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Residence-time distributions for chaotic flows in pipes
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In this paper we derive two rigorous properties of residence-time distributions for flows in pipes and
mixers motivated by computational results of Khakkeaal. [Chem. Eng. Sci42, 2909(1987],

using some concepts from ergodic theory. First, a curious similarity between the isoresidence-time
plots and Poincarmaps of the flow observed in Khakhetr al. is resolved. It is shown that in long
pipes and mixers, Poincareaps can serve as a useful guide in the analysis of isoresidence-time
plots, but the two are not equivalent. In particular, for long devices isoresidence-time sets are
composed of orbits of the Poincameap, but each isoresidence-time set can be comprised of many
orbits. Second, we explain the origin of multimodal residence-time distributions for nondiffusive
motion of particles in pipes and mixers. It is shown that chaotic regions in the Pointswe
contribute peaks to the appropriately defined and rescaled axial distribution functionE99®
American Institute of Physic§S1054-150(09)02401-5

Residence-time distributions have been in use as diagnos- is composed of the orbit of the Poincamap. Many orbits

tic tools for mixing in Chemical Engineering devices fora can be within one such set. Thus in some sense Poincare
long time. In the past 15 years, a theory of mixing in  maps carry more information than residence-time plots. On
laminar flows, Chaotic Advection, has been developed, the other hand, Poincamaps do not contain any informa-
with one of the most important diagnostic tools being tion about the axial motion, while residence-time pl¢ds,
Poincare maps. In this paper we analyze the similarities  equivalently as we show below, velocity time-average plots
and differences between these two concepts, using er- do. In addition, and again using the time averages of the
godic theory invoked by the link between the residence velocity, we discuss the distribution of particles along the
times and average velocities along particle paths. The axis of the pipe, and residence-time distributions for chaotic
residence-time plots contain information about the axial flows in pipes. It is shown that chaotic zones in the Poincare
motion, while the Poincaremaps contain more informa-  map of the flow contribute peaks to the particle probability
tion about the cross-sectional motion, and essentially no density and residence-time probability density.

information about the axial motion. We also establish two

different mechanisms for the multimodality of finite-time

residence-time distributions observed in earlier works. Il. STEADY, PERIODIC FLOWS IN PIPES

A. Residence times

I INTRODUCTION Khakharet al! considered a mixing device known as the

In this paper we derive two rigorous properties of partitioned-pipe mixerlt is a continuous flow device con-
residence-time distributions for laminar flows in pipes andsisting of a pipe partitioned into a sequence of semi-circular
mixers motivated by computational results of Khakbtal!  ducts by means of rectangular plates positioned orthogonally
Residence times have been in use for a long time as an inwith respect to each other; see Fig. 1. We refer to a length of
portant diagnostic tool in a number of engineering devicespipe containing two plates as one “element” of the mixer.
see, e.g., Refs. 2—6. Poincaraps, on the other hand, have Hence, the mixer can be viewed as a number of elements
been used for studying dynamics of particles in laminar fluidplaced end-to-end. We denote the total length of the pipe by
flows since the beginning of the chaotic advection stutifes. L and the length of its basic element byNote thatl /| is an
In the present work we show that these two methods are, imteger.
long devices, related via time averages of the velocity in the  The fluid to be mixed is forced through the pipe by
direction of the axis of the pipe. Using this observation, wemeans of an axial pressure gradient while the pipe is rotated
discuss the similarity of residence-time plots and Poincar@bout its axis relative to the plates. The mixing device is
maps observed in Ref. 1. We show that a set in the crosgypically operated under creeping flow conditions, and the
section of the pipe on which the residence times are constafibw is steady.
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FIG. 1. Schematic of one element of the partitioned-pipe mixer.

