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The probability density functions~PDFs! of the velocity and the velocity difference field induced by
a distribution of a large number of discrete vortex elements are investigated numerically and
analytically. Tails of PDFs of the velocity and velocity difference induced by a single vortex
element are found. Treating velocities induced by different vortex elements as independent random
variables, PDFs of the velocity and velocity difference induced by all vortex elements are found
using limit distribution theorems for stable distributions. Our results generalize and extend the
analysis by Takayasu@Prog. Theor. Phys.72, 471~1984!#. In particular, we are able to treat general
distributions of vorticity, and obtain results for velocity differences and velocity derivatives of
arbitrary order. The PDF for velocity differences of a system of singular vortex elements is shown
to be Cauchy in the case of small separationr , both in 2 and 3 dimensions. A similar type of
analysis is also applied to non-singular vortex blobs. We perform numerical simulations of the
system of vortex elements in two dimensions, and find that the results compare favorably with the
theory based on the independence assumption. These results are related to the experimental and
numerical measurements of velocity and velocity difference statistics in the literature. In particular,
the appearance of the Cauchy distribution for the velocity difference can be used to explain the
experimental observations of Tong and Goldburg@Phys. Lett. A127, 147~1988!; Phys. Rev. A37,
2125,~1988!; Phys. Fluids31, 2841~1988!# for turbulent flows. In addition, for intermediate values
of the separation distance, near exponential tails are found. ©1996 American Institute of Physics.
@S1070-6631~96!01605-1#

I. INTRODUCTION

We study the probability density function~PDF! of ve-
locity and velocity difference associated with a discrete, de-
terministic vortex system. There are at least two reasons for
considering such a system: firstly, the discrete vortex model
as a computational technique has seen much development in
recent years,1,2 and has proven to be a useful tool for flow
computation. Secondly, recent visualizations of fine-scales of
turbulence ~experimental and numerical! have shown the
presence of distinct vortex elements as being the key driver
of the flow.3,4 These facts are clearly not unrelated. Further,
Saffman5 proposes that ‘‘ . . . turbulence should be modeled
or described as the creation, evolution, interaction and decay
of these@discrete vortical# structures . . . .’’ In this context, it
is of obvious interest to find the statistical behavior of the
velocity field associated with a collection of discrete vortex
elements, singular or with a core, and compare the results
obtained to numerical simulations and experiments.
Novikov6 has made a step in this direction by finding the
energy spectrum of a velocity field induced by a system of
N singular vortices in the plane. In this work we study nu-

merically the induced velocity PDF itself, for the system of
vortex elements in two dimensions, and PDFs of its deriva-
tives of arbitrary order. We also propose a theory for the
observed results based on some assumptions discussed be-
low, and extend this theory to three-dimensional situations.
We do this by first analyzing the velocity field induced by a
single vortex and then using limit distribution theorems to
include the effects of the contribution of all the vortices.
Investigation of the statistics of the velocity field induced by
the motion ofN singular vortices and vortices with a finite
core is the main thrust of this paper. A connection with ex-
perimental and numerical measurements of velocity and ve-
locity difference distributions in turbulent flows is attempted.

The main assumptions in the analytical part of this work
are that the system of vortex elements is ergodic in its phase
space~see Section II and the Appendix!, and that the veloci-
ties induced by different vortices can be treated as indepen-
dent random variables. For an investigation of the ergodicity
assumption for a system ofN point vortices, see Ref. 10. We
also assume that the probability density of a vortex element
in the physical space is not concentrated on a fractal set, so
that it is an ordinary, two or three dimensional, probability
distribution. These assumptions are sufficient to produce a
velocity difference PDF which can be used to explain experi-
mental results by Tong and Goldburg. Tong and
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Goldburg’s7–9 experimental measurements of relative veloc-
ity in turbulent flows show a PDF that is well approximated
by the product of a Lorentzian~Cauchy distribution! and a
Gaussian function. We show in this paper the conditions un-
der which these functions are produced for theN-vortex
model. We also provide an explanation~backed by numerical
experiments! for the appearance of near-exponential tails that
are often seen in turbulence experiments.

In discussing the limit distributions of sums of the ve-
locity or velocity difference contributions from single vorti-
ces, we will be making use of stable distributions~also often
referred to as Le´vy stable distributions!. A brief description
of stable distributions can be stated as follows: Consider in-
dependent random variablesX1 ,X2 , . . . and the sum
Xn5X11X21 . . . , where the variablesX1 ,X2 , . . . have the
same distributionR. The distributionR is stable ifXn has the
same distribution asXi ~i.e., R) apart from norming con-
stants. See Feller11 for more detailed description and ex-
amples. The importance of stable distributions in physical
processes has been highlighted by Mandelbrot,12 Montroll
and Shlesinger13 and Takayasu,14 among others~see also
Shlesingeret al.15 for a recent collection of papers!.

The history of investigation of systems of point vortices
is long. The statistical physics approach has been applied to
the problem of a large number of vortices~see Ref. 16, for
example!. Other authors have used the vortex element ap-
proach to solve interesting flow problems~see Ref. 1!. The
integrability and chaotic dynamics of the few vortex problem
~see Refs. 17, 18, and 10! and the references therein! has
been studied intensely. Recently, renewed interest in systems
of N interacting vortices has been sparked by the observation
that two dimensional random divergence free fields get orga-
nized into distinct vortical structures under the dynamics of
Navier-Stokes equations~see, e.g., Ref. 19!. Of particular
interest are chaotic advection and dispersion of fluid particles
in a velocity field produced byN point vortices ~see
Viecelli20 and Babianoet al.21!. Our work may shed some
light on these issues by providing information about the sta-
tistics of the velocity field that produces chaotic motion and
dispersion of fluid particles.

