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We analyze a recently proposed experimental technique for constructing Poinapsein flows
exhibiting chaotic advection and develop the theoretical framework that explains the reasons for the
success of this approach. The technique is nonintrusive and, thus, simple to implement. Planar
laser-induced fluorescence is employed to collect a sufficiently long sequence of instantaneous light
intensity fields on the plane of section of the Poincasp(defined by the laser sh@eThe invariant

sets of the flow are visualized by time-averaging the instantaneous images and plotting iso-contours
of the so resulting mean light intensity field. By linking the Eulerian time averages of light intensity

at fixed points in space with the Lagrangian time averages along particle paths passing through these
points, we show that ergodic theory concepts can be used to show that this procedure will indeed
visualize invariant sets of the Poincanap. As the technique is based on time-averaging, we discuss
the rates of convergence and show that inside regular islands the convergence is fast. An example
is presented from the application of this technique to visualize the intricate web of regular islands
within a steady, three-dimensional vortex breakdown bubble.20©2 American Institute of
Physics. [DOI: 10.1063/1.1480266

I. INTRODUCTION Poincaremaps for a chaotically advected three-dimensional
flow was reported only recently by Fountahal®3 Foun-
The complex Lagrangian properties of flows that aretain et al. employed a series of injection needles to deliver
simple from the Eulerian point of view—a phenomenonsmall blobs of dye at various locations within the chaotically
dubbedchaotic advectiomy Aref'—have been the subject of advected region of the flow they studied, thus specifying a
intense research in the last 20 years. Even though the veget of initial “particle” locations. The intersections of the
first example of chaotic advection was in a three-dimensionalesulting streaks of dye with a laser sheet constitute, by defi-
flow,>® most studies in the 1980s focused on two-nition, the orbit of the Poincammap of the flow?® Fountain
dimensional, time-periodic flows. Only in the last fifteen et al®**applied this technique to a creeping flow in an open
years systematic investigations of three-dimensional flowsylindrical container driven by a rotating tilted disk and were
have began to appear in the literat@ré” Furthermore, most  able to construct experimental Poincareps that were in
previous work, both in two- and three-dimensional flows, hasexcellent agreement with numerical computations. In spite of
been theoretical, and, thus, considerably less progress haseir success, however, this technique is not easy to imple-
been made in the experimental front—see Founéial®  ment and, thus, it might not be suitable for complex three-
for a review and an interesting recent article by Rothsteirdimensional flows—see the related discussion in Fountain
etal et al® Therefore, further progress in laboratory studies of
The scarcity of experimental work may be partly attrib- chaotic advection is hindered by the lack of a simple, nonin-
uted to the level of abstraction used in theoretical studies t@usive experimental technique for visualizing invariant sets
predict the phenomena that occur in chaotically advecte@f Poincaremaps in two- and three-dimensional flows.
flows. Consider for example the concept of the Poincare  Sotiropouloset al® recently proposed a simple experi-
map—a powerful dynamical systems tool that can providemental technique for visualizing invariant sets in steady,
important qualitative information about the Lagrangian dy-three-dimensional flows. Their method relies on the standard
namics of the flow. Poincarmaps can be used to identify |aser-induced fluorescendelF) technique and consists of
well-mixed regions in the flow, reveal the existence of un-the following steps{1) introduce, within the chaotically ad-
mixed regular islands, and even provide some informatiorvected region of the flow, a nonuniform concentration of
concerning the topology of such islands by revealing theifluorescent dye at the initial tim&2) illuminate the surface
period. The first successful attempt to construct experimentalf section of the Poincammap (a surface that is not tangen-
tial to the flow and to which fluid particles starting on the

