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Ergodic theory and experimental visualization of invariant sets
in chaotically advected flows
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We analyze a recently proposed experimental technique for constructing Poincare´ maps in flows
exhibiting chaotic advection and develop the theoretical framework that explains the reasons for the
success of this approach. The technique is nonintrusive and, thus, simple to implement. Planar
laser-induced fluorescence is employed to collect a sufficiently long sequence of instantaneous light
intensity fields on the plane of section of the Poincare´ map~defined by the laser sheet!. The invariant
sets of the flow are visualized by time-averaging the instantaneous images and plotting iso-contours
of the so resulting mean light intensity field. By linking the Eulerian time averages of light intensity
at fixed points in space with the Lagrangian time averages along particle paths passing through these
points, we show that ergodic theory concepts can be used to show that this procedure will indeed
visualize invariant sets of the Poincare´ map. As the technique is based on time-averaging, we discuss
the rates of convergence and show that inside regular islands the convergence is fast. An example
is presented from the application of this technique to visualize the intricate web of regular islands
within a steady, three-dimensional vortex breakdown bubble. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1480266#
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I. INTRODUCTION

The complex Lagrangian properties of flows that a
simple from the Eulerian point of view—a phenomen
dubbedchaotic advectionby Aref1—have been the subject o
intense research in the last 20 years. Even though the
first example of chaotic advection was in a three-dimensio
flow,2,3 most studies in the 1980s focused on tw
dimensional, time-periodic flows. Only in the last fiftee
years systematic investigations of three-dimensional flo
have began to appear in the literature.4–12 Furthermore, most
previous work, both in two- and three-dimensional flows, h
been theoretical, and, thus, considerably less progress
been made in the experimental front—see Fountainet al.13

for a review and an interesting recent article by Rothst
et al.14

The scarcity of experimental work may be partly attri
uted to the level of abstraction used in theoretical studie
predict the phenomena that occur in chaotically advec
flows. Consider for example the concept of the Poinc´
map—a powerful dynamical systems tool that can prov
important qualitative information about the Lagrangian d
namics of the flow. Poincare´ maps can be used to identif
well-mixed regions in the flow, reveal the existence of u
mixed regular islands, and even provide some informat
concerning the topology of such islands by revealing th
period. The first successful attempt to construct experime

a!Present address: Department of Mechanical and Environmental Engi
ing, University of California, Santa Barbara, CA 93106.
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Poincare´ maps for a chaotically advected three-dimensio
flow was reported only recently by Fountainet al.8,13 Foun-
tain et al. employed a series of injection needles to deliv
small blobs of dye at various locations within the chaotica
advected region of the flow they studied, thus specifying
set of initial ‘‘particle’’ locations. The intersections of th
resulting streaks of dye with a laser sheet constitute, by d
nition, the orbit of the Poincare´ map of the flow.8,13 Fountain
et al.8,13 applied this technique to a creeping flow in an op
cylindrical container driven by a rotating tilted disk and we
able to construct experimental Poincare´ maps that were in
excellent agreement with numerical computations. In spite
their success, however, this technique is not easy to im
ment and, thus, it might not be suitable for complex thre
dimensional flows—see the related discussion in Foun
et al.8 Therefore, further progress in laboratory studies
chaotic advection is hindered by the lack of a simple, non
trusive experimental technique for visualizing invariant s
of Poincare´ maps in two- and three-dimensional flows.

Sotiropouloset al.15 recently proposed a simple exper
mental technique for visualizing invariant sets in stea
three-dimensional flows. Their method relies on the stand
laser-induced fluorescence~LIF! technique and consists o
the following steps:~1! introduce, within the chaotically ad
vected region of the flow, a nonuniform concentration
fluorescent dye at the initial time;~2! illuminate the surface
of section of the Poincare´ map~a surface that is not tangen
tial to the flow and to which fluid particles starting on th
surface return to! with a laser sheet;~3! using digital photog-
raphy, collect a sufficiently long sequence of LIF images;~4!

