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The probability density functiond®DF9 of the velocity and the velocity difference field induced by

a distribution of a large number of discrete vortex elements are investigated numerically and
analytically. Tails of PDFs of the velocity and velocity difference induced by a single vortex
element are found. Treating velocities induced by different vortex elements as independent random
variables, PDFs of the velocity and velocity difference induced by all vortex elements are found
using limit distribution theorems for stable distributions. Our results generalize and extend the
analysis by TakayaduProg. Theor. Phys72, 471(1984)]. In particular, we are able to treat general
distributions of vorticity, and obtain results for velocity differences and velocity derivatives of
arbitrary order. The PDF for velocity differences of a system of singular vortex elements is shown
to be Cauchy in the case of small separatiorboth in 2 and 3 dimensions. A similar type of
analysis is also applied to non-singular vortex blobs. We perform numerical simulations of the
system of vortex elements in two dimensions, and find that the results compare favorably with the
theory based on the independence assumption. These results are related to the experimental and
numerical measurements of velocity and velocity difference statistics in the literature. In particular,
the appearance of the Cauchy distribution for the velocity difference can be used to explain the
experimental observations of Tong and Goldbihys. Lett. A127, 147(1988; Phys. Rev. A37,
2125,(1988; Phys. Fluids31, 2841(1988] for turbulent flows. In addition, for intermediate values

of the separation distance, near exponential tails are foundl9@5 American Institute of Physics.
[S1070-663(96)01605-1

I. INTRODUCTION merically the induced velocity PDF itself, for the system of
. ) ) vortex elements in two dimensions, and PDFs of its deriva-
We study the probability density functidi®’DF) of ve- es of arbitrary order. We also propose a theory for the

locity and velocity difference associated with a discrete, de'observed results based on some assumptions discussed be-

terministic vortex system. There are at least two reasons fqp, ;2 extend this theory to three-dimensional situations.

considering such a system: firstly, the discrete vortex mode\INe do this by first analyzing the velocity field induced by a
as a computational technique has seen much developmentén

ingle vortex and then using limit distribution theorems to
recent year$;? and has proven to be a useful tool for flow 9 g

: : R . include the effects of the contribution of all the vortices.
computation. Secondly, recent visualizations of fine-scales o Co - e
: ; Investigation of the statistics of the velocity field induced by
turbulence (experimental and numerigahave shown the

presence of distinct vortex elements as being the key drivetlhe motion ofN singular vortices and vortices with a finite

of the flow>* These facts are clearly not unrelated. Further c°'® is the main thrust of this paper. A connection with ex-
Saffmar? proposes that' .. turbulence should be modeled ‘perimental and numerical measurements of velocity and ve-
or described as the creation, evolution, interaction and deca!?cny differgnce distribgtion; in turbulenF flows is attempted.
of these[discrete vorticdl structurs .....” In this context, it The main assumptions in the analytical part of this work
is of obvious interest to find the statistical behavior of the@'® that the system of vortex elements is ergodic in its phase
velocity field associated with a collection of discrete vortexSPace(see Section Il and the Appendpand that the veloci-
elements, singular or with a core, and compare the resulfé€s induced by different vortices can be treated as indepen-
obtained to numerical simulations and experimentsdent random variables. For an investigation of the ergodicity
Noviko\® has made a step in this direction by finding the @Ssumption for a system &f point vortices, see Ref. 10. We
energy spectrum of a velocity field induced by a system oﬁlso assume that the probablllty density of a vortex element
N singular vortices in the plane. In this work we study nu-in the physical space is not concentrated on a fractal set, so
that it is an ordinary, two or three dimensional, probability
dCurrent address: Fluid Mechanics Department, The Aerospace Corp., P.(Sj.lsmt.)unqn' These assumptlons are sufficient to produce. a
Box 92057, Los Angeles, California 90009. Electronic mail: VelOCity difference PDF which can be used to explain experi-
min@Ivtd2.aero.org mental results by Tong and Goldburg. Tong and
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Goldburg’s° experimental measurements of relative veloc-flow computation where discrete, Lagrangian vortex ele-
ity in turbulent flows show a PDF that is well approximated ments are used to simulate turbulent flows, we hope to pro-
by the product of a LorentziafCauchy distributionand a  vide an understanding of the range of validity of these mod-
Gaussian function. We show in this paper the conditions unels for gathering statistics. In particular, it follows from our
der which these functions are produced for tKevortex  work that PDFs of velocity induced by a system of N vorti-
model. We also provide an explanati@macked by numerical ces with a finite core can have long non-Gaussian tails if the
experimentsfor the appearance of near-exponential tails thatcutoff parameter of the core is small.
are often seen in turbulence experiments. In section Il we investigate the PDF of the velocity in-
In discussing the limit distributions of sums of the ve- duced by a single vortex element moving under the influence
locity or velocity difference contributions from single vorti- of N vortex elements, under the assumptions described
ces, we will be making use of stable distributiqasso often  above. The construction of the tails of the PDF for the ve-
referred to as [ey stable distributions A brief description locity at a fixed location due to singlevortex, is presented.
of stable distributions can be stated as follows: Consider inThe PDF associated with the velocity dueaibthe vortices,
dependent random variableX;,X,,... and the sum follows from the use of limit distribution theorems. The
X,=X;+X,+ ..., where the variableX,,X,, ... have the =~ same construction is used to analyze the velocity difference
same distributiorR. The distributiorR is stable ifX, has the ~PDF. In section IV a connection is made with some experi-
same distribution a¥; (i.e., R) apart from norming con- mental data. In section V, numerical simulations with
stants. See Fell&r for more detailed description and ex- N-vortices in two dimensions are described, and the results
amples. The importance of stable distributions in physicafre favorably compared with analytical predictions. In Ap-