present address: Department of Mechanical and Environmental Engineetrface return thith a laser sheet3) using digitaliphotog—
ing, University of California, Santa Barbara, CA 93106. raphy, collect a sufficiently long sequence of LIF imagés;
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time average the instantaneous light intensity fields at the
surface of section; an) plot the level sets of the resulting
mean light intensity field. Sotiropoulast al® have applied
this method to construct experimental Poincamaps for
flows within steady vortex breakdown bubbles in a three-
dimensional, confined, swirling flow(see Sotiropoulos

et al1° for a numerical treatment of chaotic advection in this
flow). Extensive comparisons with numerically constructed
Poincaremaps have shown that the iso-contours of the time-
averaged light intensity field visualize the invariant sets of
the flow with remarkable accurady.lt is important to em-
phasize, however, that unlike the technique proposed by
Fountainet al,® whose relation to the Poincareap of the
flow is direct and readily apparent, the link between the tech-

nique of Sotiropoulo®t all® and the theoretical concept of Rotating Lid s ‘

Vortex breakdown bubble I

the Poincarenap is far from obvious. In fact, at first glance,
there appears to be a fundamental conceptual difference be-
tween the definition of the Poincaneap, which relies on the
Lagrangian description of the flow, and the technique of
Sotiropouloset al'® in which the invariant sets are visual-

ized by plotting iso-contours of Eulerian time averages of; THEORETICAL BACKGROUND FOR THE
light intensity—i.e., averages constructed at fixed points iInrEXPERIMENTAL METHOD

space(the pixels of the digital LIF images Sotiropoulos _ _ )
In this section we develop the theoretical background

et al® proposed this technique based on physical intuition ) ; )
and the good agreement they obtained between the expe}gat establishes t?ée link between the experimental method of
| and the Poincarenap of the flow. We

. e otiropouloset al
mental and numerical Poincaneaps. L : : : i
. . begin with a general discussion of the concept of invariant

In this work, we analyze the experimental method of

. 5. . . .~ sets and present some ideas from ergodic theory that have
Shotlrop(zjglose; aI.M u:slgg'\jrgq,dlc tr;e(\),rvy tO.OISSl;nT\rAO(ljﬁ ced in been used in the past to numerically visualize invariant sets
the Sltg 1es by Eleg ezic and Wiggins, a.otra' using Lagrangian time averages. Subsequently we develop
et al,”® and Pojeet al.,”” and explain its exact relationship

) L o T the link between Lagrangian time averages and Eulerian time
with a Poincarenap of the flow. By linking the Eulerian timé - 5/erages and show how the same ergodic theory concepts
averages of light intensity at fixed points in space with theca pe ysed to develop the theoretical justification for the

Lagrangian time averages along particle paths, we forma”Yechnique of Sotiropoulo®t al’® Finally, we extend the

show that the level sets of the time-averaged light intensitynethod to time-periodic two- and three-dimensional flows.
field are indeed the invariant sets of the Poincaap of the

flow. We also extend the method to two- and three-a. The concept of invariant sets
dimensional time-periodic flows and, thus, develop the theo-

retical framework for the first, nonintrusive experimental . . . .
. . L dynamical systems is that of invariant sets. Assume that the
method for constructing Poincarmaaps. It is important to . . ; : : )
motion of particles in a steady, three-dimensional, incom-

note Fhat the .|dea of using passive scalar f|e|ds. to measurperessible flow contained in a closed domélns given by
velocity of an incompressible flow first appeared in the work™
of Pearlstein and Carpenté€rTo the best of our knowledge, X=vy(X,Y,2),
however, this is the first time that an Eulerian passive scalar Y=0.(%.y.2) )
measurement is proposed as the means to visualize Poincare i
maps. Z=0,(X,Y,2).