Khakharet al! have calculated the flow through the ba-
sic cell in the Stokes approximation to be

dr )
vr=a=[5’r(1—r”)sm(26),

Ug_dﬁ_ T
i B[2—(2+ v)r”]sir? 6,
dz 16
_c_ 2k—1_ .2
VT gy 772—8k=1(r r<)
sin (2k—1) 6]

(2k—1)[4—(2k—1)?2]"

wherer=1/11/3—-1 andp are constants, anf is related to
the speed of rotation of the wall of the pipe. In computations,
the above flow field is used in the first half of the basic cell,
and then rotated by 90 degrees and used for the second part
of the cell. The assumptions used in the model are not physi-
cally accurate. However, the phenomenology of the chaotic
flow—the existence of the isolated islands and chaotic
zones—stays the same even if a careful numerical simulation
of a realistic mixer is performe®® Our analysis is theoreti-
cal and numerical computation is used only to illustrate the
theory, so we will use the above simple model. Hobbal®
have performed both full-scale numerical simulations of the
Kenics static mixer and the effect of problem parameters
such as injection location on its performart€&Ve hope that
the tools developed here and tested on a simple model will
be of help in future numerical studies of this sort.

As a result of the periodicity in thedirection(assuming
a mixer O.f infinite length it is natural to coq5|der a POIﬂCareI FIG. 2. Poincarenap for PPM ata) 8=2 and(b) 8=8. Isoresidence times
map defined as follows. The cross-section to the flow igom khakharet al. at () s=2 and(d) g=8.
taken to be the beginning of a particular element of the
mixer, and the Poincammap associates to each point in the
cross-section its point at the end of the element of the mixeKhakharet al! for (c) 3=2 and(d) 3=8. These are con-
according to its motion along a fluid path line. We shall tours in the cross-section corresponding to points that remain
denote thus defined Poincareap byP. In the flow there is a in the mixer for the same amount of time.

(c) g = 2.00 (d) # = B:00

dimensionless paramete®, which is referred to as theix- Both the exit age distributions and isoresidence-time
ing strength In Figs. 2a) and 2b) we show Poincarenaps  plots were computed integrating a uniform grid of points in
for =2 andB=38, respectively. the cross-section. Note the similarities between the Poincare

The exit age distributionis a quantity of interest in this sections(a) and (b) with the isoresidence-time plots) and
system. It is the number of particles, plotted vertically, ver-(d) in Fig. 2. Khakharet al. assert that the correspondence
sus the time that they remain in the mixer, plotted horizonshould be even closer as the length of the mixer increases.
tally. These plots were observed in Ref. 1 to be multipeakedWe will discuss these issues in terms of a new framework
In Fig. 2 we also show isoresidence-time plots taken frombased on average velocities. Moreover, we will do this for a
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large class ofinsteadyduct flows described in the next sec-
tion.

1. Steady flows

V(21,25,23) = (24(21,25,23),22(21,25,23) ,23(21, 25, 23))

andv(z;,2,,z3) in devices of the above described type are of
the form

2,=v1(21,2,23),

-22202(21122,23), (1)

Z3:v3(21122123):

with v(z;,2,,z3+1)=Vv(z,,2,,23), wherel is the length of a
basic periodic cell. The time that a particle spends crossing
the cell is denoted by(z;q,250), Where @14,250) =[21(0),
Z,(0)] is the position in the cross-section of the particle
starting fromz;=0 at time 0. Note that is a function on the
phase space of the Poincamap described above, i.e., it
associates a real number to each of the points in the cross-
sectionzz=0 of the pipe.

v VREL 1 T
&) 10 pips slarinits, beta=a

B. Isoresidence-time plots and Poincare ~ maps

The residence time of a particle starting af(,z,0,0) at
timet=0 in a pipe of length. is given by
L/I-1

T (210,220 = 20 7(P(210,220))- 2

For very long pipes, we are interested in the rescaled, non-
dimensional version of the residence time, defined as

B Tt
L’

r

where 7 is the average of over the cross-section. Now we
have
1 L/1-1
lim T+(z10,2,0= = lim — Eo 7(P'(Z10,Z20))

L—oo T Lo» L 1=

(210,220

e L (3) =33
T A, ‘.‘ n;':‘z- e i B
where pias e A
- () 1,000 pipe elements, betasé
7(210,2Z50) = lim o Z 7(P'(210,250)) FIG. 3. The average velocitie&) 8=8, 10 cells,(b) =8, 100 cells|(c)
n—o 1 =0 B=8, 1000 cells.