processes has been highlighted by Mandellfratlontroll ~ pendix A we show that a sufficient condition for an assump-
and Sh|e5inge|13 and Takayasﬂ]z,l among otherqsee also tion on reduced probability densities is ergodicity of a sys-
Shlesingeret alX® for a recent collection of papers tem of vortex elements in their phase space.

The history of investigation of systems of point vortices

is long. The statistical physics approach has been applied to
. IIl. THE VELOCITY AND VELOCITY DIFFERENCE

the problem of a large number of vorticésee Ref. 16, for FIELD DUE TO A SINGLE VORTEX
examplg. Other authors have used the vortex element ap-
proach to solve interesting flow problerfsee Ref. 1 The The two-dimensional singular vortex case is discussed in
integrability and chaotic dynamics of the few vortex problemdetail first; the vortex blob and the three-dimensional cases
(see Refs. 17, 18, and J1@nd the references thergihas follow naturally.
been studied intensely. Recently, renewed interest in systenAs
of N interacting vortices has been sparked by the observation’
that two dimensional random divergence free fields get orga- The two-dimensional vorticity field represented by a col-
nized into distinct vortical structures under the dynamics oflection of N singular vortices is given by
Navier-Stokes equation&ee, e.g., Ref. 19 Of particular N
interest are_chaqtlc advection and dlspe_rsmn of flwd particles wzz L 8(x—x;), (1)
in a velocity field produced byN point vortices (see i=1
Viecelli*® and Babianoet al?!). Our work may shed some \yhere s denotes the Dirac delta function.
light on these issues by providing information about the sta-  The velocity at poink induced by the above distribution
tistics of the velocity field that produces chaotic motion andy yorticity is
dispersion of fluid particles.

Two-dimensional vorticity distribution

N N
An earlier paper by Takaya&ticontains some points in 1 & Tily—w)
- : . U= = 5=, =7 =2, U(), 2)
common with the analytical part of our work; namely, the 27 X=X =
idea of decomposition of velocity to contributions from in- N \
dividual vortices, the assumption of independence, and the 1 Fi(x—=x;
o ' MG, y L L ) 3

importance of stable distributions in describing the PDF of

the velocity. We introduce several new ideas that build on - ) )
this work: the investigation of velocitglifferencePDF (a  Where thex; are the vortex positions ang(x) is that portion

useful parameter in turbulence, as discussed belawnore ~ Of theX component of velocity induced by thén vortex:

T 2aE x—x|F

general derivation, introduction of non-singular vorticity, —T; (y—vyi) T; sing;

and an attempt to relate these results to those of turbulent Ui(X)=—5— X2~ 27 py 4
flows. Takayasu predicts that the PDF of velocity induced by ' '

vortex elements in three dimensions is the Holtzmark distri-  pi=|X—Xil, )

bution. However, there is no known experimental or numeri-
cal evidence of the Holtzmark distribution for the velocity g, =tan"!
PDFp,(u) in turbulence. It is often accepted thai(u) in a

turbulent flow is nearly normally distributed; this is easily and similarly, they component induced by vortexis
accounted for with the use of vortex blobs or singular vortex
I (x=x) T cow,

filaments. L 5=
In view of the increasing use ofortex method$?! of 2m [x=x|* 27 p

u) ©

7

vi(X)=
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For the sake of simplicity of derivation, consider the |ui|>|ui|max. Note that this allows for the existence of a

norm of the velocity,|u| rather than its component@n  mean as well as a variance for the velocity; in the case of the
analogous derivation in terms of the components is straightsingular vortex, the variance does not exist.

forward, but a little more cumbersomelet us define
pu,(|uil;x|pi(x;)) as the probability density of the norm of
the velocity due to a single vorte)x measured ak. The

: i . . Three-di ional icity distributi
reduced PDFp;(x) is defined through the expression C. Three-dimensional vorticity distribution

pi(X;)dx;= Probabilityf vortex i e dx;} andfp;(x;)dx;=1. For the three-dimensional case, we must discuss an ap-
x; is the position of a single vortek (see Lundgren and propriate form for the spatial distribution of vorticity. Just as
Pointint®). the vorticity in two dimensions was discretized to a collec-