An earlier paper by Takayasu14 contains some points in
common with the analytical part of our work; namely, the
idea of decomposition of velocity to contributions from in-
dividual vortices, the assumption of independence, and the
importance of stable distributions in describing the PDF of
the velocity. We introduce several new ideas that build on
this work: the investigation of velocitydifferencePDF ~a
useful parameter in turbulence, as discussed below!, a more
general derivation, introduction of non-singular vorticity,
and an attempt to relate these results to those of turbulent
flows. Takayasu predicts that the PDF of velocity induced by
vortex elements in three dimensions is the Holtzmark distri-
bution. However, there is no known experimental or numeri-
cal evidence of the Holtzmark distribution for the velocity
PDFpu(u) in turbulence. It is often accepted thatpu(u) in a
turbulent flow is nearly normally distributed; this is easily
accounted for with the use of vortex blobs or singular vortex
filaments.

In view of the increasing use ofvortex methods22,1 of

flow computation where discrete, Lagrangian vortex ele-
ments are used to simulate turbulent flows, we hope to pro-
vide an understanding of the range of validity of these mod-
els for gathering statistics. In particular, it follows from our
work that PDFs of velocity induced by a system of N vorti-
ces with a finite core can have long non-Gaussian tails if the
cutoff parameter of the core is small.

In section II we investigate the PDF of the velocity in-
duced by a single vortex element moving under the influence
of N vortex elements, under the assumptions described
above. The construction of the tails of the PDF for the ve-
locity at a fixed location due to asinglevortex, is presented.
The PDF associated with the velocity due toall the vortices,
follows from the use of limit distribution theorems. The
same construction is used to analyze the velocity difference
PDF. In section IV a connection is made with some experi-
mental data. In section V, numerical simulations with
N-vortices in two dimensions are described, and the results
are favorably compared with analytical predictions. In Ap-
pendix A we show that a sufficient condition for an assump-
tion on reduced probability densities is ergodicity of a sys-
tem of vortex elements in their phase space.

II. THE VELOCITY AND VELOCITY DIFFERENCE
FIELD DUE TO A SINGLE VORTEX

The two-dimensional singular vortex case is discussed in
detail first; the vortex blob and the three-dimensional cases
follow naturally.

A. Two-dimensional vorticity distribution

The two-dimensional vorticity field represented by a col-
lection ofN singular vortices is given by

v5(
i51

N

G id~x2xi !, ~1!

whered denotes the Dirac delta function.
The velocity at pointx induced by the above distribution

of vorticity is

u~x!52
1

2p(
i51

N
G i~y2yi !

ux2xi u2
5(

i51

N

ui~x!, ~2!

v~x!5
1

2p(
i51

N
G i~x2xi !

ux2xi u2
5(

i51

N

v i~x!, ~3!

where thexi are the vortex positions andui(x) is that portion
of the x component of velocity induced by thei th vortex:

ui~x![
2G i

2p

~y2yi !

ux2xi u2
52

G i

2p

sinu i
r i

, ~4!

r i[ux2xi u, ~5!

u i[tan21S y2yi
x2xi

D , ~6!

and similarly, they component induced by vortexi is

v i~x![
G i

2p

~x2xi !

ux2xi u2
5

G i

2p

cosu i
r i

. ~7!
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For the sake of simplicity of derivation, consider the
norm of the velocity,uuu rather than its components~an
analogous derivation in terms of the components is straight-
forward, but a little more cumbersome!. Let us define
pui(uui u;xupi(xi)) as the probability density of the norm of
the velocity due to a single vortexi , measured atx. The
reduced PDFpi(xi) is defined through the expression
pi(xi)dxi5 Probability$ vortex i P dxi% and*pi(xi)dxi51.
xi is the position of a single vortexi ~see Lundgren and
Pointin16!.

Let us now restrict the discussion to the case in which all
the vortices are of the same sign and magnitude,G i . That
pi(xi) is independent of vortex labeli if ergodicity of the
vortex system is assumed, follows from the considerations in
the Appendix. From now on we assume ergodicity and de-
note PDF for the position of a single vortex byp1(x1). For
notational convenience we will henceforth denote
pui(uui u;xup1(x1)) by pui(uui u), neglecting the dependence
on x. The probability density associated with the velocity
due toall N vortices atx is denotedpu(uuu), again neglect-
ing the dependence onx.

We are interested only in the highuui u tails of
pui(uui u). Consider the probabilityP(uui u.U) that the norm
of the velocity induced by a single vortex is bigger thanU.
This probability is proportional toI5*Bp1(x1)dx1 , where
B is a ball of radiusr5 G/2pU . If we assume that the PDF
for vortex position,p1(x1) is well-behaved~not concentrated
on some fractal set of dimension less than 2! and strictly
positive, thenI;r2 when r is small (U large!. Thus we
obtain

P~ uui u.U !;U22,

for largeU. Assuming the above function has a derivative,
that derivative is exactlypui(uui u) and

pui~ uui u!;uui u23,

for large uui u.