er-
5 © 2002 American Institute of Physics
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time average the instantaneous light intensity fields at
surface of section; and~5! plot the level sets of the resultin
mean light intensity field. Sotiropouloset al.15 have applied
this method to construct experimental Poincare´ maps for
flows within steady vortex breakdown bubbles in a thre
dimensional, confined, swirling flow~see Sotiropoulos
et al.10 for a numerical treatment of chaotic advection in th
flow!. Extensive comparisons with numerically construct
Poincare´ maps have shown that the iso-contours of the tim
averaged light intensity field visualize the invariant sets
the flow with remarkable accuracy.15 It is important to em-
phasize, however, that unlike the technique proposed
Fountainet al.,8 whose relation to the Poincare´ map of the
flow is direct and readily apparent, the link between the te
nique of Sotiropouloset al.15 and the theoretical concept o
the Poincare´ map is far from obvious. In fact, at first glanc
there appears to be a fundamental conceptual difference
tween the definition of the Poincare´ map, which relies on the
Lagrangian description of the flow, and the technique
Sotiropouloset al.15 in which the invariant sets are visua
ized by plotting iso-contours of Eulerian time averages
light intensity—i.e., averages constructed at fixed points
space~the pixels of the digital LIF images!. Sotiropoulos
et al.15 proposed this technique based on physical intuit
and the good agreement they obtained between the ex
mental and numerical Poincare´ maps.

In this work, we analyze the experimental method
Sotiropouloset al.15 using ergodic theory tools introduced
the studies by Mezic´,16 Mezić and Wiggins,17 Malhotra
et al.,18 and Pojeet al.,19 and explain its exact relationshi
with a Poincare´ map of the flow. By linking the Eulerian time
averages of light intensity at fixed points in space with
Lagrangian time averages along particle paths, we form
show that the level sets of the time-averaged light inten
field are indeed the invariant sets of the Poincare´ map of the
flow. We also extend the method to two- and thre
dimensional time-periodic flows and, thus, develop the th
retical framework for the first, nonintrusive experimen
method for constructing Poincare´ maps. It is important to
note that the idea of using passive scalar fields to mea
velocity of an incompressible flow first appeared in the wo
of Pearlstein and Carpenter.20 To the best of our knowledge
however, this is the first time that an Eulerian passive sc
measurement is proposed as the means to visualize Poin´
maps.

The paper is organized as follows: in Sec. II we discu
the concept of invariant sets of a flow and relate it to Po
caré maps. We also show that the above-described exp
mental procedure reveals invariant sets of the Poincare´ map
of three-dimensional steady or time-periodic flows. W
present a study of the convergence of the time average
the ‘‘regular’’ islands and show that it is fast. In Sec. III w
present some experimental and computational evidence
usefulness of the method for three-dimensional, steady
tex breakdown flow together with the experimental conv
gence results. We discuss the properties and limitation
the method and conclude in Sec. IV.
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II. THEORETICAL BACKGROUND FOR THE
EXPERIMENTAL METHOD

In this section we develop the theoretical backgrou
that establishes the link between the experimental metho
Sotiropouloset al.15 and the Poincare´ map of the flow. We
begin with a general discussion of the concept of invari
sets and present some ideas from ergodic theory that h
been used in the past to numerically visualize invariant s
using Lagrangian time averages. Subsequently we dev
the link between Lagrangian time averages and Eulerian t
averages and show how the same ergodic theory conc
can be used to develop the theoretical justification for
technique of Sotiropouloset al.15 Finally, we extend the
method to time-periodic two- and three-dimensional flow

A. The concept of invariant sets

One of the most important concepts in the theory
dynamical systems is that of invariant sets. Assume that
motion of particles in a steady, three-dimensional, inco
pressible flow contained in a closed domainV is given by

ẋ5vx~x,y,z!,

ẏ5vy~x,y,z!, ~1!

ż5vz~x,y,z!.

An invariant set for~1! is a subsetA of V that has the
following property:

A fluid particle that is at a point(x0 ,y0 ,z0) in A initially
(at t50) is in A for all positive and negative times.

In other words, the trajectory of a fluid particle th
passes through any (x0 ,y0 ,z0) in A @or equivalently, the
streamline—which is equal to the pathline in a steady flow
passing through (x0 ,y0 ,z0)# is entirely contained inA.