Let us now restrict the discussion to the case in which altion of N delta functions or smooth core structures, the vor-
the vortices are of the same sign and magnitdde, That ticity in three dimensions is often discretized in the form of
pi(x) is independent of vortex labélif ergodicity of the  vector valued vortex particles or vortex filameht€onsid-
vortex system is assumed, follows from the considerations igring the vector particle approach, the vorticity is assumed to
the Appendix. From now on we assume ergodicity and debe highly concentrated only at discrete locations®
note PDF for the position of a single vortex by(x;). For
notational convenience we will henceforth denote
pu,([Uil:XIp2(x1)) by pu(Jui), neglecting the dependence w(X,t)ZZ a7 (X=X (1)) + @(x1), (10
on x. The probability density associated with the velocity
due toall N vortices atx is denotedp,(|u|), again neglect-
ing the dependence on

We are interested only in the highu;| tails of
pu([ui]). Consider the probabilit(|u;|>U) that the norm
of the velocity induced by a single vortex is bigger tHan 1
This probability is proportional td = fgp;(x;)dx;, where ¥i(x)= =5 p(|x|/ o) (19
B is a ball of radiusp=I'/277U . If we assume that the PDF i
for vortex positionp,(x,) is well-behavednot concentrated
on some fractal set of dimension less thanald strictly
positive, thenl ~p? when p is small U large. Thus we
obtain

N

where the vectoy, has the units of circulation times length,
and the spatial distribution for each vortex is given by some
function v;(x),

with an effective core radiugr;. In the caseo;=0, the

vi's become Dirac delta functions. The ter{(x,t) in Eq.

(10) represents the additional term needed to ensure the di-
vergence free requiremefitit will not be considered fur-
P(lu|>U)~U"?, ther, since it makes no contribution to the velocity field. The
above vorticity distribution can be substituted into the Biot-

for large U. Assuming the above function has a derivative, e ) s
Savart equation in three dimensions,

that derivative is exactly,, (|u;|) and

pu (Ui~ u| =3, 1 [ (x—x")Xe(x'

(D ~u o= - [ CHIX ) .
for large|u;|. ™ X=X
to obtain a discrete form of the velocity induced by tke
vortex elements. Note that in this representation both the

B. Non-singular vortex case (vortex blobs) positions of vortex elements and their intensitias can
The singular point vortex representation can pechange. Assuming ergodicity in the phase space, velocity

smoothed out to get a non-singular vortex blob. There arénduced by one vortex element is characterized by some
several schemes to do this. We will work with the simpleM&an intensityx which is the same for all vortex elements.

algebraic core method which has the following vorticity dis-  Following a derivation similar to section Il A, in the sin-

tribution: gular case we obtainp;(Juj|)~|u| %% For the de-
N ) singularized(finite o;) case, we have the same tail, but there
B 12 I’ 6¢ is a maximum cut-off velocity.
w(X,t)= P (5Z+ Ix—x{|%)?’ (8) For the case where the three-dimensional vorticity is rep-

] ] _ resented by thin vortex filaments the results of the two-
where 5; is a constant. Extension to other smoothinggimensional analyses can be applied. This is because as
schemes is straightforward. The norm of the velocity inducedyears the filament, the high velocity tail approaches the form

atx by a vortex at a distance=|x—x| is of the two-dimensional vortex case. For the sake of conve-
Lip nience, we shall henceforth omit derivations involving fila-
lui(p)|=— 20?1 5D (9  ments with the implicit understanding that the results of the
C

two-dimensional analyses carries over directly. This also has
and there is clearly an upper bound to the valugugfgiven  the interesting implication that the velocity statistics can
by Uil max=T'i/(475;.) atp=45.. So the finite core param- have different behavior depending on the physical form of
eter 5. acts as a cutoff such thap(Ju;|) is zero for the vorticity.
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D. PDF of the velocity difference

Now we apply our methods to investigate tails of the
the velocity difference

probability distribution for
psu(8u(x; 8r)), wheredu(x;or)=u(x+ or)—u(x). We de-
compose the velocity difference as

N

Su(x,8r) =2, Sui(x,dr), (13)
=1
where the contribution of each vortex is
_ i [(x—=x)X&, (x+r—x)Xe,
OUi(X; o) =~ 27| |x=x|%2  [x+or—x|?
(14
Expanding for smallsr =|ér|, we have
Fi or
(15

|6ui(x;5r)|~zziz.

Using a derivation similar to section Il A, for the same sign

and magnitudd’;, we have

P(] 8ui| > 8U)~ f P(Xq) 8%~ p?~ 58U~ L, (16)
B
and therefore
pi(|sui)~|ou| =2, for large|su;|. 17
For the three-dimensional particle case,
P(louf>00)~ [ pO)ox—p?~ou 19
B

whereB is now a ball in three-dimensions of radigs we

Since we are interested in the PDFs of the sums of ran-
dom variableay; or du;, we turn to limit distribution theo-
rems to find the forms of the PDFs. We will first briefly
discuss the central limit theorem, and then go on to other
stable distributions.