B. Non-singular vortex case (vortex blobs)

The singular point vortex representation can be
smoothed out to get a non-singular vortex blob. There are
several schemes to do this. We will work with the simple
algebraic core method which has the following vorticity dis-
tribution:

v~x,t !5
1

p(
i51

N
G idc

2

~dc
21ux2xi u2!2

, ~8!

where dc is a constant. Extension to other smoothing
schemes is straightforward. The norm of the velocity induced
at x by a vortex at a distancer5ux2xi u is

uui~r!u52
G ir

2p~r21dc
2!
, ~9!

and there is clearly an upper bound to the value ofuui u given
by uui umax5G i /(4pdc) at r5dc . So the finite core param-
eter dc acts as a cutoff such thatpi(uui u) is zero for

uui u.uui umax. Note that this allows for the existence of a
mean as well as a variance for the velocity; in the case of the
singular vortex, the variance does not exist.

C. Three-dimensional vorticity distribution

For the three-dimensional case, we must discuss an ap-
propriate form for the spatial distribution of vorticity. Just as
the vorticity in two dimensions was discretized to a collec-
tion of N delta functions or smooth core structures, the vor-
ticity in three dimensions is often discretized in the form of
vector valued vortex particles or vortex filaments.1 Consid-
ering the vector particle approach, the vorticity is assumed to
be highly concentrated only at discrete locationsxi ,

23

v~x,t !5(
i

N

aig i„x2xi~ t !…1v̂~x,t !, ~10!

where the vectorai has the units of circulation times length,
and the spatial distribution for each vortex is given by some
functiong i(x),

g i~x!5
1

s i
3 p~ uxu/s i ! ~11!

with an effective core radiuss i . In the cases i50, the
g i ’s become Dirac delta functions. The termv̂(x,t) in Eq.
~10! represents the additional term needed to ensure the di-
vergence free requirement.23 It will not be considered fur-
ther, since it makes no contribution to the velocity field. The
above vorticity distribution can be substituted into the Biot-
Savart equation in three dimensions,

u~x!52
1

4pE ~x2x8!3v~x8!

ux2x8u3
dx8, ~12!

to obtain a discrete form of the velocity induced by theN
vortex elements. Note that in this representation both the
positions of vortex elements and their intensitiesai can
change. Assuming ergodicity in the phase space, velocity
induced by one vortex element is characterized by some
mean intensityā which is the same for all vortex elements.

Following a derivation similar to section II A, in the sin-
gular case we obtainpi(uui u);uui u25/2. For the de-
singularized~finite s i) case, we have the same tail, but there
is a maximum cut-off velocity.

For the case where the three-dimensional vorticity is rep-
resented by thin vortex filaments the results of the two-
dimensional analyses can be applied. This is because asx
nears the filament, the high velocity tail approaches the form
of the two-dimensional vortex case. For the sake of conve-
nience, we shall henceforth omit derivations involving fila-
ments with the implicit understanding that the results of the
two-dimensional analyses carries over directly. This also has
the interesting implication that the velocity statistics can
have different behavior depending on the physical form of
the vorticity.
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D. PDF of the velocity difference

Now we apply our methods to investigate tails of the
probability distribution for the velocity difference
pdu„du(x;dr )…, wheredu(x;dr )5u(x1dr )2u(x). We de-
compose the velocity difference as

du~x,dr !5(
i51

N

dui~x,dr !, ~13!

where the contribution of each vortex is

dui~x;dr !52
G i

2p F ~x2xi !3êz
ux2xi u2

2
~x1dr2xi !3êz

ux1dr2xi u2
G .

~14!

Expanding for smalldr5udr u, we have

udui~x;dr !u'
G i

2p

dr

r i
2 . ~15!

Using a derivation similar to section II A, for the same sign
and magnitudeG i , we have

P~ udui u.dU !;E
B
p~x1!dx1;r2;dU21, ~16!

and therefore

pi~ udui u!;udui u22, for largeudui u. ~17!

For the three-dimensional particle case,

P~ udui u.dU !;E
B
p~x1!dx1;r3;dU21, ~18!

whereB is now a ball in three-dimensions of radiusr, we
see that we obtain the same result for the tails of the PDF, i.e.
~17! holds. Similar derivations can be made for velocity de-
rivatives.

In the casedr @ r, in two-dimensions, it is easy to see
that the tail of the PDF is the same as in the case of the
velocity (uduu23), as contributions to the tail arise from the
time that the vortex spends in a small neighborhood of any of
the two points involved in the difference. In three-
dimensions, by the same argument, the tail has auduu25/2

decay for largedr .

III. LIMIT DISTRIBUTIONS

In this section we will consider sums of independent
random variables for which tails of PDFs decay algebra-
ically. In the previous section we considered the norm of the
velocity u and velocity differencedu. We chose those quan-
tities because of the ease of the presentation~rotational sym-
metry!. The same results on the tails hold for the velocity
components. For the calculation of limits in this section we
consider the PDFpu(u,x) of the velocity componentu and
the PDF pdu(du,x) of the velocity difference component
du in the direction of arbitrary axis. We do this again for the
clarity of presentation, as symmetry of the single vortex PDF
pi(ui ,x) „pdu(dui ,x)… when ui→1` (dui→1`) and
ui→2` (dui→2`) can be used. Similar results~with non-
symmetric stable distributions! can be obtained for the norm
of the velocity, velocity difference and velocity derivatives.