The paper is organized as follows: in Sec. Il we disCUSS\;, invariant set for(1) is a subsetA of () that has the
the, concept of invariant sets of a flow and relate it to POin'foIIowing property:
care maps. We also show that the above-describ{ed experi- A fiuid particle that is at a poin€x,,Yo,Zo) in A initially
mental procedure reveals invariant sets of the Poinm@p (a5t t=0) is in A for all positive and negative times
of three-dimensional steady or time-periodic flows. We  |n other words, the trajectory of a fluid particle that
present a study of the convergence of the time averages {fasses through anyx{,yo,zo) in A [or equivalently, the
the “regular” islands and show that it is fast. In Sec. Ill we streamline—which is equal to the pathline in a steady flow—
present some experimental and computational evidence fgsassing throughx,y,,2)] is entirely contained i.
usefulness of the method for three-dimensional, steady vor- Some examples of invariant sets include toroidal sur-
tex breakdown flow together with the experimental converfaces on which particles moving in a vortex ring-type flow
gence results. We discuss the properties and limitations aire confined. If a flow has an integral of motion such as a
the method and conclude in Sec. IV. stream function in three dimensio®r a discussion of its

FIG. 1. A schematic of a confined rotating flow.

One of the most important concepts in the theory of
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existence see Haller and MéZig every level surface of the almost every initial condition(in the sense of measure
stream function is an invariant set. In fact, in that case theéheory) and thus its validity is not restricted only to chaotic
three-dimensional flow domain is said to fediated by two-  subdomains or regular subdomains. The level sets of the
dimensional level-sets of stream surfaces. If the flow exhibitsunction ;' are in fact invariant sets for the systéf). This
chaotic advection, this type of structure of invariant setss a simply proven fact from ergodic theorisee, e.g.,
might not exist. Indeed, the fluid particles could possiblyPeterseff). Thus, invariant sets can be visualized by:
explore the whole three-dimensional domaigodically—in
which case the only invariant set of positive volume is the
whole domain() (neglecting sets of zero volume-or most

(1) defining a set of initial conditionXg,
(2) computing the Lagrangian time averages of a chosen

steady and time-periodic three-dimensional flows, the situa- functionf over the .ﬂl{id particle trajector.ie(streamlines
tion is somewhere in between. Namely, two-dimensional to-3 ina s_teac:%/ roWonglna:lng f)r(omtth;(a pow(;té(lo ’tt' h
roidal or cylindrical invariant surfaces and chaotic regions( ) _mapplntg © S? t(;]ompu ?‘g( o) <|) (}_alr(lj pOthlngd ©
that are three-dimensional invariant sets of nonzero volume |(s)o-con ours ot the resulling scaiar field on the domain
may be found. '

We will now show that a simple experimental method can
utilize these ergodic theory concepts to visualize the struc-
ture of invariant sets in steady and time-periodic flows.

B. Visualization of invariant sets using ergodic theory
concepts

Mezic'® and Mezicand Wiggins’ have proposed an ap-
proach for visualizing invariant sets in numerical studies usC. Ergodic theory and the experimental method of
ing the time averag€/" of a functionf (some property of the ~Sotiropoulos et al. (Ref. 15)
flow field) over a path lindi.e., the Lagrangian time average

of f): The above-mentioned procedure for visualizing invariant

sets has been developed for and successfully applied in nu-
1 [t merical studie$®~® However, the usefulness of this ap-
fE(Xo)=lim— fof(X(t,Xo)) dt, (20 proach in the laboratory is not readily apparent as Lagrang-
o ian quantities cannot be easily measured experimentally.
where Xo=(Xg,Y0,29) is the initial condition andX Instead in the laboratory we can most commonly only con-
=(x(t,Xp),y(t,Xq),z(t,Xp)) is the solution of(1) passing struct Eulerian averages by recording and time averaging a
throughX, att=0. In the experimental work, we will choose sufficiently long time series dfat a point. In this section we
f to be the initial distribution of dye intensitg,, and show clarify the link between the Lagrangian and Eulerian time
that the Lagrangian time average @f can be easily mea- averages off and show how the above-described ergodic
sured using LIF. theory ideas can be used to formally explain the reasons for
The average in Eq2) exists by the fact that the flow is the success of the experimental method of Sotiropoulos
incompressible and) is bounded using Birkhoff's ergodic et all®
theorem. Note that Birkhoff’s ergodic theorem is valid for Consider a steady flow in the rotating cylinder as shown
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FIG. 3. (Color) Experimental (Ref.
15) and calculatedRef. 10 Poincare
maps for a steady vortex breakdown
bubble (H/R=1.75, Re=1850. The
experimental map was constructed by
plotting the level sets of the time-
averaged light-intensity field. For the
calculated map, same-color markers
were released along short straight seg-
ments, selectively placed within vari-
ous regions in the interior of the
Period-2 bubble to elucidate the richness of the
dynamics. Note the level of agreement
between the two images in terms of
both the period and relative location of
the various invariant sets.

