
CHAOS VOLUME 9, NUMBER 1 MARCH 1999

Do
A method for visualization of invariant sets of dynamical systems based
on the ergodic partition
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We provide an algorithm for visualization of invariant sets of dynamical systems with a smooth
invariant measure. The algorithm is based on a constructive proof of the ergodic partition theorem
for automorphisms of compact metric spaces. The ergodic partition of a compact metric spaceA,
under the dynamics of a continuous automorphismT, is shown to be the product of measurable
partitions of the space induced by the time averages of a set of functions onA. The numerical
algorithm consists of computing the time averages of a chosen set of functions and partitioning the
phase space into their level sets. The method is applied to the three-dimensional ABC map for which
the dynamics was visualized by other methods in Feingoldet al. @J. Stat. Phys.50, 529 ~1988!#.
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In this paper we address the question of the visualization
of phase space of measure-preserving dynamical system
For the purpose of visualizing the phase space of dimen
sion bigger or equal to three, it would be useful to pro-
vide a method that color-codes invariant sets of the sys
tem. Then, two-dimensional slices through the phase
space can be taken. A question arises: there are man
invariant sets in measure-preserving dynamical
systems—which are the ones that we want to identify?
We visualize the invariant sets on which the dynamical
system is ergodic. Our method is based on the notion o
ergodic partition. The computation involves choosing a
set of functions and calculating their time-averages along
the orbits. The invariant ergodic sets are then identified
as those on which the time-averages of these functions ar
constant.

I. INTRODUCTION

In this paper we consider the issue of the visualization
invariant sets of dynamical systems possessing a smoot
variant measure. Probably the most widespread method
visualizing phase space structure is simply plotting the
jectories associated with as many initial conditions, and
as long a time, as possible. Another approach is that of c
structingexit times plots@see, e.g., Eastonet al. ~1993!#.

Both of these methods have certain shortcomings.
method of plotting trajectories for visualization runs into d
ficulties when the phase space has a dimension equal
larger than three. There have been several strategies to
come this difficulty. For example, Feingoldet al. ~1988!
have used the method of recording the location of the orb
thin slices of the three-dimensional phase space of the A
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map. A common method for the visualization of phase sp
structure in four-dimensional dynamical systems involv
the color-coding of invariant surfaces~in particular, of stable
and unstable manifolds of certain phase-space objects! ac-
cording to the magnitude of the fourth coordinate@see, e.g.,
Haller and Wiggins~1995!#. The method of plotting exit
times can be applied for dynamical systems of arbitrary
mension, as the phase-space is color coded with a partic
color assigned depending on the time it takes to get ou
the prescribed, bounded set in the phase space~see Easton
et al., 1993!. The shortcoming of exit times plots is that it
not generally true that the points that are assigned the s
color ~i.e., for which it takes an equal amount of time to ex
the bounded set! are, in fact, in the same invariant set for th
dynamics.

Here we suggest a different approach that includes
features of both of these methods and is based on som
godic theory concepts. We consider partitions of the ph
spaceA, on which a dynamical systemT that preserves a
smooth measurem on A acts, into invariant sets induced b
functions that are constant on the orbits of the dynam
system. To identify the invariants of motion, we conside
set of functionsf i , i PN such that their linear combination
are dense inL1. If T is a map, we define the associated set
functions f i* by