Since we are interested in the PDFs of the sums of ran-
dom variablesui or dui , we turn to limit distribution theo-
rems to find the forms of the PDFs. We will first briefly
discuss the central limit theorem, and then go on to other
stable distributions.

In the study of normalized sums of independent random
variables of the form

XN5
1

AN(
i51

N

Xi ,

whereXi ’s have a common PDFpi(xi), the central limit
theorem establishes the conditions under whichXN is asymp-
totically normally distributed. In its simplest form, the cen-
tral limit theorem states11 that for a system with mean
E(Xi)50 and variances i

251, asN→` the distribution of
the normalized sumXN tends to the normal distribution with
the density

p~x!5
1

A2p
e2x2/2.

As applied to ourN-vortex problem,if the velocity contribu-
tion of each vortexui(x) can be considered anindependent,
identically distributed random variable, then asN→`,
pu(u;x) approaches a normal distribution regardless of the
shape of the individual density functionpui(ui), provided the
mean and the variance exist, as we can always shift the mean
to zero and scale the variance to 1. This is the case for vortex
blobs, where the finite velocity insures existence of the mean
and the variance.

In general, Le´vy stable distributions are interesting be-
cause of the fact that they are the only possible limiting
probability distributions of normed sums of stationary inde-
pendent random variables,

XN5
1

BN
(
i51

N

Xi2AN ~19!

~see the introductory section or Refs. 11, 24, 15 or 25 for an
interesting example in stellar dynamics!. Because of the
above mentioned symmetry of distributions induced by
single vortices we are only going to be interested in symmet-
ric Lévy stable distributions that have characteristic func-
tions of the form

f i~k!5e2aukua, 0,a<2. ~20!

The conditions on the range ofa are imposed by the fact that
*p(u)du51. Thea ’s are known as the characteristic expo-
nents, witha52 being the Gaussian distribution anda51
being the Cauchy distribution. Apart from being well known,
these two special cases are also of particular interest to our
application~as isa53/2, the Holtzmark distribution!. For
largex and 0,a,2, the PDF with a characteristic function
~20! has the asymptotic (uxu→`) form ~see Ref. 13!

p~x!;
G~a!sin~1/2! pa

puxua11 , 0,a,2. ~21!

Now, consider the random variableX with zero mean and
distribution functionF(x)5P(X,x). Following Ref. 24, if
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F(x); c/xa as x→2` and F(x);12 c/xa as x→`,
where 0,a,2, c.0 thenF belongs to the domain of at-
traction of a symmetric stable Le´vy distribution with expo-
nenta. In other words, the sum~19! where eachXi is iden-
tically distributed asX, AN50 andBN5N1/a converges in
distribution to a Le´vy stable distribution with exponenta. In
the case whena52 the limiting distribution is Gaussian.
Based on this and the results in section II, in the case of a
two-dimensional velocity field we expect convergence to-
wards the Gaussian. It is interesting to point out that the
variance for a system of vortices in 2-D diverges logarithmi-
cally! Still, the limiting distribution is Gaussian~as the loga-
rithmic function is ‘‘slowly varying;’’ see Ref. 24!. This is
important for the very slow convergence to a Gaussian that
we observe numerically~see section V!. For three-
dimensional vortex particles,a53/2, and the convergence
towards the Holtzmark distribution should be seen. These
two results have already been discussed by Takayasu.14 As
mentioned earlier, for the case of vortex filaments in three
dimensions, the limiting distribution for the velocity is
Gaussian, following the two dimensional result.

For the velocity difference distribution in the case of a
small separationdr , in both two and three dimensions, the
du22 tail for the PDF givesa51, and a Cauchy distribution.
In the case of the large separationdr , in two dimensions the
tail du23 gives a Gaussian distribution, while in three di-
mensions we obtain Holtzmark distribution. The velocity and
velocity difference PDFs for the singular cases can be sum-
marized as shown in Table I. It is important to note that a
system of vortexblobswill tend toward the normal distribu-
tion because of the finite variance. The rate of approach to-
ward the normal distribution will be different for velocity
and velocity derivatives, as the tails coming from the influ-
ence of a single vortex are different. For example, for small
dc the PDF for the velocity component induced by all vorti-
ces,pu(u) will approach the normal distribution more rap-
idly as N increases, compared to the PDF for the velocity
difference componentpdu(du). This retention of the power-
law form for pdu(du) is a consequence of the fact that, hav-
ing the velocity cutoffdc , the tails for the velocity PDF are
going to extend to the value of velocity of the order 1/dc ,
while the tails of the PDF of the velocity difference reach
values of the velocity difference of the order 1/dc

2 . An inter-
esting question is: what is the limiting distributions for the
velocity difference for intermediate values of the vortex
smoothing parameterdc , and for intermediate values of the
separation parameterdr . These parameters are related in the
sense that varying one or the other varies the inter-vortex
distance versus the separation distance between the velocity
measuring points. Although there is no strict limiting theo-
rem for intermediate values, the distribution has to make a

smooth transition from Cauchy~concave in a semi-log plot!
to Gaussian~convex in a semi-log plot!, starting at the tails,
as the vortex core is increased, or as the separation distance
dr is increased. We believe the intermediate distribution
passes through the exponential and near exponential distri-
butions. These issues are discussed further in the next section
and in section V.

