigorous results about the r
tionship of Poincare´ maps and residence-time distributions
flows exhibiting chaotic advection. It has been only recen
both within industrial research laboratories and at unive
ties, that the importance of a detailed study of residence-t
distributions in laminar mixers has been realized. Indeed,
Lagrangian properties of flows in laminar mixers can be v
complicated. The appropriate statistical theory for the
flows is not probability theory, but ergodic theory of dete
ministic maps and flows.

Velocity time-average plots~or, equivalently, residence
time plots! reveal a lot about the statistical structure of t
particle motion in pipes and mixers. Our numerical results
the partitioned-pipe mixer show that a color residence-ti
plot can indicate the nonuniformity of mixing in a zone
which the Poincare´ map shows complete mixing. In relatio
to this, the coexistence of nonmixed islands and solid bou
aries in the pipe flow was shown to introduce multimodal
of finite-time particle distributions along the axis. Anoth
source of multimodality is the coexistence of different ch
otic zones in the cross-section. This theory can also prov
an explanation for the observed steep gradients in reside
time distributions observed in experiments by Saxena
Nigam.4 In their apparatus with helically coiled cells, steep
gradients have been observed when more cells were pre
We have shown that this corresponds to the uniformizat
of time averages within a chaotic zone in the cross-secti

There are not many experimental studies of the ma
under analysis here, except for the one by Kusch a
Ottino19 who studied flows of the type we have considere

In this paper we have used some of the basic facts
ergodic theory, such as the existence of velocity tim
averages along particle paths. We are convinced that the
of ergodic theory in this context is far beyond the resu
obtained here.
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