is the time average of under the dynamics d?. Now, by
. y . 1 . .
Birkhoff's ergodic theorent! 7* is constant on the orbits of \yherey4(t,2,4,2,0) is the axial velocity that a particle start-
the PoincarenapP. Thus for the limit of infinite length. of ing at (219,250 has at timet, we obtain
the mixer, sets of constant rescaled residence times are com-
posed of the orbits of the PoincamapP. To make numeri- |

) X . 210,220) = ,
cal computation easier, we can present the above result in 7(Z10,Z20 1 fr(zlolzo) ¢ dt
; ; —_— 1Z10,Z
terms of the average velocity of particles. As 7(210,220) J o v3(1,210,220)
|— JT(Z“”ZZO)US(,[ 210 2,0)dt with the provision that when the denominator is zero, the
T ' left-hand side is defined to be infinity. Denoting Kys)
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X(z10,220) the average velocity experienced by the particle averaged velocities in the partitioned pipe
h . . beta=8.0, number of cells=1,000

starting at ¢,9,2,0) as it traverses the basic element of the

mixer, we have

Oy
- N W

[
(v3)(Z10,220)

It is not hard to show that

7(210+220) =

-
o

* —
(210,200 = —/————,
v3 (210,220

frequency

where

N W s OO N ©

oo 1(t
v3(210,Zp0) = lim :f v3(t,210,Z50)dt

t—o

o =

0

is the time average of the axial velocity a particle would 0.1 0.2 0.3 0.4 0.5
experience in an infinite pipe. Thus @) averaged z velocity

averaged z velocity in the partitioned pipe

. L [/ 1 \* beta=8.0, number of cells=3,000
lim 71 (210,220 = = (2 (Z10,220) 1BF
L—oo r\(va) 12E
| (v3) “E
== =~ ) 10F
03 (210,220)  v3(Z10,220) oF
It is interesting to consider the change of the structure of the s 8 —
residence-time plots fromL/I=1 to L/I=«. As shown % 7E
above, this can be done by showing the plots of average 2 sF
velocities of particles after one basic element has been tra- & sE
versed, two basic elements have been traversed, etc. In Fig. F
3(a) we show the plot of average velocities after 10 pipe 45'
lengths. It is clear that the average velocities are quite non- 3F
uniform and this indicates poor mixing. The features of the 2F
Poincaremap can already be seen. In Figéb)3and 3c) we 1F
show the velocity time-average plot after 100 and 1000 pipe oE

. . . . . - . 0 0.2 0.3 0.4 0.5

lengths, respectively. The similarity with the Poincarap is (b) averaged z velocity

clear, but these plots reveal that within the chaotic zone there

are still zones where velocity averages are significantly difF!G. 4. Histogram of the average velocitids) 4=8, 1000 cells andb)
ferent, colored blue. The points colored green have sperft & 3000 cells.

more time near the walls in the period studied, while the

points colored blue have spent more time near the two big e average velocity plot is shown in Fig. 5 fr=2

nonmixed islands. The difference in average velocities bejggg cells. It seems that the average velocity in the chaotic
tween the particles colored blue and those colored greefone js uniform and thus mixing is good there. Of course, the
shows how the average velocity plots give more informationgyistence of large islands prevents good mixing throughout

about mixing than the Poincameaps. It is important to point ¢ cross-section in this case. While it is obvious that mixing

out that the appropriate way of presenting these results is gt \qrse in this case, the question arises of whether the over-

through contour plots or density plots, as the chaotic naturg mixing property of the flow can be characterized by a

of the data prevents efficient interpolation. We find that thesingle number. This question was addressed in Refs. 12 and

best way to understand the process is to plot colored dots gk "yhere it was shown that the efficiency of mixing of dif-

the initial positions. o ferent flows can be measured using Kolmogorov—Sinai en-
In Fig. 4 we show the average velocity histograms fortropy. Subsequent computations showed iBat2 case in-

the casef=8, 1000 cells ang3=8, 3000 cells. It is seen geeq has lower Kolmogorov—Sinai entropy tiat 8 case.
that the nonuniformity of time averages in the chaotic zone is

represented by the bimodal nature of the histogram aroun

0.1 for 1000 cells. When the number of cells is 3000, theHI' UNSTEADY, SYMMETRIC FLOWS IN PIPES
distribution becomes effectively unimodal and is centered In this section we will develop a theory of residence
around the mean value of the average velocity in the chaotiimes for unsteady flows in pipes that is analogous to the one
zone. However, there are still many small peaks in the histhat we have developed in the previous section for steady
togram which are due to different, small chaotic zones. flows periodic along the axis of a pipe.
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Iy

21:_07_22(21,22,'().