The above derivation is valid for a system of N vortices,
each of which has the same sign and magnitude of circula-
tion G i under the assumptions outlined in section II. Note
that the condition of having vortices with identical circula-
tion may be difficult to meet in a real physical situation,
since vortices of different magnitudes may be found in a
given flow. However, we expect our conclusions to hold for
a system ofN vortices where the average circulationḠ is
equal toG for a system considered here, if the differences
between magnitudes of circulation of vortices are not too
large. Departure from the above described behavior is also
expected for smallN.

IV. COMPARISON TO SOME EXPERIMENTAL
RESULTS

In the introductory section, we briefly discussed some of
the experimental and numerical evidence regarding the ve-
locity difference PDF in turbulent flows. Recent numerical
experiments have shown that the small scales of turbulent
flows are composed of a collection of discrete vortex
elements.3 The velocity difference defined as
du(x,dr )[u(x1dr )2u(x) has often been measured, along
with the velocityu(x), to characterize turbulent flow. These
measurements typically show the velocity PDFs of near-
normal shape, and velocity difference PDFs of near-
exponential shape, or, as in Tong and Goldburg’s work,
Cauchy shape. While the near-normality of the PDF of the
velocity can be explained in terms of the central limit
theorem,26,27several explanations have been put forth for the
near-exponential shape of the velocity difference PDF.3,28,29

Frisch and She30 have proposed a similarity argument that
allows a nonlinear transformation between the variablesu0
ands5 ]u/]x so thatps(s) can be expressed as a function of
pu0(u0). A normally distributed pu0(u0) produces a
stretched exponential function~to the 4/3 power! for ps(s).
Extensions of this argument to include various intermittency
~K62 and multifractal! models have also been made.30,31

Kraichnan’s model produces a strict exponential for
ps(s).

32 Still another model is due to Kida33 in which he
proposes a ‘‘log-stable’’ model that also produces a stable
distribution for thelog of the dissipation field.

Experimental studies of turbulent flows using photon
correlation spectroscopy by Tong and Goldburg7–9 ~see also
Ref. 34! have shown that the distribution of relative velocity
~difference! is well approximated by the product of a Loren-
ztian ~Cauchy! function and a Gaussian-like function. They
suggest that the two functions are due to the effects of two
distinct regions of turbulent flow, with the small fluctuations
being characterized by the Lorentzian function, and the large
fluctuations being characterized by the Gaussian function. In
the previous section, we have shown that the PDF of the

TABLE I. Summary of PDFs.

2-D 3-D

pu(u) normal (a52) Holtzmark (a53/2)
pdu(du) small dr Cauchy (a51) Cauchy (a51)
pdu(du) largedr normal (a52) Holtzmark (a53/2)
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velocity difference ~for small r ) converges towards the
Cauchy distribution,

pdu~du!5
1

p

c

c21du2
, ~22!

for an ergodic system of discrete vortices in three dimen-
sions.

As the vortex smoothing parameterdc increases, the dis-
tribution departs from Cauchy starting at thetails. That is,
the effect of smoothing of the vorticity is to produce Gauss-
ian tails at largeruduu in the PDF. Thus, Tong and Gold-
burg’s contention thatpdu(du) has a Cauchy distribution for
small relative velocity fluctuations, and near-Gaussian for
large relative velocity fluctutations could follow from an ar-
gument similar to the ones presented in the previous sec-
tions. The Cauchy distribution derives from the power-law
fall off @du(r);1/r2 for 2-D, ;1/r3 for 3-D# of the veloc-
ity difference outside the vortex blob core region. This con-
tributes to the central~small uduu) region of pdu(du). The
tails of pdu(du) are determined by the largeuduu behavior,
which is a function of the shape of the vortex core. However,
because of the cutoff, it is reasonable to assume that a Gauss-
ian tail will result. Note that this explanation is in complete
accordance with Onuki’s34 discussion of Tong and Gold-
burg’s experiments, and gives his arguments a simplified
physical model~a system ofN vortex elements! as a base.
~Onuki34 has previously suggested an approach similar to
ours in reference to stable distributions and Takayasu’s14

study.!
We note that although the most commonly observed ve-

locity difference PDF in turbulence is the one with exponen-
tial tails, there is actually quite a bit of variability in the
measurements of the PDFs with respect to the separation
parameterdr , as illustrated by Figure 1 in Anselmetet al.’s
paper28 or in Figures 7 and 8 in Vincent and Meneguzzi’s
paper.3 The variation ofdr corresponds to probing of differ-
ent spatial scales of turbulence~inertial range and dissipation
range, for example!. Onuki34 attributes the contrasting results
of Tong and Goldburg to the greater Reynolds number in
their experiments, but there is a difference in experimental
procedure employed by Tong and Goldburg and that of other
authors. In particular, Tong and Goldburg’s measurements
which use the homodyne method, give the intensity of scat-
tered light correlation function which depends on the veloc-
ity difference of all particle pairs in the scattering volume.
For these pairs,dr ranges from dissipative scale to integral
scale. Thus, the measurements give an average of velocity
difference over dissipative, inertial and integral scales. We
have shown analytically in our model that for smalldr , for
small velocity fluctuations and for smalldc in three dimen-
sions the PDF of velocity differences is Cauchy. Also, we
have shown that under the same conditions, for largedr the
PDF is Gaussian. It is numerically shown in the next section
~and qualitatively argued in the previous section! that expo-
nential tails can arise for intermediate values ofdr . It is easy
to imagine that averaging over differentdr can produce a
PDF that looks like a product of a Cauchy and a Gaussian
with a transitional exponential region. In experiments by

other authors,dr is typically chosen in the inertial range and
fixed. Exponential tails are typically observed, but, as men-
tioned above, there is variability withdr .

