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A method for visualization of invariant sets of dynamical systems based
on the ergodic partition
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We provide an algorithm for visualization of invariant sets of dynamical systems with a smooth
invariant measure. The algorithm is based on a constructive proof of the ergodic partition theorem
for automorphisms of compact metric spaces. The ergodic partition of a compact metricAspace
under the dynamics of a continuous automorphigjris shown to be the product of measurable
partitions of the space induced by the time averages of a set of functiods d@he numerical
algorithm consists of computing the time averages of a chosen set of functions and partitioning the
phase space into their level sets. The method is applied to the three-dimensional ABC map for which
the dynamics was visualized by other methods in Feingoldl. [J. Stat. Phys50, 529 (1988].
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map. A common method for the visualization of phase space
structure in four-dimensional dynamical systems involves

In this paper we address the question of the visualization
of phase space of measure-preserving dynamical systems.

For the purpose of visualizing the phase space of dimen-
sion bigger or equal to three, it would be useful to pro-

vide a method that color-codes invariant sets of the sys-
tem. Then, two-dimensional slices through the phase

the color-coding of invariant surfacéis particular, of stable
and unstable manifolds of certain phase-space objects
cording to the magnitude of the fourth coordingsee, e.g.,
Haller and Wiggins(1995]. The method of plotting exit

times can be applied for dynamical systems of arbitrary di-
mension, as the phase-space is color coded with a particular
color assigned depending on the time it takes to get out of
the prescribed, bounded set in the phase spsee Easton

et al, 1993. The shortcoming of exit times plots is that it is
not generally true that the points that are assigned the same
color (i.e., for which it takes an equal amount of time to exit
the bounded sgtre, in fact, in the same invariant set for the
dynamics.

space can be taken. A question arises: there are many
invariant sets in measure-preserving dynamical
systems—which are the ones that we want to identify?
We visualize the invariant sets on which the dynamical
system is ergodic. Our method is based on the notion of
ergodic partition. The computation involves choosing a
set of functions and calculating their time-averages along
the orbits. The invariant ergodic sets are then identified
as those on which the time-averages of these functions are

constant. Here we suggest a different approach that includes the
features of both of these methods and is based on some er-
godic theory concepts. We consider partitions of the phase
I. INTRODUCTION

spaceA, on which a dynamical systerh that preserves a

smooth measurg on A acts, into invariant sets induced by

_ Inthis paper we consider the issue of the visualization ok nctions that are constant on the orbits of the dynamical
invariant sets of dynamical systems possessing a smooth iysiem. To identify the invariants of motion, we consider a
variant measure. Probably the most widespread method fQlet of functionsf, , i e N such that their linear combinations

visualizing phase space structure is simply plotting the traz o gense inl. If T is a map, we define the associated set of

jectories associated with as many initial conditions, and fog,\tiongf* by

as long a time, as possible. Another approach is that of con- !

structingexit times plotgsee, e.g., Eastoet al. (1993)]. 1"t .
Both of these methods have certain shortcomings. The fi'= IimﬁjZO fieT,

method of plotting trajectories for visualization runs into dif- n—e

ficulties when the phase space has a dimension equal to gf thatf* is the time average df underT, T being thej-th
larger than three. There have been several strategies to OVelis ate of T. Now the setC —{xeA|f*(x)=0} are invari-

. e . . v i
come this difficulty. For example, Feingolet al. (1988  ant ynder the dynamics &F. Thus, color-coding the phase
have used the method of recording the location of the orbit INhace according to the value ofprovides a partition of the
thin slices of the three-dimensional phase space of the AB%hase space into invariant sets. However, there are many
invariant sets for a measure-preserving dynamical system
and the following question arises: which invariant sets is the

3E|ectronic mail: mezi@engineering.ucsb.edu

1054-1500/99/9(1)/213/6/$15.00 213 © 1999 American Institute of Physics

Downloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



214 Chaos, Vol. 9, No. 1, 1999 I. Mezic and S. Wiggins

method identifying? The invariant sets in our partition of theare somewhat preliminary and much of research is needed to

phase space are not just any invariant sets. Rather, they araprove the efficiency of computation and investigate its

invariant sets on which the dynamics is ergodic. In an erproperties in detail. Still, the computations that we present

godic invariant set all points are “accessible,” in the senseshow definite promise.

that the initial conditions in that set thoroughly sample the

set. Hence, one could view the ergodic partition as a partitionl. SET UP AND DEFINITIONS

as a partition of the phase space into accessible regions. This .
. . . Let A be a compact metric space,a complete measure

point of view is very important, and very natural, for many defi

applications. For example, in the dynamical systems apacned on the Borelo-algebra A, and T a measure-
bp ) ample, y al sy .ppreserving continuous automorphism An We denote the
proach to transport in fluid flows the collection of ergodic

components would provide a “road man” for the transport space of all integrable functions @nby L1(A), the set of all
P would provi P PO Leal continuous functions oA by C(A), and a dense count-