Some examples of invariant sets include toroidal s
faces on which particles moving in a vortex ring-type flo
are confined. If a flow has an integral of motion such a
stream function in three dimensions~for a discussion of its

FIG. 1. A schematic of a confined rotating flow.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Convergence of the time ave
age of f 5sin2(2px) along an orbit of
the map x→x1v, ~mod 1! where
v51/).
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existence see Haller and Mezic´21!, every level surface of the
stream function is an invariant set. In fact, in that case
three-dimensional flow domain is said to befoliatedby two-
dimensional level-sets of stream surfaces. If the flow exhi
chaotic advection, this type of structure of invariant s
might not exist. Indeed, the fluid particles could possib
explore the whole three-dimensional domainergodically—in
which case the only invariant set of positive volume is t
whole domainV ~neglecting sets of zero volume!. For most
steady and time-periodic three-dimensional flows, the sit
tion is somewhere in between. Namely, two-dimensional
roidal or cylindrical invariant surfaces and chaotic regio
that are three-dimensional invariant sets of nonzero volu
may be found.

B. Visualization of invariant sets using ergodic theory
concepts

Mezić16 and Mezićand Wiggins17 have proposed an ap
proach for visualizing invariant sets in numerical studies
ing the time averagef L* of a functionf ~some property of the
flow field! over a path line~i.e., the Lagrangian time averag
of f!:

f L* ~X0!5 lim
t→`

1

t E0

t

f ~X~ t,X0!! dt, ~2!

where X05(x0 ,y0 ,z0) is the initial condition and X
5(x(t,X0),y(t,X0),z(t,X0)) is the solution of~1! passing
throughX0 at t50. In the experimental work, we will choos
f to be the initial distribution of dye intensity,c0 , and show
that the Lagrangian time average ofc0 can be easily mea
sured using LIF.

The average in Eq.~2! exists by the fact that the flow i
incompressible andV is bounded using Birkhoff’s ergodic
theorem. Note that Birkhoff’s ergodic theorem is valid f
Downloaded 09 Oct 2002 to 130.207.135.136. Redistribution subject to 
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almost every initial condition~in the sense of measur
theory! and thus its validity is not restricted only to chaot
subdomains or regular subdomains. The level sets of
function f L* are in fact invariant sets for the system~1!. This
is a simply proven fact from ergodic theory~see, e.g.,
Petersen22!. Thus, invariant sets can be visualized by:

~1! defining a set of initial conditionsX0 ,
~2! computing the Lagrangian time averages of a cho

function f over the fluid particle trajectories~streamlines
in a steady flow! originating from the pointsX0 ,

~3! mapping the so computedf L* (X0) to X0 and plotting the
iso-contours of the resulting scalar field on the dom
V.

We will now show that a simple experimental method c
utilize these ergodic theory concepts to visualize the str
ture of invariant sets in steady and time-periodic flows.

C. Ergodic theory and the experimental method of
Sotiropoulos et al. „Ref. 15…

The above-mentioned procedure for visualizing invaria
sets has been developed for and successfully applied in
merical studies.16–18 However, the usefulness of this ap
proach in the laboratory is not readily apparent as Lagra
ian quantities cannot be easily measured experiment
Instead in the laboratory we can most commonly only co
struct Eulerian averages by recording and time averagin
sufficiently long time series off at a point. In this section we
clarify the link between the Lagrangian and Eulerian tim
averages off and show how the above-described ergo
theory ideas can be used to formally explain the reasons
the success of the experimental method of Sotiropou
et al.15