Another aspect of turbulent flow statistics that this model
is consistent with is the fact that the flatness of the distribu-
tion of spatial derivatives increases as the order of the veloc-
ity derivative increases.26,36 In three dimensions,

]nu

]rn
;r222n, ~23!

PS ]nu

]rn
.UnD;r3, ~24!

pS ]nu

]rnD;S ]nu

]rnD
23/~n12! 21

. ~25!

Therefore, asn increases, the distribution becomes flatter,
implying strong intermittency.

V. NUMERICAL SIMULATIONS

We now provide numerical results for 2-D systems of
vortex elements, and compare them with the analytical dis-
cussion in previous sections. We will see that the numerical
simulations seem to justify the assumptions that we made in
order to derive limiting distributions.

The velocity field due toN vortices in a stationary con-
figuration was numerically studied using vortex
methods.37,22,1 The vortex method of flow computation in-
volves keeping track of the vorticityv as it moves around in
a Lagrangian sense. The calculation of velocity is done by
the Biot–Savart law, which for two-dimensions is

u~x,t !5
dx

dt
~x,t !52

1

2pE ~x2x8!3v~x8,t !

ux2x8u2
dx81¹f.

~26!

This is the solution to the Poisson equation describing the
relationship between the velocityu and the vorticityv,

¹2u52¹3v. ~27!

The domain of motion in our problem is infinite with no
solid boundaries and no flow at infinity which dictates that
¹f50. The nature of the same-sign-same-magnitude-
vortices flow is such that the motion actually takes place in a
finite domain. In two dimensions the vorticity isv5vêz and
for the point vortex case the scalar fieldv is represented by
Eq. ~1!,

v~x,t !5(
i51

N

G id@x2xi~ t !#,

whered is the Dirac delta function andG i is the strength of
the i th vortex. This gives a system of 2N nonlinear ODEs for
the positions of theN vortices:

dxi
dt

52
1

2p (
j51,jÞ i

N
G j~xi2xj !3êz

uxi2xj u2
. ~28!

Because of the singularity at the core of the vortices,
vortex blob methods are often used to simulate vortical
flows. There are several ways to de-singularize the
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Downloaded¬02¬Apr¬2006¬to¬131.215.240.9.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



vorticity,22,23 but we use the simple algebraic core method
with the parameterdc . The vorticity distribution is now
given by Eq.~8!,

v~x,t !5
1

p(
i51

N
G idc

2

~dc
21ux2xi u2!2

and the velocity of each vortex blob evaluated at the center is

dxi
dt

52
1

2p (
j51,jÞ i

N
G j~xi2xj !3êz
uxi2xj u21dc

2 . ~29!

The parameterdc can then be conveniently used to vary the
vorticity distribution from isolated point vortices (dc50) to
vortices having significant overlap (dc5 large!. Along with
the parameterN, this allows us to explore the consequences
of different vorticity distributions in terms of the velocity
statistics.

There are four known invariants for the singular vortex
system:22

x-linear impulse, I x5(
i51

N

G ixi5 const; ~30!

y-linear impulse, I y5(
i51

N

G i yi5 const; ~31!

angular impulse, I r25L25(
i51

N

G i r i
25 const; ~32!

and

energy, I E5H52
1

4p(
iÞ j

N

(
jÞ i

N

G iG j logur i2r j u

5 const, ~33!

and similarly for the vortex blobs. Solutions of the vortex
motion must observe the invariance of these quantities.

Equation~28! or ~29! is integrated using a fourth order
Runge-Kutta scheme for the Lagrangian motion of the vor-
tices. Velocity statistics are collected at stationary points in
the domain. The time steps (Dt) are chosen such that the
change in the invariantH @Eq. ~33!# is maintained to within
1% of the initial value. The other invariants@Eqs.~30!-~32!#
are satisfied to much higher levels of accuracy. While there
have been numerical techniques developed~symplectic inte-
grators, see Ref. 38, for example! specifically to take advan-
tage of the Hamiltonian structure of systems such as ours,
they were deemed computationally economic only for cases
where extremely stringent requirements on the invariance of
H were necessary. Because of the chaotic nature of the vor-
tex motion, error propagation during numerical computation
is inevitable. This is a clear manifestation of the ‘‘sensitive
dependence on initial conditions,’’ and there is no way
around it. It is of course, helpful to maintain the known
invariants of motion for vortex systems@see Eqs.~30!-~33!#.
In the following we take the position that while the exact
position of the vortices cannot be known, the overall proper-
ties remain the same and correct in the statistical sense.

A. Vortex configurations

The simulations involveN vortices that have the same
circulation and sign~the purpose of this is to obtain long
term statistics, as vortices of different signs tend to pair up
and move away!. The initial configurations are chosen such
that they match the equilibrium state for the vortices as de-
rived by Lundgren and Pointin.16

Although we roughly sketch Lundgren and Pointin’s16

equilibrium statistics analysis of two-dimensional vortices
below, it is recommended that the original article16 and other
related papers by Montgomery and Joyce39 or Kraichnan and
Montgomery40 for example be consulted. The reduced prob-
ability density functionp1(x1) can be defined through the
expression

p1~x1!dx15Prob.$x1Pdx1% ~34!

and

E p1~x1!dx151, ~35!

