
Physica D 211 (2005) 23–46

A multiscale measure for mixing

George Mathew∗, Igor Mezíc, Linda Petzold

Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106, USA

Received 23 March 2005; received in revised form 26 July 2005; accepted 28 July 2005

Available online 19 August 2005
Communicated by C.K.R.T. Jones

Abstract

We present a multiscale measure for mixing that is based on the concept of weak convergence and averages the “mixedness”
of an advected scalar field at various scales. This new measure, referred to as the Mix-Norm, resolves the inability of theL2

variance of the scalar density field to capture small-scale variations when advected by chaotic maps or flows. In addition, the
Mix-Norm succeeds in capturing the efficiency of a mixing protocol in the context of a particular initial scalar field, wherein
Lyapunov-exponent based measures fail to do so. We relate the Mix-Norm to the classical ergodic theoretic notion of mixing
and present its formulation in terms of the power spectrum of the scalar field. We demonstrate the utility of the Mix-Norm by
showing how it measures the efficiency of mixing due to various discrete dynamical systems and to diffusion. In particular,
we show that the Mix-Norm can capture known exponential and algebraic mixing properties of certain maps. We also analyze
numerically the behaviour of scalar fields evolved by the Standard Map using the Mix-Norm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid mixing is a critical stage in many engineering applications. Aref[1] has studied the use of chaotic advection
to enhance mixing in laminar flows. Books by Ottino[12] and Wiggins[20] address the problem of mixing using
concepts and methods of dynamical systems theory.[1,12,20]discuss physical (kinetic) mechanisms for mixing.
In spite of this comprehensive study of mixing from the point of view of dynamical systems theory, there is
no consensus on how to measure mixing and in particular on how to compare the mixing rates of two different
processes. The notion of a mixing measure becomes particularly useful if one is considering the problem of control
and optimization of mixing. Previous approaches to this fundamental problem of measurement of mixing include
using the Kolmogorov–Sinai entropy of the underlying dynamical system as an objective for mixing and using
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the scalar variance of a density field which is being tranported by a dynamical system. Control of mixing using a
maximum entropy approach for a prototypical mixing problem was studied in[6]. As the authors themselves point
out in[6], the entropy of a dynamical system (given by a spatial integral of the Lyapunov exponents) is independent
of the initial fluid configuration. Therefore, if we are interested in “mixing up" a particular initial scalar field in
an optimal manner, the maximum entropy approach is not applicable, although one could use ideas like partition
entropy which is discussed in[4].

Besides the entropy approach mentioned above,Lp norms have been used when the problem at hand is not purely
deterministic, i.e. includes diffusion. In work by Ashwin et al.[3], interesting mixing protocols (combinations of
diffusion with permutation operations on phase space) are described. Thiffeault et al.[17] investigate the mixing
properties of a map which in an extension of Arnold’s Cat Map on the two-torus combined with diffusion. In[16],
Rothstein et al. study the mixing patterns of passive scalars in an electromagnetically driven two-dimensional fluid
flow. In [3,17,16]theL2 andL∞ norms are used to quantify how far the passive scalar field is from being spatially
uniform or homogeneous. In the absence of diffusion, measures based onLp norms of a scalar density field being
transported by a volume-preserving system will not decay. Therefore, theLp norms fail to quantify the “stirring”
efficiency of a mixing process accurately because it is insensitive to the small scale structures of the scalar density
field generated by the volume-preserving chaotic system. Mostly, this problem of theLp norm has been ignored
because typically there is diffusion associated with the mixing protocols as in[3,17,16].

Other classical approaches, starting from Gibbs’ approach, are reviewed in[9]. The key element of the Gibbs’
approach is coarse-graining. We extend this idea and the work in[11] to develop a norm based on coarse-graining.
This norm called the Mix-Norm is related to the concept of weak convergence and we demonstrate its relation to the
classical ergodic theoretic notion of mixing as defined in dynamical systems literature[10,2,14]. The Mix-Norm
was motivated by themixing variance coefficient proposed in[19]. The formulation of the Mix-Norm overcomes the
deficiences of the two approaches mentioned above. The Mix-Norm depends on the initial fluid configuration and
also succeeds in capturing the mixing efficiency of volume-preserving transformations (in the absence of diffusion)
wherein the standardL2 variance fails to do so. In this paper, we discuss the measure with respect to the mixing of
advected density fields, but the ideas here can be easily extended to mixing in the context of dispersing solids or
droplets. Also, in this paper we have restricted ourselves to periodic domains for ease of presentation and clarity.