Consider a steady flow in the rotating cylinder as sho
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. ~Color! Experimental ~Ref.
15! and calculated~Ref. 10! Poincare´
maps for a steady vortex breakdow
bubble ~H/R51.75, Re51850!. The
experimental map was constructed b
plotting the level sets of the time-
averaged light-intensity field. For the
calculated map, same-color marke
were released along short straight se
ments, selectively placed within vari
ous regions in the interior of the
bubble to elucidate the richness of th
dynamics. Note the level of agreemen
between the two images in terms o
both the period and relative location o
the various invariant sets.
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in Fig. 1. Fix a diametral planeS that contains the cylinde
axis. For a rotating flow, a Poincare´ mapP can be defined as
the map that sendsX0 to the first intersection of the trajec
tory passing throughX0 with S. Invariant sets for Poincare´
maps are the intersections of invariant sets for the flow~1!
with the planeS. To clarify the relationship between th
so-constructed Poincare´ map of the flow and the iso-contour
Downloaded 09 Oct 2002 to 130.207.135.136. Redistribution subject to 
of the time-averaged light intensity field, let fluorescent d
be distributed inV at time t50 with a nonuniform concen-
tration c0(x,y,z)—in LIF experiments the concentration o
fluorescent dye is linearly proportional to the intensity
emitted light, which can be readily quantified using digit
photography. Assume the concentration of dye is advec
perfectly by the flow~i.e., there is no diffusion! and de-
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. Experimental signals of light intensity at four points within the vortex breakdown bubble shown in Fig. 3. Points~a!, ~b!, and~c! are within the internal
invariant core of the bubble while point~d! is within the period-two island.
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scribed by a functionc(x,y,z,t) such that c(x,y,z,0)
5c0(x,y,z). The advection of dye is described by

]c

]t
1nx

]c

]x
1ny

]c

]y
1nz

]c

]z
50. ~3!

The solution of~3! can be written explicitly as

c~x,y,z,t !5c0~F2t~x,y,z!!,

whereFs(X0) is the position at times of a fluid particle that
is at the pointX0 at time t50.

Consider a pointp in S. The Eulerian time average ofc
at p is given by

cE* ~p!5 lim
t→`

1

t E0

t

c~p,t !dt.

Note that by time averaging a sequence of instantane
light intensity fields, Sotiropouloset al.15 in essence calcu
lated Eulerian averages of light intensity~and, thus, concen
tration! at all points~pixels of the digital image! on S, which
in the laboratory is defined by the laser sheet. The follow
Downloaded 09 Oct 2002 to 130.207.135.136. Redistribution subject to 
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calculation shows thatcE* (p) is in fact equal to the time
average of the concentration along the trajectory pass
throughp, i.e., the Lagrangian time average ofc:

cE* ~p!5 lim
t→`

1

t E0

t

c~p,t !dt5 lim
t→`

1

t E0

t

c0~F2tp!dt

5cL* ~p!. ~4!

The last equality follows from the fact that the time avera
over negative time is equal to the time average over posi
time for incompressible flows—by the invertibility ofFs.23

Equation~4! places us now firmly in the context of th
previously discussed ergodic theory ideas and allows fo
clear interpretation of the experimental technique develo
by Sotiropouloset al.15 in terms of the Lagrangian visualiza
tion method of Mezic´16 and Mezićand Wiggins.17 Since the
Eulerian time averages of light intensity at fixed points
space are equal to the Lagrangian time averages of ligh
tensity along the particle paths that originate from the
points, it follows from our discussion in the previous secti
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2240 Phys. Fluids, Vol. 14, No. 7, July 2002 I. Mezić and F. Sotiropoulos
that the level sets of the mean light intensity field will inde
visualize the invariant sets of the Poincare´ map of the flow.
Of course, different initial distributions of dye will give dif
ferent levels of resolution of invariant sets. At one extreme
constantc0 will have the same time average for all initia
conditions in the domain and, thus, reveal the fact that
whole domain is an invariant set—not a very useful conc
sion. Thus, the concentration at the beginning of the exp
ment, c0 , has to be nonuniform for good resolution of in
variant sets.

D. Convergence times and rate of convergence

An important question that arises in the context of t
experimental technique of Sotiropouloset al.15 is with regard
to the length of the averaging time needed for statistica
converged results to be obtained, as it is well known t
there is no uniformity in the convergence of time average22

This question is related to the issue of ‘‘stickiness’’ of regu
islands, where initial conditions close to the islands tend
stay there for a long time, and the accompanying issue of
so-called Levy flights.24 Meiss,25 for instance, examined th
behavior of one orbit in a positive area ergodic componen
the Standard Map and found that only after as many as10

iterations does the orbit closely exhibit ergodic behavior
such excessive times were indeed required to obtain c
verged averages everywhere in the flow, the present exp
mental technique would obviously be impractical to use. M
lecular diffusion would begin to smear the gradients in
light intensity field, thus, making the visualization of th
invariant sets impossible. Fortunately, however, converge
inside low-period islands is very rapid.17 Since, the objective
of the present experimental technique is to visualize the
variant sets of the flow, the time interval over which da
need to be collected and averaged in the laboratory shoul

FIG. 5. The convergence of the time-averaged signals from Fig. 4.
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considerably less than the diffusive time scale. Experime
evidence establishing the validity of this conclusion is p
sented in Sec. III.