in Fig. 1. Fix a diametral plan& that contains the cylinder of the time-averaged light intensity field, let fluorescent dye
axis. For a rotating flow, a PoincaneapP can be defined as be distributed in) at timet=0 with a nonuniform concen-
the map that sendX, to the first intersection of the trajec- tration co(X,y,z)—in LIF experiments the concentration of
tory passing througlX, with 3. Invariant sets for Poincare fluorescent dye is linearly proportional to the intensity of
maps are the intersections of invariant sets for the flbv  emitted light, which can be readily quantified using digital
with the planeX. To clarify the relationship between the photography. Assume the concentration of dye is advected
so-constructed Poincaneap of the flow and the iso-contours perfectly by the flow(i.e., there is no diffusionand de-
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FIG. 4. Experimental signals of light intensity at four points within the vortex breakdown bubble shown in Fig. 3.(Boitiys and(c) are within the internal

invariant core of the bubble while poifd) is within the period-two island.

scribed by a functionc(x,y,z,t) such thatc(x,y,z,0)
=Co(X,Y,2). The advection of dye is described by
Jc Jc Jc Jc

—+

— 4 v—+v,—=0.
ot Ty Tvgy Trig =0 ©®

The solution of(3) can be written explicitly as

C(X!yvz!t) = CO((D_I(X!va))v

where®S(X,) is the position at time of a fluid particle that
is at the pointX, at timet=0.

Consider a poinp in 3. The Eulerian time average of
atp is given by

1 [t
cE(p):Iim—f c(p,t)dt.

t—mot 0

calculation shows thatf(p) is in fact equal to the time
average of the concentration along the trajectory passing
throughp, i.e., the Lagrangian time average of

1 rt 1 [t
c’g(p)zlim—f c(p,t)ydt= Iim—f Co(® 'p)dt
t~>oct 0 [~>oct 0

=ci(p). (4)

The last equality follows from the fact that the time average
over negative time is equal to the time average over positive
time for incompressible flows—by the invertibility @s.2
Equation(4) places us now firmly in the context of the
previously discussed ergodic theory ideas and allows for a
clear interpretation of the experimental technique developed
by Sotiropoulot al® in terms of the Lagrangian visualiza-

Note that by time averaging a sequence of instantaneoufon method of Mezit® and Mezicand Wiggins:’ Since the

light intensity fields, Sotiropoulost all®

tration) at all points(pixels of the digital imageon 3, which

in essence calcu-
lated Eulerian averages of light intensignd, thus, concen-

Eulerian time averages of light intensity at fixed points in
space are equal to the Lagrangian time averages of light in-
tensity along the particle paths that originate from these

in the laboratory is defined by the laser sheet. The followingpoints, it follows from our discussion in the previous section
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0.54 considerably less than the diffusive time scale. Experimental
evidence establishing the validity of this conclusion is pre-
sented in Sec. Ill.