Sin(?e the differ_ent invariant setg fchat are identified are € ble subset 0€(A) by S. We introduce the notions of par-
godic, a statlstlca_l theor_y of mixing on each componenttition and measurable partition in the following definition.
WQUId then f(.)“OW immediately. In molecular dynamics one Definition 2.1 (partition, measurable partition): A family
is interested in the exchange of energy or angular momenturgnOf disjoint sets G (a an element of some, arbitrary, index-
in phase space between different modes of rotation and V|—ng set) whose union is all of A is called a1partition c;fWe
bration. In this setting the ergodic components show the re

call C, an element of. Unions of elements af are called

gions where such exchanges can, and cannot, take placeqqis” A partition is called measurable if there exists a
Moreover, molecular dynamics is an area of applicatio

here higher-di ional visualizati hni "countable familyA of measurable setfD;} such that every
where higher-dimensional visualization techniques are a Ny is 4 ynion of elements af and for every pair G,C, of

cessity. The method developed in this paper provides direcélements of{ there exists DeA such that GCD,
way of addressing important issues arising in both of thes%chg_ We callA a basis for the partitiory. I
areas of applicationgs well as othejs that are not imme- We will omit the index from the notation for the element

diately answered by other visualization methodologies. Ofy the partition, where that does not cause confusion. A par-
course, computational issues are very important. The nuMetliion {4 is said to be finer than a partitiafy if every com-

cal results that we present here show that even using a Smﬂbnent of¢, is a¢,-set. We now define productoperation
number of functiond; and short computational time, a good 1, the set of measurable partitionsAf
visual de_scription of the phase space is obtained._ Definition 2.2 (product): Let; and ¢, be two measur-
In this sense, the method retains good properties both ofy) o partitions. Denote the element 6f by C, and the
the method of plotting directly the trajectories of the systemgement off, by C,. Let ¢ be the family of all sets of the
as every set in the partition consists of the orbits of the sysgy,y, C=C,NC,. Then we call the measurable partitigra
tem, and of the exit time plot: because of color-coding, theproduct of¢, and ¢,, and write £=¢,00¢,. For a finite or
constructed partition can be sliced in various wayspar-  -guntable product, we may wrig=0"_,;, n finite ore
. . . . . . ’ 1= 1 .
ticular, by two-dimensional surface® provide information Now we turn to the construction of ergodic partitions.
about the invariant sets. The most “detaile@/ith respect

to the_ dynar_n_ic}sof _such partitio_rys into invariant sets is _the IIl. ERGODIC PARTITIONS CONSTRUCTIVELY

ergodic partitionwhich is a partition of the phase space into

sets on which the map is ergodic, and the ergodic measures We start with the following definitions.

on these sets are consistent with the smooth measure that the Definition 3.1 (stationary partition, ergodic partition): A
system preserves. We provide a numerical algorithm for caleasurable partitior is called stationary if every element
culating the ergodic partition based on the theorem that th&f £ is invariant under T The stationary partitior’is called
ergodic partition is equivalent to the product of invariantergodic if, for almost every (with respect tq) element C of
partitions induced by the time averages of a countable set ¢ there is an invariant measurgc on C such that the re-
functions f; that we prove in Sec. Ill. That this theorem striction of T to G denoted E is an ergodic automorphism
could be used in visualization was suggested in Mezi®n C, with respect to some probability measys on C,
(1994. Von Milczewski et al. (1996 have also plotted and, for every £L*(A),

average quantities to determine phase-space structure.

Dellnitz et al. (1997 have developed visualization methods f fd,u:J J flcduc
for dissipative systems based on a discretization of the AL7c
Frobenius—Perron operator. In Sec. IV we discuss the nuwhere . denotes the restriction of f to the ergodic compo-
merical algorithm and its application to the ABC m@ein- nent C

gold et al. (1988]. The ABC map is a map on a three- The notion of the ergodic partition of automorphisms of
dimensional torus that was studied to provide an example dfebesgue spaces has its origin in the works of von Neumann
the application of our algorithm to maps with a smooth in-(1932; Halmos(1941, 194% and Rokhlin(1949. Note that
variant measure in dimensions bigger than two, where plotthe term ergodic decompositions used usually when the
ting the orbits of a map on a screen often results in a scattatecomposedor partitioned object is a measure. In this work

of points that is not convenient for analysis. We chose theve are mainly concerned with the partition of the spéce
ABC map because we could compare our results with thénto disjoint ergodic componentsr ergodic fibers, as in
visualization of Feingolat al. (1988. The numerical results Denkeret al. (1976]. As this is more of a topological sub-