An exact theoretical result for the rate of convergence
the time average of a functionf can be derived for the specia
case of periodic orbits of the Poincare´ map. Consider an orbi
of periodq, such thatxq5x, wherex is a point in the flow
domain andxq denotes theqth iterate of the map starting a
x. The time average,f * (n), of f along the orbit aftern itera-
tions of the mapTi(x) is given by

f * ~n!5
1

n (
i 50

n21

f ~Ti~x!!

5
1

n H S (
i 50

q21

f ~Ti~x!!D Fn

qG1 (
i 5@n/q#q

n21

f ~Ti~x!!J , ~5!

where @n/q# is the integer part ofn/q. As n→`, f * (n)
→ f * ~the converged time average off! and a bound on the
rate of convergence can be calculated as follows:

u f * 2 f * ~n!u5U f * S 12
1

n Fn

qGq
2

1

f * n (
i 5@n/q#q

n21

f ~Ti~x!!D U. ~6!

Note that @n/q#5n/q2(n/q)8, where 0<(n/q)8,1, and,
due to the periodicity of the motion,

U (
i 5@n/q#q

n21

f ~Ti~x!!U5U (
i 50

n212@n/q#q

f ~Ti~x!!U
< (

i 50

q21

u f ~Ti~x!!u<Umax
q

~ f !Uq,

where maxq(f) is the maximum of the function over the orbi
Thus ~6! becomes

u f * 2 f * ~n!u5U f * S 12
1

n S n

q
2S n

qD 8Dq

2
1

n (
i 5@n/q#q

n21

f ~Ti~x!!D U
<

u f * uq
n S n

qD 8
1

Umax
q

~ f !qU
n

<
S u f * u1Umax

q
~ f !U Dq

n
,

which goes to zero whenn→`.
For almost periodic orbits, such as those on invariant

the situation is similar: the rate of convergence of the ti
averages will in general be bounded above byc/n for some
constantc as can be shown by a spectral argument.26 As an
example of this result, we show in Fig. 2 a log–log plot of
u f * 2 f * (n)u for a function f 5sin2(2px) averaged along an
orbit of the mapT that is a translation on the circle of lengt
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Log–log plot of the absolute
value of the deviation of the time-
averaged signal from the mean for th
signals shown in Fig. 4. The slope o
the straight black line in all plots is
equal to21.
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1, T:x→x1v,(mod 1), wherev51/). The power-law
bound on the convergence rate is clear and the slope is
close to 1.

A similar calculation can be done for the Lagrangi
time averages in the continuous-time case. As we have
ready established the equivalence of Lagrangian and E
rian time averages, we would anticipate that the experim
tally constructed Eulerian time averages of light intens
should in general converge ast21 ~in fact, strictly speaking
the convergence will be bounded above byc/t! at pixels
located within regular invariant sets of the Poincare´ map.
Experimental results presented in Sec. III support the valid
of this conclusion.

For pixels located within chaotic zones we expect mu
slower convergence:n21/2 due to central-limit type theorem
for dynamical systems, or worse. However, fast layering
dye by advection in these regions means that dye mixing
be enhanced and help convergence.

E. Constructing experimental Poincare ´ maps in
time-periodic flows

In this section, we extend the above-mentioned ideas
time-periodic flow with periodt. The Poincare´ map in this
case is given by a volume-preserving mapT that takes an
Downloaded 09 Oct 2002 to 130.207.135.136. Redistribution subject to 
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initial condition (x0 ,y0 ,z0) and associates with it the pos
tion of the fluid particle starting from that initial conditio
after one period of time.