In the study of normalized sums of independent random
variables of the form

1 N
Xn=—2 X,
=3 X

where X;’s have a common PDp;(x;), the central limit
theorem establishes the conditions under wiXghs asymp-
totically normally distributed. In its simplest form, the cen-
tral limit theorem statéd that for a system with mean
E(X;)=0 and varianceri2=1, asN—o the distribution of
the normalized sunXy tends to the normal distribution with
the density

1
p(x)= N e X2

As applied to ouiN-vortex problemjf the velocity contribu-
tion of each vortexy;(x) can be considered dndependent,
identically distributed random variable, then a®l—oo,
p.(u;x) approaches a normal distribution regardless of the
shape of the individual density functiqm, (u;), provided the
mean and the variance exist, as we can always shift the mean
to zero and scale the variance to 1. This is the case for vortex
blobs, where the finite velocity insures existence of the mean
and the variance.

In general, Lgy stable distributions are interesting be-

see that we obtain the same result for the tails of the PDF, i.eause of the fact that they are the only possible limiting
(17) holds. Similar derivations can be made for velocity de-probability distributions of normed sums of stationary inde-

rivatives.

In the casedr > p, in two-dimensions, it is easy to see
that the tail of the PDF is the same as in the case of the
velocity (|6u| ), as contributions to the tail arise from the
time that the vortex spends in a small neighborhood of any o
In three-

the two points involved in the difference.
dimensions, by the same argument, the tail hgsu 2
decay for largedr.

lll. LIMIT DISTRIBUTIONS

In this section we will consider sums of independent

pendent random variables,

N
1
—> X;—Ay

XN:BNi:1

(19
Esee the introductory section or Refs. 11, 24, 15 or 25 for an
interesting example in stellar dynamicsBecause of the
above mentioned symmetry of distributions induced by
single vortices we are only going to be interested in symmet-
ric Lévy stable distributions that have characteristic func-
tions of the form

di(k)=e M o<a=2. (20)

random variables for which tails of PDFs decay algebra- N _
ically. In the previous section we considered the norm of thel "€ conditions on the range afare imposed by the fact that

velocity u and velocity differenceSu. We chose those quan- JP(U)du=1. Thea's are known as the characteristic expo-

tities because of the ease of the presentaftiotational sym-

nents, witha=2 being the Gaussian distribution and=1

metry). The same results on the tails hold for the velocityP€ing the Cauchy distribution. Apart from being well known,
components. For the calculation of limits in this section wethese two special cases are also of particular interest to our

consider the PDp,(u,x) of the velocity component and

application (as is @=3/2, the Holtzmark distribution For

the PDF py,(du,x) of the velocity difference component 'argex and 0<a<2, the PDF with a characteristic function
su in the direction of arbitrary axis. We do this again for the (20) has the asymptoticiX| —) form (see Ref. 18

clarity of presentation, as symmetry of the single vortex PDF

Pi(Ui,X) (psu(dui,x)) when uj—+o (Suj—+=) and
u;— — o (8u;— —o0) can be used. Similar resulg&ith non-

I'(a)sin(1/2) ma

'7T|X|a+l y o<a<2.

p(x)~ (21)

symmetric stable distributiongan be obtained for the norm Now, consider the random variab} with zero mean and
of the velocity, velocity difference and velocity derivatives. distribution functionF(x) =P(X<Xx). Following Ref. 24, if
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TABLE I. Summary of PDFs. smooth transition from Cauchigoncave in a semi-log plpt
to Gaussiar(convex in a semi-log plot starting at the tails,

2-D 3-D L X .

as the vortex core is increased, or as the separation distance
pu(u) normal (@=2) Holtzmark (@=3/2) or is increased. We believe the intermediate distribution
Pou(du) small or Cauchy @=1) Cauchy @=1) passes through the exponential and near exponential distri-
psu(du) large or normal (@=2) Holtzmark (@=3/2)

butions. These issues are discussed further in the next section
and in section V.

The above derivation is valid for a system of N vortices,
each of which has the same sign and magnitude of circula-
tion T'; under the assumptions outlined in section Il. Note
that the condition of having vortices with identical circula-
tion may be difficult to meet in a real physical situation,
since vortices of different magnitudes may be found in a
distribution to a Ley stable distribution with exponent. In given flow. HOWGV?“ we expect our concluspns to_m’_ld for
the case whem=2 the limiting distribution is Gaussian. & System ofN vortices where the average circulatibnis
Based on this and the results in section I, in the case of §dual tol' for a system considered here, if the differences
two-dimensional velocity field we expect convergence to-Petween magnitudes of circulation of vortices are not too
wards the Gaussian. It is interesting to point out that thdarge. Departure from the above described behavior is also
variance for a system of vortices in 2-D diverges logarithmi-&XPected for smalN.
cally! Still, the limiting distribution is Gaussiatas the loga-
rithmic function is “slowly varying;” see Ref. 2} Thi; is v COMPARISON TO SOME EXPERIMENTAL
important for the very slow convergence to a Gaussian thaggsyLTs
we observe numerically(see section Y For three-
dimensional vortex particlesy=3/2, and the convergence In the introductory section, we briefly discussed some of
towards the Holtzmark distribution should be seen. Theséhe experimental and numerical evidence regarding the ve-
two results have already been discussed by Takayass. locity difference PDF in turbulent flows. Recent numerical
mentioned earlier, for the case of vortex filaments in threeexperiments have shown that the small scales of turbulent
dimensions, the limiting distribution for the velocity is flows are composed of a collection of discrete vortex
Gaussian, following the two dimensional result. elements. The velocity difference  defined as