f i* 5 lim
n→`

1

n (
j 50

n21

f i+Tj ,

so thatf i* is the time average off underT, Tj being thej -th
iterate ofT. Now the setsCv5$xPAu f i* (x)5v% are invari-
ant under the dynamics ofT. Thus, color-coding the phas
space according to the value ofv provides a partition of the
phase space into invariant sets. However, there are m
invariant sets for a measure-preserving dynamical sys
and the following question arises: which invariant sets is
© 1999 American Institute of Physics
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method identifying? The invariant sets in our partition of t
phase space are not just any invariant sets. Rather, the
invariant sets on which the dynamics is ergodic. In an
godic invariant set all points are ‘‘accessible,’’ in the sen
that the initial conditions in that set thoroughly sample t
set. Hence, one could view the ergodic partition as a parti
as a partition of the phase space into accessible regions.
point of view is very important, and very natural, for man
applications. For example, in the dynamical systems
proach to transport in fluid flows the collection of ergod
components would provide a ‘‘road map’’ for the transpo
Since the different invariant sets that are identified are
godic, a statistical theory of mixing on each compone
would then follow immediately. In molecular dynamics on
is interested in the exchange of energy or angular momen
in phase space between different modes of rotation and
bration. In this setting the ergodic components show the
gions where such exchanges can, and cannot, take p
Moreover, molecular dynamics is an area of applicat
where higher-dimensional visualization techniques are a
cessity. The method developed in this paper provides di
way of addressing important issues arising in both of th
areas of applications~as well as others!, that are not imme-
diately answered by other visualization methodologies.
course, computational issues are very important. The num
cal results that we present here show that even using a s
number of functionsf i and short computational time, a goo
visual description of the phase space is obtained.

In this sense, the method retains good properties bot
the method of plotting directly the trajectories of the syste
as every set in the partition consists of the orbits of the s
tem, and of the exit time plot: because of color-coding,
constructed partition can be sliced in various ways~in par-
ticular, by two-dimensional surfaces! to provide information
about the invariant sets. The most ‘‘detailed’’~with respect
to the dynamics! of such partitions into invariant sets is th
ergodic partitionwhich is a partition of the phase space in
sets on which the map is ergodic, and the ergodic meas
on these sets are consistent with the smooth measure tha
system preserves. We provide a numerical algorithm for
culating the ergodic partition based on the theorem that
ergodic partition is equivalent to the product of invaria
partitions induced by the time averages of a countable se
functions f i that we prove in Sec. III. That this theore
could be used in visualization was suggested in Me´
~1994!. Von Milczewski et al. ~1996! have also plotted
average quantities to determine phase-space struc
Dellnitz et al. ~1997! have developed visualization metho
for dissipative systems based on a discretization of
Frobenius–Perron operator. In Sec. IV we discuss the
merical algorithm and its application to the ABC map@Fein-
gold et al. ~1988!#. The ABC map is a map on a three
dimensional torus that was studied to provide an exampl
the application of our algorithm to maps with a smooth
variant measure in dimensions bigger than two, where p
ting the orbits of a map on a screen often results in a sca
of points that is not convenient for analysis. We chose
ABC map because we could compare our results with
visualization of Feingoldet al. ~1988!. The numerical results
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are somewhat preliminary and much of research is neede
improve the efficiency of computation and investigate
properties in detail. Still, the computations that we pres
show definite promise.

II. SET UP AND DEFINITIONS

Let A be a compact metric space,m a complete measure
defined on the Borels-algebra A, and T a measure-
preserving continuous automorphism onA. We denote the
space of all integrable functions onA by L1(A), the set of all
real continuous functions onA by C(A), and a dense count
able subset ofC(A) by S. We introduce the notions of par
tition and measurable partition in the following definition.

Definition 2.1 (partition, measurable partition): A famil
z of disjoint sets Ca (a an element of some, arbitrary, index
ing set) whose union is all of A is called a partition of A. We
call Ca an element ofz. Unions of elements ofz are called
z-sets. A partition is called measurable if there exists
countable familyD of measurable sets$Di% such that every
Di is a union of elements ofz, and for every pair C1 ,C2 of
elements ofz there exists DjPD such that C1,D j ,
C2,D j

c . We callD a basis for the partitionz.
We will omit the index from the notation for the eleme

of the partition, where that does not cause confusion. A p
tition z1 is said to be finer than a partitionz2 if every com-
ponent ofz2 is a z1-set. We now define aproductoperation
on the set of measurable partitions ofA.