Let us assume again that the initial distribution of dye
given byc0(x,y,z). In this case the averaging of the conce
tration at any pointp of V has to be done at multiples of th
period:

cE* ~p!5 lim
n→`

1

n (
i 50

n21

c~p,i t!5 lim
n→`

1

n (
i 50

n21

c0~T2 i p!5c0* ,

~7!

wherec0* is the average of the initial concentration over t
trajectory of the Poincare´ mapT. The last statement is agai
based on the fact that for discrete dynamical systems
preserve volume, forward time averages over trajectories
equal to backward~in time! time averages over trajectorie
Changing the initial time of the averaging within one peri
corresponds to changing the phase of the invariant sets
the Poincare´ map.

The above-stated convergence results are again valid
inside regular islands, the convergence rate for the Lagra
ian very close to 1/n.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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III. AN EXAMPLE: STEADY VORTEX BREAKDOWN
BUBBLE IN A CONFINED FLOW

The above-described experimental method has been
cessfully applied by Sotiropouloset al.15 to construct, for the
first time, Poincare´ maps for the flow within steady vorte
breakdown bubbles in a confined swirling flow. Since th
work has yet to be published, we present herein a sm
sample of the experimental results obtained by Sotiropou
et al.15 in order to illustrate the ability of the method to re
solve the invariant sets of Poincare´ maps. An extensive de
scription of the experiment along with detailed parame
studies and discussion of the dynamics of vortex breakdo
flows will be presented in Sotiropouloset al.15 In addition,
we present the convergence results that do not appear
where.

Consider a closed cylinder filled with an incompressib
Newtonian fluid of kinematic viscosityn ~see Fig. 1!. The
bottom end wall is rotated at a constant angular velocityV
while the top wall is held stationary. The two nondime
sional parameters that determine the various flow regimes
the aspect ratio,H/R, and the Reynolds number R
5VR2/n. Ekman suction and pumping drive a meridion
flow and give rise to the formation of a columnar vort
along the container axis. Above a threshold Re, this vor
breaks down and forms one or more vortex breakdo
bubbles.27 In a recent experiment, Spohnet al.28 showed that
the flow in the steady regime is three-dimensional due
nonaxisymmetric modes that originate inside the sidew
boundary layer. These disturbances perturb the colum
vortex along the axis and lead to vortex breakdown bubb
that are steady, open, and asymmetric at their downstr
end.28 Sotiropoulos and Ventikos29 studied the same problem
numerically by solving the three-dimensional Navier–Stok
equations. They reproduced the laboratory observation
Spohn et al.28 and showed that the flow within stationa
vortex breakdown bubbles exhibits chaotic particle paths
detailed description of the topological aspects of vor
breakdown including a discussion of the specific cha
inducing mechanism can be found in Sotiropoulos a
Ventikos29 and Sotiropouloset al.10

To elucidate the dynamics in the interior of steady, v
tex breakdown bubbles, Sotiropouloset al.10,15 constructed
numerical and experimental Poincare´ maps. A representative
sample of their results~for H/R51.75 and Re51850! is
shown in Fig. 3. The numerical maps were constructed
calculating the trajectories of several initial conditions ov
long time intervals using a fourth-order accurate Rung
Kutta method and a trilinear spatial interpolation schem
The steady velocity field was obtained by marching in tim
the three-dimensional, unsteady Navier–Stokes equat
with a finite-volume numerical method that is second-or
accurate in both space and time. The results shown in
3~b! were obtained on a very fine computational mesh, c
sisting of approximately 1.43106 grid nodes. The details o
the numerical method can be found in Sotiropoulos a
Ventikos30 and extensive validation of computations for t
container flow are included in Sotiropoulos and Ventikos29

The experimental map was constructed by Sotiropou
Downloaded 09 Oct 2002 to 130.207.135.136. Redistribution subject to 
c-

ll
s

c
n

se-

re

l

x
n

o
ll
ar
s
m

s
of

A
x
-

d

-

y
r
–
.