For the velocity difference distribution in the case of a du(X,dr)=u(x+ ér) —u(x) has often been measured, along
small separatiorr, in both two and three dimensions, the With the velocityu(x), to characterize turbulent flow. These
Su~2 tail for the PDF givesy= 1, and a Cauchy distribution. measurements typically show the velocity PDFs of near-
In the case of the large separatién, in two dimensions the normal shape, and velocity difference PDFs of near-
tail su~2 gives a Gaussian distribution, while in three di- exponential shape, or, as in Tong and Goldburg's work,
mensions we obtain Holtzmark distribution. The velocity andCauchy shape. While the near-normality of the PDF of the
velocity difference PDFs for the singular cases can be sumvelocity can be explained in terms of the central limit
marized as shown in Table I. It is important to note that atheorent,>*’ several explanations have been put forth for the
system of vortesblobswill tend toward the normal distribu- Nnear-exponential shape of the velocity difference PEF?
tion because of the finite variance. The rate of approach toFrisch and SHE have proposed a similarity argument that
ward the normal distribution will be different for velocity allows a nonlinear transformation between the variablgs
and velocity derivatives, as the tails coming from the influ-ands= du/dx so thatpy(s) can be expressed as a function of
ence of a single vortex are different. For example, for smalPu,(Uo). A normally distributed p, (up) produces a
6. the PDF for the velocity component induced by all vorti- stretched exponential functidito the 4/3 powerfor pg(s).
ces, py(u) will approach the normal distribution more rap- Extensions of this argument to include various intermittency
idly as N increases, compared to the PDF for the velocity(K62 and multifractal models have also been matie?!
difference component;,(Sdu). This retention of the power- Kraichnan’s model produces a strict exponential for
law form for ps,(6u) is a consequence of the fact that, hav- p4(s).®? Still another model is due to Kid&in which he
ing the velocity cutoffé,, the tails for the velocity PDF are proposes a “log-stable” model that also produces a stable
going to extend to the value of velocity of the ordebl/  distribution for thelog of the dissipation field.
while the tails of the PDF of the velocity difference reach Experimental studies of turbulent flows using photon
values of the velocity difference of the ordeﬁﬁl Aninter-  correlation spectroscopy by Tong and GoldHuPgsee also
esting question is: what is the limiting distributions for the Ref. 34 have shown that the distribution of relative velocity
velocity difference for intermediate values of the vortex (difference is well approximated by the product of a Loren-
smoothing parametes., and for intermediate values of the ztian (Cauchy function and a Gaussian-like function. They
separation parameter. These parameters are related in thesuggest that the two functions are due to the effects of two
sense that varying one or the other varies the inter-vortedistinct regions of turbulent flow, with the small fluctuations
distance versus the separation distance between the velocitging characterized by the Lorentzian function, and the large
measuring points. Although there is no strict limiting theo- fluctuations being characterized by the Gaussian function. In
rem for intermediate values, the distribution has to make ahe previous section, we have shown that the PDF of the

F(x)~c/x* as x——o and F(x)~1—c/x* as x—o»,
where 0<a<2, ¢c>0 thenF belongs to the domain of at-
traction of a symmetric stable kg distribution with expo-
nenta. In other words, the sur(l9) where eacl¥; is iden-
tically distributed asX, Ay=0 andBy=N* converges in
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velocity difference (for small r) converges towards the other authorsgr is typically chosen in the inertial range and
Cauchy distribution, fixed. Exponential tails are typically observed, but, as men-
tioned above, there is variability withr.
c Another aspect of turbulent flow statistics that this model
Pau(OU)=— 72—, (22 s consistent with is the fact that the flatness of the distribu-
tion of spatial derivatives increases as the order of the veloc-

for an ergodic system of discrete vortices in three dimen—'ty derivative increase$>* In three dimensions,

sions. o"u .
As the vortex smoothing parametéy increases, the dis- (9_pn ~p ' (23
tribution departs from Cauchy starting at ttagls. That is,

the effect of smoothing of the vorticity is to produce Gauss- d"u

: : ; Pl —>U"|~p® (24)
ian tails at largersu| in the PDF. Thus, Tong and Gold- ap" :

burg’s contention thap s,(du) has a Cauchy distribution for N noy —30(n+2) -1

small relative velocity fluctuations, and near-Gaussian for P ﬁ_u)~<o7_u) (25)
large relative velocity fluctutations could follow from an ar- ap" ap" '

gument similar to the ones presented in the previous SeCrnerefore, am increases, the distribution becomes flatter,
tions. The Cauchy distribution derives from the power—lawirm:ﬂying strong intermittency.