Definition 2.2 (product): Letz1 and z2 be two measur-
able partitions. Denote the element ofz1 by C1 and the
element ofz2 by C2 . Let z be the family of all sets of the
form C5C1ùC2 . Then we call the measurable partitionz a
product ofz1 and z2 , and write z5z1∨z2 . For a finite or
countable product, we may writez5∨ i 51

n z i , n finite or `.
Now we turn to the construction of ergodic partitions.

III. ERGODIC PARTITIONS CONSTRUCTIVELY

We start with the following definitions.
Definition 3.1 (stationary partition, ergodic partition): A

measurable partitionz is called stationary if every elemen
of z is invariant under T. The stationary partitionz is called
ergodic if, for almost every (with respect tom) element C of
z, there is an invariant measuremC on C such that the re-
striction of T to C, denoted TC is an ergodic automorphism
on C, with respect to some probability measuremC on C,
and, for every fPL1(A),

E
A

f dm5E
A
F E

C
f uCdmCGdm, ~1!

where fuC denotes the restriction of f to the ergodic comp
nent C.

The notion of the ergodic partition of automorphisms
Lebesgue spaces has its origin in the works of von Neum
~1932!; Halmos~1941, 1949!; and Rokhlin~1949!. Note that
the term ergodic decompositionis used usually when the
decomposed~or partitioned! object is a measure. In this wor
we are mainly concerned with the partition of the spaceA
into disjoint ergodic components@or ergodic fibers, as in
Denkeret al. ~1976!#. As this is more of a topological sub
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ject matter, the termpartition would be more appropriate. In
the above definition, integration with respect tom is per-
formed so that to everyxPA we associateC(x), the element
of the ergodic partition to whichx belongs. We shall call the
function f * the time average of a functionf underT if

f * ~x!5 lim
n→`

1

n (
i 50

n21

f ~Ti~x!!,

almost everywhere~a.e.! with respect tom. Note that by
Birkhoff’s pointwise ergodic theorem,f * exists for every
function f PL1(A). Denote byS the set of allxPA such that
f * exists for everyf PC(A), and byS( f ) the set of allx
PA such thatf * exists for a particularf PC(A). The fol-
lowing lemma is standard@see Man˜é ~1987!#.

Lemma 3.1:

S5ù f PSS~ f !,

where S is some dense, countable subset of C(A).
Now we have a setS such that the time averages of a

continuous functions onA are well-defined onS. Sc is of
measure zero, as by the Birkhoff’s Ergodic Theorem e
S( f )c is of measure zero, and thusSc is a countable union
of measure zero sets, which is again of measure zero.
lemma shows that the time averages of measurable, bou
functions induce measurable partitions onS.

Lemma 3.2: Let f be a measurable, bounded function
S. The family of sets Ca , aPR such that Ca5( f * )21(a) is
a measurable partition ofS. We denote this partition byz f

and call it the partition induced by f.
Proof: As Fn5(1/n)( i 50

n21f (Ti(x)) is a measurable
function onA, and limn→` Fn5 f * , f * is a measurable func
tion, too. The fact thatz f is a measurable partition follows b
takingD f to be the collection of preimages underf * of open
intervals with rational endpoints inR. As f * is measurable,
each (f * )21@a,b# is measurable. Sets of this type, wherea
and b are rational, clearly separate sets of the fo
( f * )21$c%, cPR. h

Now we can prove our main theorem.
Theorem 3.1:Let

ze5 ∨
f PS

z f ,

be a measurable partition onS. Thenze together withSc is
the ergodic partition of A with respect to T.

Proof: Let C be an element ofze . Define a linear func-
tional LC on C(A) by

LC~ f !5 lim
n→`

1

n (
i 50

n21

f ~Ti~x!!, where xPC.

LC is well-defined, as the right hand side is the same for
xPC. As LC(1)51, by Riesz’s representation theorem
there exists a measuremC on A, such that

LC~ f !5E
A

f dmC .