FIG. 1. p1(r ) vs r for N5913,d50.0033 att50 andt51000.

FIG. 2. ^uu(r )& for N5913,d50.0033.
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wherex1 is the position of a single vortex. It follows natu-
rally then, that the average vorticity, is given by

^v~x!&5Gp1~x!. ~36!

An equilibrium configuration based on a closure approxima-
tion for the one point distribution is then proposed, which
produces an integral equation forp1(x1) that has the follow-
ing Gaussian distribution as a solution for the parameter
choicel50 ~wherel is proportional to the inverse tempera-
ture, related to the energyH of the system!,

p1~x1!5
1

pL2
e2„~x12I xêx2I yêy!/L…2. ~37!

Since we will be dealing with vortex distributions that are
symmetric about the origin~in the mean!, we will use polar
coordinates (r ,u), and represent the one point distribution
p1(x1) by p1(r ).

The initial vortex positions chosen for our numer-
ical simulations are such that the invariants of motion
are specified as follows @see Eqs. ~30-33!#:

I x50, Iy50, Ir25L251, IE5H520.00461. This choice of
the value for H ~energy! corresponds to Lundgren and
Pointin’s16 l50 state withp1(r ) given by e2r2/p. Since
there are an infinite number of possible configurations for a
fixedH, we randomly generate large numbers of initial con-
figurations and pick one that is sufficiently close to the de-
siredH. TheH values for the system can be ‘‘tweaked’’ by
moving adjacent vortices closer to or farther away from each
other ~since the interaction energy is a function of the inter-
vortex distances!. All the vortices are of the same sign and
magnitude, the total circulationG satisfyingG5( i51

N G i51.
The two conditions, I r25L251 and G5( i51

N G i51
together set the length scale and the time scale for
the N-vortex system. All the other parameters
dc ,dr ,x,y,t,u,v,v,H,l are scaled with respect to the pa-
rametersI r251 andG51.

Figure 1 shows typical probability densities
p1(r )5^v(r )&/G ~see Ref. 16! at the beginning and end of
the simulations with the predicted equilibrium curve. Our
numerical simulations provide a limited validation of the clo-

FIG. 3. pui(ui) andpv i(v i) the PDF of the velocity due to a single vortex
for N5913, dc50.

FIG. 4. Normalizedpu(u) for N5270, dc50.1.

FIG. 5. Normalizedpu(u) for N5913 andN5150, dc50.

FIG. 6. Flatnessm4 as a function ofN for dc50, showing convergence
towards the value 3 for largeN.
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sure scheme proposed by Lundgren and Pointin16 for the
equilibrium vortex state, at least for initial configurations that
start off with the predicted solution.

Assuming there is nou dependence in the mean, the
mean velocity can be evaluated by using Stokes’ theorem,

E
c
u•dl5E

A
vdA, ~38!

and averaging over an ensemble of possible configurations,

^uu~r !2pr &5K E
0

r

v2pr 8dr8L . ~39!

Making use of Ref. 16,

p1~r !5
1

p
e2r2, ~40!

^uu~r !&5
G

pr E0
r

e2r 82r 8dr852
1

2pr
@e2r221#. ~41!

This average tangential velocity profile^uu(r )& is compared
with the results of a typical numerical simulation in Figure 2.
For the numerical simulation,^uu(r )& is computed at various
r along a fixedu, averaged over time~smoother statistics
could of course have been obtained by averaging inu direc-
tion as well!. We are dealing with a non-homogenous flow,
but when properly normalized, the PDFs are similar at any
x location. For largeN and finitedc , we can summarize the
velocity field as consisting of a distinct large scale mean
field, with statistical fluctuations about it. By statistical, we
mean roughly that the law of large numbers is followed,
which states that if the mean exists and the variances i

2 ~due
to each vortex! is finite, thens2;s i

2/N. This implies that as
N→`, the fluctuations die out. This is seen in our simula-
tions with vortex blobs.

B. Numerical results

The PDFpui(ui) is plotted in Figure 3, along with a

ui
23 power-law function for comparison. The normalized

FIG. 7. pdv i
(dv i), the PDF of velocity difference due to a single vortex, for

N5150, dc50.01, dr51028.

FIG. 8. pdv(dv), the PDF of the ~normalized! velocity difference
dv5v1(x1r )2v1(x)/dr for variousdc , N5150.

FIG. 9. pdv(dv), the PDF of the~normalized! velocity difference for
N5150, dc50.01, dr51028.

FIG. 10. pdv(dv), the PDF of the~normalized! velocity difference for
N5150, dc50.05, dr51028.
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PDF pu(u) of u5(ui , computed from a simulation with
dc Þ 0 is shown in Figure 4, along with a Gaussian curve.
The fit is quite good, in contrast to thedc50 case shown in
Figure 5. Our earlier derivation showed thatpu(u) should
converge towards the Gaussian distribution for the two di-
mensional case, however,N needs to be very large before the
convergence towards the Gaussian is noticeable. Figure 6
shows the flatness factor for various simulations with
dc50 asN is varied. Convergence towards a value of 3~the
Gaussian value! is seen asN is increased. We have already
mentioned~see section III! that this slow convergence can be
explained in terms of the logarithmic divergence of the vari-
ance of a singularN-vortex system.