ns
r
g.
-

d

s

et al.15 by applying the visualization method describe
herein. The experiments were conducted using a rigid acr
cylinder with inner diameter of 203 mm. The bottom en
wall rotated at speeds up to 140 rpm, driven by a variab
speed dc motor. The gap between the rotating disk and
cylinder wall was less than 0.3 mm. The disk surface rota
smoothly with variation less than 0.025 mm. The worki
fluid was a water and glycerin mixture~roughly 56% glyc-
erin by weight!. The cylinder was mounted in a square ta
~305 mm per side! filled with the working fluid to a level
slightly higher than the top of the test cell. The temperat
of the reservoir fluid was monitored continuously and did n
vary more than a few tenths of a degree over several hour
experiments. Fluorescent dye~Rhodamine 6G!, dissolved in
a sample of glycerin/water mixture, was injected into t
container through a 1 mmhole at the center of the stationar
cover. A 1-mm-thick diametral slice through the contain
centerline was illuminated using a pulsed Nd:YAG laser a
the emitted light was captured using a digital camera. Inst
taneous LIF images were collected at a rate of 1 frame/s o
a period of 24 min ~the container lid rotates at 0.8
revolutions/s!. Instantaneous light intensity fields were co
lected at a rate of 1 frame/s over a period of 24 min~for this
Reynolds number the container lid rotates at 0.
revolutions/s! using digital photography. Only the first 100 o
those images were time averaged, thus providing a disc
approximation to the time average of the concentration
Eq. ~4!, since averaging over longer time intervals was fou
to produce essentially the same result. Molecular diffus
effects did not become significant even when the averag
was carried out over the entire 24 min interval.

As seen in Fig. 3, the numerical simulations and labo
tory visualizations are in excellent agreement. Both rev
the presence of period two, three, and four islands~invariant
sets! embedded within well-stirred stochastic regions~uni-
form colored regions in the experimental map!. This level of
agreement along with the theoretical ideas presented he
validate the proposed visualization technique, and und
score its potential as a powerful tool for experimental inv
tigations of a variety of flows exhibiting chaotic advection

To illustrate the rapid convergence of the time avera
of light intensity within invariant sets of the flow, we show i
Fig. 4 experimental signals of light intensity at four poin
within the vortex breakdown bubble shown in Fig. 3. One
these points is located within the period-two island shown
Fig. 3 while the other three points are located within t
internal invariant core of the bubble, which according to t
computations consists of periodic and quasiperiodic KA
tori. The periodic nature of the signals is clear, with a slig
diffusive decay evident at this time scale. The converge
of the time-averaged signals from Fig. 4 is shown in Fig
and as seen all signals converge within less than 600
rotations. In Fig. 6, log–log plot of the absolute value of t
deviation of the time-averaged signal from the mean
shown. For all cases the asymptotic decay rate is boun
above by the 1/n rate predicted by the theory.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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IV. SUMMARY AND CONCLUSIONS

We have used ergodic theory tools to develop a rigor
theoretical framework for a recently developed experimen
technique for visualizing nonergodic regions of mixing
three-dimensional fluid flows. We have also extended
method to time-periodic two- and three-dimensional flow
In light of the elaborate experimental procedures used in
past, the present technique is strikingly simple. Furtherm
it is nonintrusive and thus applicable to a broad range
chaotically advected flows. We anticipate, therefore, t
technique to serve as the catalyst for future advances in
theory of chaotic mixing in three-dimensional flows, an ar
in which progress has long been hindered by the lack
simple procedures for visualizing chaos in the laboratory

It is important to recognize that there are two prereq
sites for successful visualizations of invariant sets with
present technique:~1! the initial spatial distribution of fluo-
rescent dye within the chaotically advected region must
nonuniform; and~2! the averaging time must be smaller th
the molecular diffusion time scale of the flow but bigger th
a characteristic time scale in steady flows~determined by the
lid rotational speed in the present example! or one time pe-
riod in flows that are periodic in time. More advanced pr
cedures can be designed to utilize the possibility of differ
nonhomogeneous initial distributions following the theory
ergodic partitions.16,17
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17I. Mezić and S. Wiggins, ‘‘A method for visualization of invariant sets o

dynamical systems based on the ergodic partition,’’ Chaos9, 213 ~1999!.
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