Y
22=0—Zl(zl,22,t), 5

23=1(21,25,1).

For example, in the case of helical symmetry we would have
z,=r2, z,= 60—z, z3=2, wherer, 6, z are the standard cy-
lindrical coordinates® Franjione and Ottin§ refer to a
steady version of EJ5) asduct flows It can be seen that the
first two equations in Eq(5) decouplefrom the third(i.e.,
the dynamics of the first two equations is unaffectedzfy
R As is well-known, the dynamics of fluid particles in the
1,000 pipe eléments, beta=2 cross-section of the pipe, described by the first two equations
in the unsteady duct flob), can be chaotic since they have
the form of a one and a half degree of freedom Hamiltonian
system. The dynamics of the third variable depends entirely
on the dynamics of; andz,, which are bounded. The,

N psr %

FIG. 5. The average velocitieg=2, 1000 cells.

A. Quasiperiodic flows coordinate may be unbounded, or the flow could be periodic
. . . . ) in z3.
.Con5|der a Iamlr_1ar, time-dependent flow in a pipe of  The nature of the time dependence of E&). will be
arbitrary shapésee Fig. 6. important for our analysis. Generally, the techniques we de-

We assume that the \{elocity is .independe.nt of the variyelop can be applied to velocity fields having quasiperiodic
able running along the axis of the pipe. For this, some sym¢jme dependence. By this we mean that Ex).can be writ-
metry of the pipe geometry is necessary; see Ref. 14. Agp in the form

shown in Ref. 14 such a symmetry implies that the three-
dimensional flow has a stream function, and that coordinates
24, Z, Z3 can be found so that in these new coordinates the
flow can be written as

21: - &_ZZ(lezZlet!"'lwnt)l

izza_zl(zl,zz,wlt,...,wnt), ©

ing(Zl,Zz,wlt,...,wnt),

wherewq,...,0, aren frequencies, and each component of
Eq. (6) is periodic in the arguments;t, with periods 27/ w;,
fori=1,...n.

Our analysis is more conveniently carried out in the con-
text of an associated Poincarep. In constructing this map
it is useful to employ a standard dynamical systems “trick”
that expresses Ed6) as a timeindependentselocity field
through enlarging the set of differential equations by intro-
ducing the phases of the different frequency components as
new variables. In this case E(p) becomes

'z=—%(z Z,,0 6,)
1 022 1:42Y1s---3Un/y

Y
22:(?_21(211221011'--!0[’]):

-Z3:f(21,22,01,...,0n),

)

01:(.01,

0= w,.

Since 6;(t) = wit+ 0,0, i=1,...n, we see that Eq(7) is
FIG. 6. Geometry of the curved pipe. equivalent to Eq(6). We construct the Poincareap using
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Eq. (7). Consider any frequency component, say (other-
wise, re-index the frequencigswith associated period
=2mlw,. A cross-section to E(7) is

EE{(Zl,Zz,Zs,gl, e ,Gn,l,an)| 0n:0}

In order to make the formulae less cumbersome, we intro-

duce the following notation:

72=(21,25,23), 20=(Z10,220,Z30),

0=(01,...,0h-1), 6o=(610,....0(n-1)0),

w=(wq1, ...,04_1).

The Poincaremap, denotedM, of 3 into itself is then
defined as

M:Z—%,
" )
(Zo,ao)H Z(T,Zo,eo),eo‘l‘ZWw_ ,
n
where z(t,zy, 6y) is the solution of thez, —z,—z; compo-
nent of Eq.(7) through the point %;,60,) att=0. In other
words, the computation of the Poincarap involves fixing

Mezic, Wiggins, and Betz

B. Isoresidence-time plots and Poincare ~ maps

Here we derive a relationship between isoresidence-time
plots and Poincarmaps of unsteady duct flows, and provide
an approximate method of calculation of residence time
which shortens the calculation time significantly.