An exact theoretical result for the rate of convergence of
the time average of a functidrcan be derived for the special
case of periodic orbits of the Poincarep. Consider an orbit
of period g, such thatx%=x, wherex is a point in the flow
domain andk® denotes theth iterate of the map starting at
x. The time averagd,* (n), of f along the orbit aften itera-
tions of the magr'(x) is given by

0.52

0.5

0.48

Iav(t)

0.46 n—-1

1 .
(=52 f(T'(x)

N N LU L DLy

0.44 q-1 n—1
1 . n .
= ﬁ[ ( > f(To0) |5+ 2 f(T'(x))}, ®
0.42 i=0 i=[n/qlq
where[n/q] is the integer part oh/q. As n—o, f*(n)
oalle v 1 DL —f* (the converged time average ©fand a bound on the
0 200 400 600 rate of convergence can be calculated as follows:
Number of lid revolutions 10n
. . . [f*—1*(n)|= f*<1———q
FIG. 5. The convergence of the time-averaged signals from Fig. 4. niq
n—1
_ i
that the level sets of the mean light intensity field will indeed f*n i:[zn,:q]q FT (X))) ' ©

visualize the invariant sets of the Poincanap of the flow.
Of course, different initial distributions of dye will give dif- Note that[n/q]=n/q—(n/q)’, where 0<(n/q)’ <1, and,
ferent levels of resolution of invariant sets. At one extreme, alue to the periodicity of the motion,

constantc, will have the same time average for all initial

. . . n—1 n—1-[n/qlq
conditions in the domain and, thus, reveal the fact that the i B i
whole domain is an invariant set—not a very useful conclu- ‘i=[§q]q rT (X))‘ B 2 rT (X))‘

sion. Thus, the concentration at the beginning of the experi-

q-1
ment, ¢y, has to be nonuniform for good resolution of in- <> |f(Ti(x)|<|max f)|q
variant sets. =0 ‘ q ’

D. Convergence times and rate of convergence where may(f) is the maximum of the function over the orbit.
An important question that arises in the context of theThus(G) becomes

experimental technique of Sotiropoulesal *° is with regard 1/n In\’

to the length of the averaging time needed for statistically  |f* —f*(n)|= f*(l—ﬁ(a—(a) )q

converged results to be obtained, as it is well known that

there is no uniformity in the convergence of time averadges. 1 "t _

This question is related to the issue of “stickiness” of regular -5 > f(T'(X)))
islands, where initial conditions close to the islands tend to t=[nfala

stay there for a long time, and the accompanying issue of the , ‘maxf)q‘
so-called Levy flight$* Meiss?® for instance, examined the _ [*lq E) Ll
behavior of one orbit in a positive area ergodic component of ~ n g n
the Standard Map and found that only after as many a8 10 (|f* | +‘ma>(f)‘)q
iterations does the orbit closely exhibit ergodic behavior. If q

such excessive times were indeed required to obtain con- = n ,

verged averages everywhere in the flow, the present experi-

mental technique would obviously be impractical to use. Mo-which goes to zero when— oo,

lecular diffusion would begin to smear the gradients in the  For almost periodic orbits, such as those on invariant tori
light intensity field, thus, making the visualization of the the situation is similar: the rate of convergence of the time
invariant sets impossible. Fortunately, however, convergencaverages will in general be bounded abovechy for some
inside low-period islands is very raptdSince, the objective constantc as can be shown by a spectral argunfénts an

of the present experimental technique is to visualize the inexample of this result, we show in Fig@ a log—log plot of
variant sets of the flow, the time interval over which data|f* —f*(n)| for a functionf=sir?(2mx) averaged along an
need to be collected and averaged in the laboratory should l@bit of the mapT that is a translation on the circle of length
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1, T:x—x+w,(mod1), wherew=1#3. The power-law initial condition (xo,yo,Zy) and associates with it the posi-
bound on the convergence rate is clear and the slope is vefign of the fluid particle starting from that initial condition
close to 1. after one period of time.