Note thatmC is invariant underT. To prove this, we have
for every continuousf ,
wnloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP 
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A

f +TdmC5LC~ f +T!5LC~ f !5E
A

f dmC . ~2!

For the above operation we needed continuity ofT. As con-
tinuous functions are dense inL1, mC is invariant underT.

Now we show thatmC is a probabilistic measure onC.
There is a sequence of compact setsCn

c , subsets ofCc, such
that

C1
c,C2

c,¯ ,

and

mC~Cc\øn>1Cn
c!50. ~3!

Further, we can show that for everyCn
c , mC(Cn

c)50. To do
this, note that, by Urysohn’s Lemma, for everyCn

c there is a
continuous, positive functionf n equal to one onCn

c , and
equal to zero outside ofCn11

c . Clearly, asCi
c’s are subsets

of Cc, f n50 on C. Therefore,

mC~Cn
c!<E

A
f n dmC5LC~ f n!50⇒mC~Cn

c!50.

As the measure of a union of the countable number of set
measure zero is zero,

mC~øn>1Cn
c!50. ~4!

Therefore, by~3! and~4!, mC(Cc)50, and we are done with
the proof of the fact thatmC is a probability measure onC.

We have shown thatmC is a probability measure whe
restricted toC. Let us show that it is an ergodic measure
C. Observe that the set of all restrictions of functions
C(A) to C, denotedC(A)uC forms a dense set in the set o
all integrable~with respect tomC! functions onC. To show
this, note thatC(A) is dense inL1(A). Let f be an element
of L1(C). Consider its extension to all ofA, f̄ , such thatf̄
5 f on C and f̄ 50 elsewhere. As

E
A

f̄ dmC5E
C

f dmC ,

exists, f̄ PLmC

1 (A). Therefore, there is a sequence of fun

tions in C(A), $ f n% converging to f̄ . But then the corre-
sponding sequence of restrictions,$( f n)C% converges tof .

Now, for every f PC(A)uC , we have

f * ~x!5E
C

f dmC . ~5!

Recalling~Mañé ~1987!, Chap. II, Proposition 2.2! that if ~5!
holds for a dense subset ofL1(C), thenTC is ergodic, this
completes the proof thatmC is an ergodic measure, for ever
C.

What is left is to observe that the equality~1! is proven
in Mañé ~1987!, Chap. II, Theorem 6.4. So, we are done w
the proof of the theorem. h

As we already mentioned, our interest in the problem
ergodic partitioning of the phase space stems from the
that the concept of an ergodic partition can be used a
visualization tool. But, it is not always necessary to try
construct numerically the ergodic partition, which wou
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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consist of computing the time averages of a countably i
nite number of functions. Invariant sets can be detected
computing the time averages of just one function, and
proximating the partitionz f .

IV. ALGORITHM AND NUMERICAL ASPECTS

Based on the construction of the ergodic partition d
scribed above, we can approximate the ergodic partition
merically.

The basic idea of the algorithm is as follows.

• Start with a regular grid of initial conditions over th
phase space,A; one could choose less initial points

FIG. 1. Contour plots forg.

FIG. 2. Contour plot for the time average of sinx.
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the chaotic region, as we know that the time avera
are constant on orbits. Thus, one initial condition c
provide a lot of data in the calculation. We did n
implement that possibility here.

• Find the finite time averages of the~finite! set of func-
tions,$ej% j 51

M , whose partitions are used, at each po
of the grid.

• Once these averages have been obtained, we m
graphically represent the partition. We examine tw
dimensional slices of these~potentially! multidimen-
sional data sets. We form a norm of the finite tim
averages,

FIG. 3. Contour plot for the time average of siny.

FIG. 4. Contour plot for the time average of sinz.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Do
FIG. 5. The convergence of time
averages.
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and form a density plot of this function.