We will assume thatg, is the same for all the particles.
Let j* denote the time average pfdefined by

F"(210,20, 60)

(210,220, 0p) = lim -

n—o

The quantityj_is defined as

j= f j dz19dz0d 6,

and let(j) denote the space averagejafefined by

()= [ ip dz0dz000e,

where p=p(z19,259, 6p) denotes the initial distribution of
points.
We shall consider the case wWhéjt (z19,2,0,60)|>¢C

one frequency and finding the position of the particle after>0, andj bounded. LeN"(z10,250,6,) be the first passage

one period in that frequency.

We will mainly be interested in the motion of particles
down the pipe. Thez; component of the Poincammap is
given by

T
Z3(T,Zo,00) 2230+ f f(Z(t,Zo,ao),wt+ Go,wnt)dt,
0
9

and the displacement in the direction aftern+1 discrete
time steps is given by

n+1

z3 T=z3+j(2",6"), (10)
where
T
j(z”,e”)EJ'O f(z(t,2",0"),wt+ 0", 0, t)dt (11

denotes the “jump” in thez direction after each discrete

time step. From this expression, and the definition of the

Poincaremap M, it is easy to see that

+1
73" " =F"(210,220.60).

n—1 n—-1
= i(Z.,25,69=2 (M z0,60)); (12)
k=0 k=0

this notation will be used throughout the rest of this paper.
We want to point out an important property of EG2).
In particular, it is only a function of the variables, z5,

and 6,. The zgy variable only enters as a parameter. This is

because the; component of the velocity fieldf§ depends
only onzy, z,, andt. This is important since we will want to
apply the Birkhoff ergodic theorem to the functipnwhich
will require j to be defined on a bounded domaimhich is

time (residence time,
(210,220, 09), i.€.,

z3>L,

first exit time for the point

where L is the total length of the pipe. At iterate
=N(210,20,69) and z3<L for every n less than
NY (210,250, 60). Consider the renormalized residence time

NY(210,220,00)]

N (210,220, 60) = O

The main result of this section is the following

lim Nlr‘(Zlo,Zzo, 6o) =

[

17(210+220, 00)

This formula has interesting consequences, which we now
discuss.

By Birkhoff's ergodic theorem(see, e.g., Ref. 11
1% (210,229,600) must be constant on the orbits of the cross-
sectional Poincarenap M. Therefore, isoresidence sets on
which N'r' is constant are, for the limit of an infinite pipe,
composed of orbits of the cross-sectional PoincaapM. It
also follows from this result that almost all the points in the
chaotic region of the cross-sectional Poincarap will have
the same residence time since in these reginsan be
assumed to be ergodic, and §6(z,9,259.60) iS constant
there.

This result is actually quite a practical tool. Residence-
time plots are useful in a variety of applications in chemical
engineering, mechanical engineering and elsewhere. Before
designing a long pipe, one would like to know what the
residence times for a particular devigheat exchanger,

simply the cross-sectional variables of the pipe and themixer) will be. Typically, in complex geometries, analytical

phases of the frequency components

models are not available. So, isoresidence-time sets are com-
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puted numerically. For long devices this requires a lot of i

computer time, as the time to get out of the pipe becomes N'r‘i(zlo,zzo,ao)— <€
very long. 1% (210,220, 00)
Consider a singly periodic flow with frequenay Let us
define the axial Strouhal numbes, by So, pick such a sequencf,;}, and e. Note that we can
always find{,(z19,259,60,L;) such that
ol
S 270,

FN"(210:220:00) (210 22, 66) + {210,220, 00, L) =L ,
whereU ,, is the characteristic axial velocity. Note that we (14
can defineS,, as

where(, is defined by the above equatiafy. is bounded for
L every integeli, and almost every initial condition, as

so that it represents the average residence (irae the av- FNY(210.220.00)1(7, 0 7.0 6,)
erage number of iterations of the Poincanap it takes to
exit the pipe. The cross-sectional Strouhal numisg can
be defined as

<Lj= FNL‘(Zlo'ZZO’HO)(Zm,Zzo, bo),

SO
wR

Ses= 27U’

$2(210,220,00,Li)< max  j(z10,220,60)-
whereU . is the characteristic cross-sectional velocity, and (210,220, 60)