For the velocity difference, Figure 7 showspui(dui),
i.e., the contribution due to one vortex as it moves around the
fixed measuring points. As predicted, there is adui

22 fall-off
region in the middle, while the tails deviate because of the
non-singular vortex core. Figure 8 showspdu(du) for several
dc values~parameter values are as shown in the caption!. We

provide separate plots in Figures 9, 10, and 11, where the fit
to Cauchy, exponential, and normal functions, respectively,
are shown. A similar trend is seen for the variation of the
separation parameterdr . For a fixeddc value, the Cauchy,
exponential and normal distributions forpdu(du) can be
seen asdr is increased. This can be seen in Figure 12. In
particular, Figure 13 shows an intermediatedr value at
which the deviation from the Cauchy distribution can be seen
occurring at the tails, and approaching the exponential distri-
bution. Thus our numerical calculations are in agreement
with the theory discussed in the earlier sections.

VI. SUMMARY

We have described the velocity field statistics for the
N vortex problem, using a decomposition of the Eulerian
velocity at a fixed point into a sum ofN individual compo-
nents whose contributions are supplied by the velocity in-
duced by each vortex. This allows us to make use of limit
distribution theorems to describe the velocity at the fixed
point. In particular, the tails of the velocity distribution of
individual vortices have been used to show that there is a
qualitative difference in the velocity statistics for the singular
and the non-singular vortices. Vortex methods are also often
used in modeling turbulent flows such as the mixing layer.
The statistics collected from such simulations have to be
carefully considered in light of the above discussion on the
existence of the variance and the dependence of the variance
on the value ofdc . The application of a similar methodology
to the velocity difference produced distributions that shed
some light on the possible source of the statistics that are
seen in turbulent flow experiments. Numerical experiments
involving two-dimensional vortex elements are presented;
with results that match the theory well.

Note: It has come to our attention after the submission of
this article, that results similar to those presented here have
been independently arrived at by J. Jime´nez@Abstracts of the
APS DFD meeting, Irvine, California, November, 1995# in
his study of two-dimensional turbulence.

FIG. 11. pdv(dv), the PDF of the~normalized! velocity difference for
N5150, dc50.1, dr51028.

FIG. 12. pdv(dv), the PDF of the~normalized! velocity difference for
N5150, dc50.01, and variousdr . dr50.01,0.05, 0.1, 0.2, 0.5.

FIG. 13. pdv(dv), the PDF of the~normalized! velocity difference for
N5150,dc50.01 ,dr50.05
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APPENDIX: ERGODICITY AND VORTEX DENSITY
DISTRIBUTIONS

In this appendix we prove that ergodicity of the motion
of the system ofN vortices of the same sign and circulation
G in the phase spaceR2N implies thatpi(xi)5pj (xj ), for any
i , j in $0, . . . ,N%, where pi(xi) is the probability density
function of i th vortex @i.e., *Api(xi)dA is a probability that
the vortexi is in the setA in R2 or R3]. In other words, the
one-vortex probability density is the same for all vortices, if
the motion of the vortex system is ergodic.

Note first thatpi(xi) is derived as a density of a set
function p(vortex i is in a setA)[pi(A). We shall some-
times explicitly denote the dependence of this function on
initial conditions of the vortex system by writing
pi„Au(x0,y0)…, wherex05(x1

0 , . . . ,xN
0 ),y05(y1

0 , . . . ,yN
0 ). If

we showpi(A)5pj (A) for all i , j ,A, we are done.
Let f t(x0,y0) be the flow induced inR2N by the system

of N vortices, depending on the initial conditions of vortices.
By Ā we denote the ‘‘cylinder set’’
A 5̄R23R23 . . .3A . . .3R2 whereA is in the i -th posi-
tion in the product. ByA8 we denote a cylinder set analogous
to Ā with A being in thej -th position in the product. Now,
by definition, the probability that the vortexi is in a setA is
the relative~compared to total time! amount of time that the
vortex spends inA. Formally,

pi„Au~x0,y0!…5 limt→`

1

t E0
t

I Ā„f
t̄ ~x0,y0!…dt̄,

~A1!

pj„Au~x0,y0!…5 limt→`

1

t E0
t

I A8~f t̄
„x0,y0!…dt̄,

where I X is the indicator function for the setX, defined by
I X(x,y)51 if (x,y) P X andI X(x,y)50 otherwise.

We define a symmetryS by S:xn→xn ,yn→yn if n
Þ i , j and S:xi→xj ,xj→xi ,yi→yj ,yj→yi . Applying the
symmetryS is equivalent to interchanging positions of two
vortices. The equations of motion for anN-vortex system are
invariant underS, as the vortices are of the same sign and
circulation. Thus ,

pi„Au~x0,y0!…5pj„AuS~x0,y0!…. ~A2!

This is easy to understand, as if we interchange the positions
of two identical vorticesi and j initially ( t50), the motion
is going to proceed in exactly the same manner, with the
exception that the vortexi is going to trace the trajectory of
the vortexj and vice versa.

Assuming the vortex system is ergodic implies that for
almost all initial (x0,y0) on the surface in the phase space
defined by the constants of motion of the vortex system,
pi„Au(x0,y0)…5c1 , some constant. Also, for almost all initial
conditions,pj„Au(x0,y0)…5c2 . Assumingc1 Þ c2 in the light
of ~A2! gives us a contradiction.

This proposition is not true in the case when vortices
have the same sign but different circulations. For that case,
and some consequences, see Ref. 41.
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