A similar calculation can be done for the Lagrangian L€t us assume again that the initial distribution of dye is
time averages in the continuous-time case. As we have aBiven bycy(x,y,z). In this case the averaging of the concen-
ready established the equivalence of Lagrangian and Euldration at any poinp of () has to be done at multiples of the
rian time averages, we would anticipate that the experimenperiod:
tally constructed Eulerian time averages of light intensity

should in general converge &s? (in fact, strictly speaking gt 1ot
the convergence will be bounded above &) at pixels  c*(p)=1lim = >, c(p,ir)=lim = >, co(T 'p)=c}
L . . ., E n < ' n < 0 (U]
located within regular invariant sets of the Poincanap. now N i=0 n—ow N i=0
Experimental results presented in Sec. Il support the validity (7)

of this conclusion.

For pixels located within chaotic zones we expect mucr\/vherecz; is the average of the initial concentration over the
slower convergencet "2 due to central-limit type theorems  yaiectory of the PoincarmapT. The last statement is again
for dynamical systems, or worse. However, fast layering Olyaqeq on the fact that for discrete dynamical systems that
dye by advection in these regions means that dye mixing will.eserve volume, forward time averages over trajectories are
be enhanced and help convergence. equal to backwardin time) time averages over trajectories.
Changing the initial time of the averaging within one period
corresponds to changing the phase of the invariant sets for
the Poincarenap.

In this section, we extend the above-mentioned ideastoa The above-stated convergence results are again valid and
time-periodic flow with periodr. The Poincaramap in this inside regular islands, the convergence rate for the Lagrang-
case is given by a volume-preserving maghat takes an ian very close to 1r.

E. Constructing experimental Poincare ~ maps in
time-periodic flows
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IIl. AN EXAMPLE: STEADY VORTEX BREAKDOWN etal’® by applying the visualization method described
BUBBLE IN A CONFINED FLOW herein. The experiments were conducted using a rigid acrylic
cylinder with inner diameter of 203 mm. The bottom end
(Wall rotated at speeds up to 140 rpm, driven by a variable-
speed dc motor. The gap between the rotating disk and the

breakd bubbles i fined swirling fl Si thi cylinder wall was less than 0.3 mm. The disk surface rotated
reakdown bubbles n a confined Swirling flow. since this moothly with variation less than 0.025 mm. The working

work has yet to be published, we present herein a smal uid was a water and glycerin mixtureoughly 56% glyc-
sample of the experimental results obtained by Sotiropoulos . . gy g. y o gy
et al’® in order to illustrate the ability of the method to re- €"" by weigh}. The cylinder was mounted in a square tank

solve the invariant sets of Poincameaps. An extensive de- (305 mm per sidefilled with the working fluid to a level
scription of the experiment along with detailed parametricSightly higher than the top of the test cell. The temperature
studies and discussion of the dynamics of vortex breakdowRf the reservoir fluid was monitored continuously and did not
flows will be presented in Sotiropoulct all® In addition, ~Vvary more than a few tenths of a degree over several hours of
we present the convergence results that do not appear els@xperiments. Fluorescent dyghodamine 6@ dissolved in
where. a sample of glycerin/water mixture, was injected into the
Consider a closed cylinder filled with an incompressiblecontainer throug a 1 mmhole at the center of the stationary
Newtonian fluid of kinematic viscosity (see Fig. 1L The cover. A 1-mm-thick diametral slice through the container
bottom end wall is rotated at a constant angular velofity centerline was illuminated using a pulsed Nd:YAG laser and
while the top wall is held stationary. The two nondimen-the emitted light was captured using a digital camera. Instan-
sional parameters that determine the various flow regimes ataneous LIF images were collected at a rate of 1 frame/s over
the aspect ratio,H/R, and the Reynolds number Re a period of 24 min(the container lid rotates at 0.87
=QR’/v. Ekman suction and pumping drive a meridional revolutions/s. Instantaneous light intensity fields were col-
flow and give rise to t.he formation of a columnar. vortex |ected at a rate of 1 frame/s over a period of 24 fin this
along the container axis. Above a threshold Re, this Vorte)Reynolds number the container lid rotates at 0.87
breaks down and forms one or more vortex breakdownrevolutions/$using digital photography. Only the first 100 of