R the radius of the pip&5.s represents the average number of

iterations of the Poincarmap it takes to traverse the cross- Now, by the Birkhoff ergodic theorem,

section of the pipe. Now assun& <S,,. This condition

will assure that the cross-section is explored thoroughly by

fluid particles in only a fraction of the average time neces- FNi(z10.220, %0)(210, 229, 60)

sary to exit the device. They are to be met easily if the flow , .

is Igminar so characteristic zelocities are smédll,, ZlndUCS =N"(210,220,60) 1* (210,220, 60) + £1(210,220, 6o L),
are of the same magnitude, ah& R. The situation is even
more favorable ifU,,<U.s. Because of these conditions, a for almost every initial condition, where
well-resolved cross-sectional Poincar@p can be obtained

in a time that is short compared with the average exit time.

Thus regions of chaotic behavior and regions of regular be- {1(210,220, 00,L1)
havior can be uncovered. As the motion in the chaotic zones  lim —-
is assumed to be ergodic, the time averaggtbere can be i N"(Z10,Z20, 60)
obtained by integrating over the area of the chaotic zone,
ie., Let

j*:f (2101220, 60)d 2100 2,0 d 6. {=41+8s.

chaotic

This time average is constant throughout the chaotic zon
The exit time for any initial condition in that zone for long
pipe is given approximately by

el'\low, for everys>0, we can choosk such that

g(ZlOlZZOIGOILi)

NYi(240,220, 00)

L
1% (210,220, 60)

L

<5, (15)
N (210,250, 60) ~

for everyi>1. Choose

J Agraond (2101220, 00)d 2100200 6
The time averages gfon regular orbits can be obtained by _ e(j*)?
taking the average gfover the orbit. s<min| [j*[,= el *|) (16)
We now give a proof of Eq(13). We need to show that €ll
for any sequence of pipe lengtfis;}, such thal ;—«~ when
i—oo, for everye>0 there existd such thati =1 implies Equations(14), (15) and(16) now can be used to show that
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L, ]
N (210,220, 00) — -
' 1%(210,220, 60)

which particles do not sample the whole cross-sedtiois is
typical: for example, KAM tubes can prevent completeness
of mixing in the cross-section, although the cross-sectional

NYi(240. 250, 60)] — ‘ flow is ergodic in some zongsThus the time average of the
- 10,220, 00)] _ : J axial velocity is not going to be the same for all particlés
Li J*(Zlo,Zzo,é’o)‘ the axial flow is not plug flol An appropriate scaling is
_ NYi(210,220, 60)] ~ Zg—j*n 18
NYi(210,220,00) ] * + (210,220, 60, L) o(n)
j_ where
1%(210,220, 60) a?(n)=((F"=(F")?).
(240,250, 60,L;)— This is a common rescaling: subtract the mean distance from
NYi(Z10. 200, 0 s the origin, and divide by the size of the cloud of particles
= (210.220.60) <‘ . i . ‘<e, (i.e., standard deviationIn the case under consideration
()2+ {(210,220,60,L1) | (%) ~ 5j*| here,o(n) satisfies
NYi(210,250, 6o) ,
_o(n) def
17 lim —==((j* = (i*))) =a,
for everyi>I1. The above argument is valid, by Birkhoff's n—ee
ergodic theorem, for almost every initial condition gq
(210,229, 6p). Thus our proof is complete.
o(n)~n (19
IV. AXIAL DISTRIBUTION OF PARTICLES for large timesn. This is due to nonuniform time-averaged

velocities of particles’ 81t is clear from Eq.(18) that Y is

In the previous section, we have analyzed residenc@eniered als=]*n, so it moves with the “velocity”j av-
times of particles in a class of unsteady duct flows. A”Othe%raged over timand the initial conditions. Now

guestion is natural in this context: what is the distribution of

particles along the axis when time is very large. As we noted  \wn(z .y =pPf(z,+ 2. O FNZ1n.Zon O)<Z

earlier, it was observed by Khakhet al® that such a distri- (Z3)=P{(Z10,220. 00) | F" (210,220, 00) <Zs}
bution can be multimodal for some steady chaotic flows in = p{(zm,zzo,90)||:ﬂ(210,220,go)sgyjuﬁ n}
pipes. Here we investigate this question in the context of

unsteady duct flows. F™(210,220,00)— j* N
We assume that all particles startzgt=0 at timet=0, =P (210,220, 00) <Y
and their initial distribution is defined by some density o
(S
P(Z10,Z20,60), Where =G"(Y). (20)