du, 1)
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ject matter, the terrpartition would be more appropriate. In
the above definition, integration with respect gois per-
formed so that to everye A we associat€(x), the element
of the ergodic partition to whick belongs. We shall call the
function f* the time average of a functiohunderT if
1 n—-1
f*(x)=lim—= >, f(T'(x)),
now N i=0
almost everywherda.e) with respect tou. Note that by
Birkhoff's pointwise ergodic theorent* exists for every
functionf e L1(A). Denote by the set of allk € A such that
f* exists for everyf e C(A), and by (f) the set of allx
e A such thatf* exists for a particulaf € C(A). The fol-
lowing lemma is standarfkee Mae (1987)].
Lemma 3.1:

E:nfESE(f )1

where S is some dense, countable subset(éf)C
Now we have a set such that the time averages of all
continuous functions o are well-defined or®. %€ is of

measure zero, as by the Birkhoff's Ergodic Theorem each

3.(f )¢ is of measure zero, and th&s is a countable union

of measure zero sets, which is again of measure zero. T
lemma shows that the time averages of measurable, bounded pc(Un=1C%)=0.

functions induce measurable partitions Bn
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fAfOTdMC:LC(fOT):LC(f ):fAf d,LLC (2)
For the above operation we needed continuityf ofAs con-
tinuous functions are dense irt, uc is invariant undef.

Now we show thajuc is a probabilistic measure db.
There is a sequence of compact $&fs subsets o€¢, such
that

ciccsc:--,
and
fc(COUp=1CH) =0. &)

Further, we can show that for eve@f,, uc(C:)=0. To do

this, note that, by Urysohn’s Lemma, for evety there is a
continuous, positive functiori, equal to one orC;, and

equal to zero outside d:, . Clearly, asC{’s are subsets
of C¢, f,=0 onC. Therefore,

pc(Ch)=< fAfn duc=Lc(fn)=0=puc(Cy)=0.

As the measure of a union of the countable number of sets of

ngasure zero is zero,

4

Lemma 3.2: Let f be a measurable, bounded function od herefore, by(3) and(4), uc(C°) =0, and we are done with

3. The family of sets C, @ e R such that G,=(f*) "(«) is
a measurable partition ok. We denote this partition by;
and call it the partition induced by.f

Proof: As F,=(1n)=""Jf(T'(x)) is a measurable
function onA, and lim,_., F,=f*, f* is a measurable func-
tion, too. The fact thaf; is a measurable partition follows by
taking A¢ to be the collection of preimages undér of open
intervals with rational endpoints iR. As f* is measurable,
each (*) ![a,b] is measurable. Sets of this type, where

the proof of the fact that.c is a probability measure oB.
We have shown that is a probability measure when
restricted toC. Let us show that it is an ergodic measure on
C. Observe that the set of all restrictions of functions in
C(A) to C, denotedC(A)|c forms a dense set in the set of
all integrable(with respect touc) functions onC. To show
this, note thatC(A) is dense inL(A). Let f be an element

of L¥(C). Consider its extension to all @, f, such thatf
=f onC andf=0 elsewhere. As

and b are rational, clearly separate sets of the form

(f*)"Yc}, ceR.
Now we can prove our main theorem.
Theorem 3.1:Let

fe= O ¢4,

feS

O

be a measurable partition oB. Then{, together with3,° is
the ergodic partition of A with respect to. T

Proof: Let C be an element of,. Define a linear func-
tional Lc on C(A) by

n-1

: ZO f(T'(x)), where xeC.

Le(f)=lim—=
C | n

— 0

L. is well-defined, as the right hand side is the same for an)g'
xeC. As Lc(1)=1, by Riesz's representation theorem,

there exists a measuje: on A, such that

Leth)= [ fanc.

Note thatuc is invariant undefT. To prove this, we have,
for every continuous,

| Fue=| tauc,
A C

exists, f L}LC(A). Therefore, there is a sequence of func-

tions in C(A), {f,} converging tof. But then the corre-
sponding sequence of restrictiod$f,)c} converges td.
Now, for everyf e C(A)|c, we have

f*(x)zf fduc. (5)

C

Recalling(Mane (1987, Chap. II, Proposition 2)2hat if (5)
holds for a dense subset bf(C), thenT¢ is ergodic, this
completes the proof that is an ergodic measure, for every

What is left is to observe that the equalitl) is proven
in Mane (1987, Chap. I, Theorem 6.4. So, we are done with
the proof of the theorem. O

As we already mentioned, our interest in the problem of
ergodic partitioning of the phase space stems from the fact
that the concept of an ergodic partition can be used as a
visualization tool. But, it is not always necessary to try to
construct numerically the ergodic partition, which would
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FIG. 1. Contour plots fog.

consist of computing the time averages of a countably infi-
nite number of functions. Invariant sets can be detected by
computing the time averages of just one function, and ap-
proximating the partitiort; .