fall off [ du(p)~ 1/p? for 2-D, ~1/p® for 3-D] of the veloc-
ity difference outside the vortex blob core region. This con-
tributes to the centralsmall | 5u|) region of ps,(su). The V. NUMERICAL SIMULATIONS

tails of ps,(6u) are determined by the largéu| behavior, We now provide numerical results for 2-D systems of
which is a function of the shape of the vortex core. However,,qrtex elements, and compare them with the analytical dis-

because of the cutoff, it is reasonable to assume that @ Gausgsssion in previous sections. We will see that the numerical

ian tail will res_ult. Note _ggat_this explanation is in complete g ylations seem to justify the assumptions that we made in
accordance with Onuki’§ discussion of Tong and Gold- ,4er to derive limiting distributions.

burg’s experiments, and gives his arguments a simplified e yelocity field due tN vortices in a stationary con-
physical model(a system of\ vortex elementsas a base. figuration was numerically studied using  vortex
(Onuki* has previously suggested an approach similar tnethod<”221 The vortex method of flow computation in-
ours in reference to stable distributions and Takaya$u's volves keeping track of the vorticity as it moves around in

study) a Lagrangian sense. The calculation of velocity is done by
We note that although the most commonly observed Vega Biot—Savart law. which for two-dimensions is

locity difference PDF in turbulence is the one with exponen-

i i i i i iability i dx 1 Xx=X") X w(x,t)

tial tails, there is actually quite a bit of variability in the_ (X D) = e (X) = — — ( it X’ +V .
measurements of the PDFs with respect to the separation dt 2w [x—x']|

parametesr, as illustrated by Figure 1 in Anselmet al’s (26)

8 . . . . .
papef® or in Figures 7 and 8 in Vincent and Meneguzzi's Ths s the solution to the Poisson equation describing the
paper The variation ofér corresponds to probing of differ- relationship between the velocityand the vorticitye,
ent spatial scales of turbulen@eertial range and dissipation

range, for example Onuki? attributes the contrasting results Viu=-VXo. (27)

of Tong and Goldburg to the greater Reynolds number inthe domain of motion in our problem is infinite with no
their experiments, but there is a difference in experimentakolig boundaries and no flow at infinity which dictates that
procedure employed by Tong and Goldburg and that of othey 4=0. The nature of the same-sign-same-magnitude-
authors. In particular, Tong and Goldburg’s measurementgortices flow is such that the motion actually takes place in a
which use the homodyne method, give the intensity of scatfinite domain. In two dimensions the vorticity is= w&, and

tered I|ght correlation function which depends on the VeIOC‘for the point vortex case the scalar fieldis represented by
ity difference of all particle pairs in the scattering volume. Eq. (1),

For these pairsgr ranges from dissipative scale to integral N
scale. Thus, the measurements give an average of velocity _

difference over dissipative, inertial and integral scales. We w(x,t)—Z,l Tidx=xi(0)],
have shown analytically in our model that for sméil, for
small velocity fluctuations and for smad, in three dimen-
sions the PDF of velocity differences is Cauchy. Also, we
have shown that under the same conditions, for laigéhe

where § is the Dirac delta function anB; is the strength of
theith vortex. This gives a system of\2nonlinear ODEs for
the positions of thé\ vortices:

PDF is Gaussian. It is numerically shown in the next section gy 1 N LL(x—X;) X &,
o . X . i A
(and qualitatively argued in the previous secjitimat expo- ——="5= 2 - (28
. . . . . . dt 277J=1y]#| |X|_XJ|
nential tails can arise for intermediate valuesSof It is easy
to imagine that averaging over differedt can produce a Because of the singularity at the core of the vortices,

PDF that looks like a product of a Cauchy and a Gaussianvortex blob methods are often used to simulate vortical
with a transitional exponential region. In experiments byflows. There are several ways to de-singularize the
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vorticity,?>? but we use the simple algebraic core method

1.5

with the parameters,. The vorticity distribution is now ' o
given by Eq.(8), } S vox PN
N )
1 Iiéc
w(X,t)—;iZl o2+ [x—x D)2 10|

and the velocity of each vortex blob evaluated at the center is

Pl

N ~
%:_i 2 M (29) 05 L
dt 27 ST i |Xi—Xj|2+5c
The parameteb, can then be conveniently used to vary the
vorticity distribution from isolated point vorticess¢=0) to
vortices having significant overlaps{= large. Along with 00, :
the parameteN, this allows us to explore the consequences r
of different vorticity distributions in terms of the velocity
statistics. FIG. 1. py(r) vsr for N=9135=0.0033 att=0 andt=1000.
There are four known invariants for the singular vortex
system??