We shall call the above defined distributi@l' the renor-
pr(ZlovZZOa00)d210d220d00:1' malized distribution Just like any genuine distribution, it is
zero at negative infinity, as no particles are there at any finite
andA denotes some subset of the flow domain. The distributime, and 1 at positive infinity, as all particles are below

tion function that gives us the amount of particles that are, apositive infinity at any finite time. As opposed W", it has

stepn of the iteration, below or at som#&; is defined as interesting asymptotic properties whars very large. Con-
sider yet another distribution, that we will cal”, defined
W(Z3) = P({(210,220, 00) |F"(210, 220, 00) <Z3}), by

whereP denotes a probability measure defined as follows. If

we denote the set of initial conditions(z;g,Z59, oo i* (210,220, 60) — | *
00)|F"(Z10, 220, 00) <Zs} by A, thenP(A,) is just G™(Y)=P) (210,220, 60) N =Y.
(21
P(Aza):J P(Z10,Z20,65)dZ10dZ0d 65, It can be showl that the distributionG" approaches”
Az, whenn goes to infinity. So, let us discuss some properties of

i.e., the integral over all the initial conditions for which the G”. First, we have

axial position aftem steps is belowZ;. We need to some-

how rescale the variabl&; in this distribution, as in the case G*(Y)=P(Ay)= f P(Z10,220, 00)d210dZy0d 0y, (22)

of a large length of pipe; most of the particles will move Ay

toward infinity along the axis. The exception might be thosewhere A(Y) is the set of all initial conditions in the cross-
with zero average velocity. Let us consider the situation insection such that
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A V. CONCLUSIONS

P We have derived some rigorous results about the rela-
tionship of Poincarenaps and residence-time distributions in
flows exhibiting chaotic advection. It has been only recently,
both within industrial research laboratories and at universi-
ties, that the importance of a detailed study of residence-time
distributions in laminar mixers has been realized. Indeed, the
Lagrangian properties of flows in laminar mixers can be very
complicated. The appropriate statistical theory for these
flows is not probability theory, but ergodic theory of deter-
ministic maps and flows.

Velocity time-average plotéor, equivalently, residence-
time plotg reveal a lot about the statistical structure of the
particle motion in pipes and mixers. Our numerical results on
the partitioned-pipe mixer show that a color residence-time
plot can indicate the nonuniformity of mixing in a zone in
which the Poincarenap shows complete mixing. In relation
to this, the coexistence of nonmixed islands and solid bound-
FIG. 7. Chaotic zones in the cross-section contribute peaks to the probabié‘ne_s .|n the PIpe f!OW W_as ,ShO,\Nn to introduce m_UItImOda“ty
ity density of particles. of finite-time particle distributions along the axis. Another

source of multimodality is the coexistence of different cha-
otic zones in the cross-section. This theory can also provide

. - an explanation for the observed steep gradients in residence-

1" (210,220, 00) ) <v time distributions observed in experiments by Saxena and

Ja ' Nigam?# In their apparatus with helically coiled cells, steeper

. . gradients have been observed when more cells were present.
Now assume thaY; is such that the corresponding value of ; . .
) . ) i We have shown that this corresponds to the uniformization
1* (210,229, 00) = \/an+]* is uniform in a nonzero area

) y =% of time averages within a chaotic zone in the cross-section.
chaotic zone of the Poincammap (because the motion is

' o There are not many experimental studies of the matter
supposedly ergodic thereFurthermore, assume for simplic- |, qar analysis here, except for the one by Kusch and

ity that the initial distribution is uniform over the cross- Ottino™® who studied flows of the type we have considered
_sectlon. Thus_ as can be seen from E2p), G will have a In this paper we have used some of the basic facts of
jump of the size ergodic theory, such as the existence of velocity time-
averages along particle paths. We are convinced that the use
f dzy0d250d 6, of ergodic theory in this context is far beyond the results
Ay, obtained here.

aty;, whgreAYi is the chaF)tlc zgnet..Thl.Js we have. fou,nd_ACKNOWLEDGMENTS
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