IV. ALGORITHM AND NUMERICAL ASPECTS

Based on the construction of the ergodic partition de-
scribed above, we can approximate the ergodic partition nu-
merically.

The basic idea of the algorithm is as follows.

 Start with a regular grid of initial conditions over the
phase spacé; one could choose less initial points in
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FIG. 2. Contour plot for the time average of sin
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FIG. 3. Contour plot for the time average of §in

the chaotic region, as we know that the time averages
are constant on orbits. Thus, one initial condition can
provide a lot of data in the calculation. We did not
implement that possibility here.

« Find the finite time averages of tliinite) set of func-
tions,{ej}}"': 1, whose partitions are used, at each point
of the grid.

» Once these averages have been obtained, we must
graphically represent the partition. We examine two-
dimensional slices of thesgotentially multidimen-
sional data sets. We form a norm of the finite time
averages,
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FIG. 4. Contour plot for the time average of gin
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FIG. 5. The convergence of time
averages.
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A. The ABC map
g=\ 2 (ef""? - -
“ ' The ABC map was introduced by Feingold, Kadanoff

and Piro(1988 in order to investigate the dynamical prop-

erties of three-dimensional, volume-preserving maps. It is
It is well-known that there is no uniformity in the con- given by

vergence of the time-averagf8etersen1983]. Questions

regarding the number of iterations needed to numerically ob- x’=x+Asinz+ C cosy,

tain ergodicity on a componeighot relating to the function

which is being averagedire discussed by Meigd994. In y’'=y+Bsinx’'+Acosz, (6)

his study, he looks at the behavior of one orbit in a positive

area ergodic component of the Standard Map and finds that 2’ =z+Csiny’+B cosx'.

only after times as long as 1Diterations does the orbit

closely exhibit ergodic behavior. Given the number of initial W& have performed calculations of finite time averages
conditions that we use, that is much too long a time to em&/0Ng trajectories for functions s siny and sire starting

ploy in the method described here. On the other hand, th]c om 1.0000 |n|_t|al conditions,2) in the planex=0.01 on
: - . the uniform grid, for parameter valugs=1.5, B=0.08,C
success of the method in outlining the rough features of in-

. . i o ) =0.16. The computation starting from a particular initial
variant ergodic regions within 1000 iterates for most of thecondition was stopped when the relative difference between

points '_n our gxample descr|b§q be.ldwee fche f|gure.s N the value of the average at the previous time step and the
comparison with the results existing in the literature; in par-. ,irent time average was less thar $0The functiong was
ticular, Fig. 5 has a legend that indicates the number of iterdefined, as above, to be

ates until the calculation has convergeddicates that al-

though the convergence might not be very good, different  g(y z)= \[sin*"(x)]2+[sin* T (y) ]2+ [sin* T"(2) ]2
components will exhibit sufficiently different finite time

averages. In the above definition,

and form a density plot of this function.
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_ N(y.2)—1 preserving ABC map introduced by Feingokt al. and
sin* fin(x)= = E sin(x;), shown that our method of visualization produces good con-
n i=o

trast in reasonable iteration time.

and N(y,z) is the number of iterates it takes for the finite ~ There are many issues that we only touched upon here,
time average of sir to converge starting from the point like the effect of dimensionality and the variation of func-
(y,2) in thex=0.01 plane. Similar expressions are used fortions on the convergence of the time averages, the choice of
sin*fN(y) and sirf ™(2). In Fig. 1 we show the density plot of functions, the numerical implementation of the product op-
the functiong in the planex=0.01. This figure should be eration, etc. These deserve further investigation and need to
compared with an equivalent, Fig. 2 in Feinga@tlal. Fig-  be clarified if the method is to become useful.
ures 2, 3,_ and 4 show the der_15|ty plo_ts of the time averageg - N OWLEDGMENTS
of sinx, siny and sirz, respectively. It is seen that different
functions contribute different features to the density plot of ~We would like to thank Jean-Christophe Nave of the
g. Figure 5 shows the time to convergencegofo within University of California, Santa Barbara for coding the pro-
1076, Less than 1diterates is sufficient for most of the gram to compute the partition and producing the figures.
initial conditions to converge. The computation took aThis research was partially supported by ONR Grant No.
couple of minutes of computing time on a workstation. ~ N00014-98-1-0056, AFOSR Grant No. F49620-98-1-0146,
and National Science Foundation Grant No. DMS-9803555
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