It is well-known that there is no uniformity in the con
vergence of the time-averages@Petersen~1983!#. Questions
regarding the number of iterations needed to numerically
tain ergodicity on a component~not relating to the function
which is being averaged! are discussed by Meiss~1994!. In
his study, he looks at the behavior of one orbit in a posit
area ergodic component of the Standard Map and finds
only after times as long as 1010 iterations does the orbi
closely exhibit ergodic behavior. Given the number of init
conditions that we use, that is much too long a time to e
ploy in the method described here. On the other hand,
success of the method in outlining the rough features of
variant ergodic regions within 1000 iterates for most of t
points in our example described below~see the figures in
comparison with the results existing in the literature; in p
ticular, Fig. 5 has a legend that indicates the number of i
ates until the calculation has converged! indicates that al-
though the convergence might not be very good, differ
components will exhibit sufficiently different finite tim
averages.
wnloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP 
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A. The ABC map

The ABC map was introduced by Feingold, Kadano
and Piro~1988! in order to investigate the dynamical prop
erties of three-dimensional, volume-preserving maps. I
given by

x85x1A sinz1C cosy,

y85y1B sinx81A cosz, ~6!

z85z1C siny81B cosx8.

We have performed calculations of finite time averag
along trajectories for functions sinx, siny and sinz starting
from 10000 initial conditions (y,z) in the planex50.01 on
the uniform grid, for parameter valuesA51.5, B50.08, C
50.16. The computation starting from a particular initi
condition was stopped when the relative difference betw
the value of the average at the previous time step and
current time average was less than 1026. The functiong was
defined, as above, to be

g~y,z!5A@sin* f in~x!#21@sin* f in~y!#21@sin* f in~z!#2.

In the above definition,
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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sin* f in~x!5
1

n (
i 50

N~y,z!21

sin~xi !,

and N(y,z) is the number of iterates it takes for the fini
time average of sinx to converge starting from the poin
(y,z) in the x50.01 plane. Similar expressions are used
sin* fin(y) and sin* fin(z). In Fig. 1 we show the density plot o
the functiong in the planex50.01. This figure should be
compared with an equivalent, Fig. 2 in Feingoldet al. Fig-
ures 2, 3, and 4 show the density plots of the time avera
of sinx, siny and sinz, respectively. It is seen that differen
functions contribute different features to the density plot
g. Figure 5 shows the time to convergence ofg to within
1026. Less than 103 iterates is sufficient for most of th
initial conditions to converge. The computation took
couple of minutes of computing time on a workstation.

V. CONCLUSIONS

In this paper we have suggested a method for the v
alization of dynamical systems that preserve a smooth inv
ant measure which should be useful for the detection of
godic invariant sets—especially for systems with hi
dimensionality. Previously used methods for visualizat
were the following:

• Plotting of orbits, which can be used effectively on
in two-dimensional systems—already in three dime
sions we are forced to project to two-dimension
planes of the computer screen and paper.

• Exit time plots. There is no guarantee that the reg
of the constant exit time is an invariant region.

Our algorithm consists of making a density or conto
plot of the time averages of functions in a two-dimensio
slice of the phase space. The algorithm is backed up by
orous results that we proved in the first part of the paper.
have shown that ergodic partition can be constructed ou
sets on which the time-averages of a dense, countable s
functions in the space of all continuous functions are c
stant.

In the numerical implementation of the algorithm we c
take only finite-time averages. The questions of converge
thus come into question. In all the cases we conside
coarse properties of invariant sets are detected in a rea
able number of iterations. In some sense, our algorithm
be considered as a finite-time measurement of the syste
which we are interested in the average properties. We h
tested the method on the three-dimensional, volum
wnloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP 
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preserving ABC map introduced by Feingoldet al. and
shown that our method of visualization produces good c
trast in reasonable iteration time.

There are many issues that we only touched upon h
like the effect of dimensionality and the variation of fun
tions on the convergence of the time averages, the choic
functions, the numerical implementation of the product o
eration, etc. These deserve further investigation and nee
be clarified if the method is to become useful.
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