3.0

A. Vortex configurations

N
x-linear impulse, 'x:izl Tixj= const; (30 The simulations involveN vortices that have the same
circulation and sign(the purpose of this is to obtain long
term statistics, as vortices of different signs tend to pair up
I';y,= const; (32 and move away The initial configurations are chosen such
that they match the equilibrium state for the vortices as de-
N rived by Lundgren and Pointilf.
angular impulse, |,2=L%=>, T;r?= const; (32) Although we roughly sketch Lundgren and Pointtfi's
=1 equilibrium statistics analysis of two-dimensional vortices
below, it is recommended that the original artt€lend other

VE

y-linearimpulse, 1,=

i=1

and related papers by Montgomery and Joaer Kraichnan and
1 NN Montgomeny° for example be consulted. The reduced prob-
energy, lg=H=—-—> > I'iTjlog|ri—r] ability density functionp,(x;) can be defined through the
UBNE expression
= const, (33 p1(X1)dx;=Prob.{x; e dx;} (34)

and similarly for the vortex blobs. Solutions of the vortex and

motion must observe the invariance of these quantities.
Equation(28) or (29) is integrated using a fourth order J p1(X)dx;=1, (35)

Runge-Kutta scheme for the Lagrangian motion of the vor-

tices. Velocity statistics are collected at stationary points in

the domain. The time steps\{) are chosen such that the

change in the invariaritl [Eqg. (33)] is maintained to within 0,01

1% of the initial value. The other invariantgqgs.(30)-(32)] R VEpepEn2T]

—— u-theta (1}

are satisfied to much higher levels of accuracy. While there
have been numerical techniques develofmanplectic inte-
grators, see Ref. 38, for exampkpecifically to take advan-
tage of the Hamiltonian structure of systems such as ours,
they were deemed computationally economic only for cases%
where extremely stringent requirements on the invariance ofg
H were necessary. Because of the chaotic nature of the vor> -007
tex motion, error propagation during numerical computation
is inevitable. This is a clear manifestation of the “sensitive
dependence on initial conditions,” and there is no way
around it. It is of course, helpful to maintain the known
invariants of motion for vortex systenfisee Eqs(30)-(33)]. -0.11 : s
. . . 0.0 1.0 20 3.0
In the following we take the position that while the exact v :
position of the vortices cannot be known, the overall proper-
ties remain the same and correct in the statistical sense. FIG. 2. (uy(r)) for N=9135=0.0033.

-0.03 |

-0.05 |

-0.09
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p(u;r) and p(v;r)

0.000
yandy, u

FIG. 3. pu‘(ui) and pvi(vi) the PDF of the velocity due to a single vortex FIG. 5. Normalizedp,(u) for N=913 andN=150, §.=0.
for N=913, §.=0.

1,=0, 1,=0, I2=L?=1, I[g=H=-0.00461. This choice of
the value forH (energy corresponds to Lundgren and
Pointin’'s'® A=0 state withp,(r) given by e /. Since
(0(x))=Tpy(x). (36)  there are an infinite number of possible configurations for a

An equilibrium configuration based on a closure approxima-‘]:!xed H, we ragd(?nl‘(W genﬁratg |argﬁ? r_lumlberis of mma;}l C(()jl’l-
tion for the one point distribution is then proposed, which |gurat|ons and pick one that is sufficiently close to the de-

produces an integral equation fpy(x;) that has the follow- S|red_H. TheH values for the system can be “tweaked” by
ing Gaussian distribution as a solution for the parametef’0Ving adjacent vortices closer to or farther away from each

choice\ =0 (where\ is proportional to the inverse tempera- other(since the interaction energy is a function of the inter-
ture, related to the enerdy of the system vortex distances All the vortices are of the same sign and

magnitude, the total circulatioh satisfyingF=EiNZ1Fi=1.

The two conditions,|,2=L2?=1 and T=3} =1
together set the length scale and the time scale for
the N-vortex system. All the other parameters
o¢,0r,x,y,t,u,v,w,H,N are scaled with respect to the pa-
rameterd ,2=1 and'=1.

Figure 1 shows typical probability densities
p1(r)={w(r))/T (see Ref. 1pat the beginning and end of
the simulations with the predicted equilibrium curve. Our
numerical simulations provide a limited validation of the clo-

wherex; is the position of a single vortex. It follows natu-
rally then, that the average vorticity, is given by

1 a2
pl(Xl):_ﬂ_Lze a=h& &)L, (37

Since we will be dealing with vortex distributions that are
symmetric about the origifin the mean, we will use polar
coordinates 1(,#), and represent the one point distribution
P1(x1) by pa(r).

The initial vortex positions chosen for our numer-
ical simulations are such that the invariants of motion
are specified as follows [see Egs. (30-33]:

3 1000

T
—— normalized
e Gaussian

100

flatness(N)

plu)

y ] . ) . 1
I 0.0 200.0 400.0 600.0 800.0 1000.0
4.0

FIG. 6. Flatnessu, as a function ofN for §.=0, showing convergence
FIG. 4. Normalizedp,(u) for N=270, §,=0.1. towards the value 3 for largh.
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------------ cauchy

P 8V)
P, (3V)

-2.0 -1.0 0.0 1.0 2.0
v

FIG. 7. ps,,(6v;), the PDF of velocity difference due to a single vortex, for Elf'lsgo‘ %’51(0&6)1’ t;(i 1%2!: of the(normalized velocity difference for
N=150, §=0.01, 6r=10"8. T e A