7 ; 28
?hub?lles? .Intar\]rectentdexper'memj S;Eom 3' shqwedl tgat [nose images were time averaged, thus providing a discrete
€ fow in the steady regime 1s three-dimensional due 1g pproximation to the time average of the concentration in

nonaxisymmetric modes that originate inside the sidewal . : o
g. (4), since averaging over longer time intervals was found

boundary layer. These disturbances perturb the columnar . e
vortex along the axis and lead to vortex breakdown bubbleg0 produce essentially the same result. Molecular diffusion

that are steady, open, and asymmetric at their downstrez:lf#fe(:tS d?d not become significant even when the averaging
end?® Sotiropoulos and Ventik3 studied the same problem Was carried out over the entire 24 min interval.
numerically by solving the three-dimensional Navier—Stokes ~ AS séen in Fig. 3, the numerical simulations and labora-
equations. They reproduced the laboratory observations dPry Visualizations are in excellent agreement. Both reveal
Spohnet al?® and showed that the flow within stationary the presence of period two, three, and four islaidgariant
vortex breakdown bubbles exhibits chaotic particle paths. /Aet3 embedded within well-stirred stochastic regidusi-
detailed description of the topological aspects of vortexform colored regions in the experimental maphis level of
breakdown including a discussion of the specific chaosagreement along with the theoretical ideas presented herein,
inducing mechanism can be found in Sotiropoulos andsalidate the proposed visualization technique, and under-
Ventikos™® and Sotiropoulo®t al.*° score its potential as a powerful tool for experimental inves-
To elucidate the dynamics in the interior of steady, vor-tigations of a variety of flows exhibiting chaotic advection.
tex breakdown bubbles, Sotiropoules al."*** constructed To illustrate the rapid convergence of the time averages
numerical and experimental Poincanaps. A representative f |ight intensity within invariant sets of the flow, we show in

Sﬁmple. of their reﬁultﬁor H,/RIZ 1.75 and Re-1850 is i "4 experimental signals of light intensity at four points
shown in Fig. 3. The numerical maps were constructed b30vithin the vortex breakdown bubble shown in Fig. 3. One of

long ime_intervals using  fourth.order accurate. Runge. eS8 POInts i located vithin the perioc-two isiand shown in
Kutta method and a trilinear spatial interpolation scheme.Flg' 3 V\.'h”e _the other three points are located V.V'thm the
The steady velocity field was obtained by marching in time'm(:"malI mvanant cqre of the t_)ub_ble, which a_cco_rdlr_lg (o the
the three-dimensional, unsteady Navier—Stokes equatioff@MPutations consists of periodic and quasiperiodic KAM-
with a finite-volume numerical method that is second-ordef©"l- The periodic nature of the signals is clear, with a slight
accurate in both space and time. The results shown in Fidjiffusive decay evident at this time scale. The convergence
3(b) were obtained on a very fine computational mesh, con9f the time-averaged signals from Fig. 4 is shown in Fig. 5
sisting of approximately 1410° grid nodes. The details of and as seen all signals converge within less than 600 lid
the numerical method can be found in Sotiropoulos andotations. In Fig. 6, log—log plot of the absolute value of the
Ventikos®® and extensive validation of computations for the deviation of the time-averaged signal from the mean is
container flow are included in Sotiropoulos and Ventikbs. shown. For all cases the asymptotic decay rate is bounded

The experimental map was constructed by Sotiropoulosibove by the i rate predicted by the theory.

The above-described experimental method has been su,
cessfully applied by Sotiropoulat al® to construct, for the
first time, Poincaremaps for the flow within steady vortex
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