, This average tangential velocity profie,(r)) is compared
sure_.sgheme proposed by Lundgr.en. and R&?]ﬁor the with the regults ofga typical numyeﬁcalnsizgu)lgtion in Ifigure 2.
eqwllbrlum vortex stat'e, at least for initial configurations thatFor the numerical simulatioru,(r)) is computed at various
start off W't_h the preo!|cted solution. i r along a fixedd, averaged over timg¢smoother statistics
Assumlng there is n@ depe”denc_e in the r,nean, the could of course have been obtained by averaging direc-
mean velocity can be evaluated by using Stokes theorem,tion as wel). We are dealing with a non-homogenous flow,
but when properly normalized, the PDFs are similar at any
Lu-dlz wadA, @ X location. For largeN and finite 6., we can summarize the

_ . . ~velocity field as consisting of a distinct large scale mean
and averaging over an ensemble of possible configurationsgield, with statistical fluctuations about it. By statistical, we

r mean roughly that the law of large numbers is followed,

(u(,(r)27-rr>=< J w2l ’dr’> : (39  which states that if the mean exists and the variarfcédue

0 to each vortexis finite, thena®~ o?/N. This implies that as
Making use of Ref. 16, N—oo, the fluctuations die out. This is seen in our simula-
1 tions with vortex blobs.
)
par)=—e™", (40)
B. Numerical results
(u (r))=£frer'2r’dr’=— 1 e*rz—l] (41) The PDFpui(ui) is plotted in Figure 3, along with a
0 T Jo 27 '

u; 3 power-law function for comparison. The normalized

P5,{8V)

29 20 o0 10 2.0 1.0 05 0.0 05 1.0
v &v

FIG. 8. ps(6v), the PDF of the (normalized velocity difference FIG. 10. ps,(dv), the PDF of the(normalized velocity difference for
Sv=v,(X+r)—vq(x)/ér for variouss,, N=150. N=150, §=0.05, &r=10 8.
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e (GAUSSIAN ~ Exponential 7
. ---- Cauchy (a=.13) /

Ps (V)
3

50 -40 30 20 -0 0.0 1.0 2.0 3.0 4.0 5.0 -2.0 -1.0 0.0 1.0 2.0
v 8dv

FIG. 11. ps,(dv), the PDF of the(normalized velocity difference for ~ FIG. 13. ps,(dv), the PDF of the(normalized velocity difference for
N=150, 5=0.1, &=10"8 N=1506,=0.01,6r=0.05

PDF py(u) of u=Zu;, computed from a simulation with provide separate plots in Figures 9, 10, and 11, where the fit
8. # 0 is shown in Figure 4, along with a Gaussian curve.to Cauchy, exponential, and normal functions, respectively,
The fit is quite good, in contrast to th=0 case shown in are shown. A similar trend is seen for the variation of the
Figure 5. Our earlier derivation showed th@f(u) should separation parameteir. For a fixeds, value, the Cauchy,
converge towards the Gaussian distribution for the two diexponential and normal distributions fqrs,(Su) can be
mensional case, howevéd,needs to be very large before the seen assr is increased. This can be seen in Figure 12. In
convergence towards the Gaussian is noticeable. Figure garticular, Figure 13 shows an intermediate value at
shows the flatness factor for various simulations withwhich the deviation from the Cauchy distribution can be seen
8.=0 asN is varied. Convergence towards a value dff®  occurring at the tails, and approaching the exponential distri-
Gaussian valyeis seen adN is increased. We have already bution. Thus our numerical calculations are in agreement
mentionedsee section I)lthat this slow convergence can be with the theory discussed in the earlier sections.
explained in terms of the logarithmic divergence of the vari-
ance of a singulaN-vortex system.

For the velocity difference, Figure 7 shovg, (du;), VI. SUMMARY

i.e., the contribution due to one vortex as it moves around the We have described the velocity field statistics for the

fixed measuring points. As predicted, there i * fall-off  \ yortex problem, using a decomposition of the Eulerian
region in the middle, while the tails deviate because of the{/elocity at a fixed point into a sum df individual compo-
non-singular vortex core. Figure 8 shopg,(4u) for several  ents whose contributions are supplied by the velocity in-
d; values(parameter values are as shown in the captidfe  qyced by each vortex. This allows us to make use of limit
distribution theorems to describe the velocity at the fixed
point. In particular, the tails of the velocity distribution of

10' ‘ : : individual vortices have been used to show that there is a
qualitative difference in the velocity statistics for the singular
and the non-singular vortices. Vortex methods are also often
used in modeling turbulent flows such as the mixing layer.
The statistics collected from such simulations have to be
carefully considered in light of the above discussion on the
existence of the variance and the dependence of the variance
on the value of5. . The application of a similar methodology
to the velocity difference produced distributions that shed
some light on the possible source of the statistics that are
seen in turbulent flow experiments. Numerical experiments
involving two-dimensional vortex elements are presented,;
with results that match the theory well.

Note: It has come to our attention after the submission of
this article, that results similar to those presented here have
been independently arrived at by J. Jirag[Abstracts of the
FIG. 12. ps(dv), the PDF of the(normalized velocity difference for ~APS DFD meeting, Irvine, California, November, 1996
N=150, §,=0.01, and variousr. §r=0.01,0.05,0.1, 0.2, 0.5. his study of two-dimensional turbulence.

10° |

P5(3V)

piae

-2.0 1.0
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