The paper is organized as follows. In Section2, we present the basic structural definition and properties of the
Mix-Norm. We discuss its properties as a pseudo-norm induced by an inner product and also its interpretation
in terms of the power spectrum of the scalar field. In particular, we show that the Mix-Norm is equivalent to the
Sobolev space norm of negative indexs = −1/2, i.e. theH−1/2 norm. In Section3, we discuss the applications
of the Mix-Norm. We prove that the Mix-Norm can be used as a metric for checking weak-convergence which is
the critical link in justifying its validity as a measure for mixing. We show how the Mix-Norm captures the mixing
properties of Arnold’s Cat Map and the integrable Standard Map. We numerically explore how the perturbation
parameter affects the mixing propeties of the Standard Map using the Mix-Norm. We also give an interepretation
of the Mix-Norm in terms of the mixing effectiveness caused by pure diffusion.

2. Structure and properties of the Mix-Norm

As a motivation, consider the sequence of functions{cm = sin(2mπx)}. They have the same mean and variance
for all m, but there is something fundamentally different about the behaviour of these functions for smallm and large
m. In particular, the average of sin(2mπx) over any open set converges to zero for largem as the functions become
more “oscillatory”. The most commonly used “global” or average quantities like the mean and the variance of scalar
functions do not capture this property. We consider a scalar field to be well-mixed if its averages over arbitrary
open sets are uniform. There are many ways of quantifying this idea and in this paper we choose a specific one
that coincides well with ideas on mixing in dynamical systems theory ([10,2,14]) as well as with intuitive notions
with respect to the power spectrum of the scalar field. In contrast to theL2 norm of a function which is obtained by
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integrating the square of the function over the whole space, the Mix-Norm is obtained by integrating the square of
average values of the function over a dense set of subsets contained in the whole space.

2.1. The Mix-Norm on the circle

First we present the Mix-Norm on the circle and then generalize it to ann-dimensional torus. We parametrize
the domain by a non-dimensional distancex ranging from 0 to 1 andµ is the Lebesgue measure. Letc : S1 → R.
To define the Mix-Norm let

d(c, p, s) =
∫ p+s/2
p−s/2 c(x)µ(dx)

s
(1)

for all s ∈ (0, 1) andp ∈ [0, 1]. d(c, p, s) is the mean value of the functionc within the interval [p − s/2, p + s/2].
Then we define

φ(c, s) =
(∫ 1

0
d2(c, p, s)µ(dp)

)1/2

. (2)

φ(c, s) is theL2 norm of the averaged functiond(c, ·, s) for a fixed scales. Then the Mix-Norm ofc is given by

Φ(c) =
(∫ 1

0
φ2(c, s)µ(ds)

)1/2

. (3)

The basic idea behind the Mix-Norm is to parametrize all sub-intervals ofS1 and to take the root mean square of
the average values ofc over these sub-intervals. Ifc ∈ L2

S1, the following two limits can be verified.

lim
s→0

φ(c, s) =
(∫ 1

0
c2(x)µ(dx)

)1/2

(4)

lim
s→1

φ(c, s) =
∣∣∣∣∣
∫ 1

0
c(x)µ(dx)

∣∣∣∣∣ . (5)

Expressions(4) and (5)are respectively theL2 norm and absolute value of the mean of the scalar functionc, which
are two fundamental measures associated with any scalar field (proofs for these equalities are included inAppendix
B). Therefore,φ(c, s) for different values ofs ∈ (0, 1) can be seen as a continuous transition of measures associated
with the scalar functionc ranging from theL2 norm to the mean. The Mix-Norm is obtained by the square integral
of these measures over all possible scaless ∈ (0, 1).

2.2. The Mix-Norm on an n-dimensional torus

We consider scalar functionsc : T n → R whereT n = [0, 1]n is ann-dimensional torus. Here again,µ is the
Lebesgue measure and the same will be assumed throughout the paper. For notational convenience, we make the
following definitions (all vectors are written in bold font (e.g.:x) and their respective elements are written in usual
font with indices as subscripts (eg:x1, x2, . . .)),

For a givens ∈ (0, 1) andp ∈ T n, B(p, s) = {y ∈ T n : ‖y − p‖2 ≤ s/2}.
VolB(s) = Volume of then-dimensional sphere with radiuss/2 = µ(B(p, s)).

χB(p,s) is the characteristic function on the setB(p, s).

(6)
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Also, in all the discussions, for any two functionsf, g : T n → R, the inner product is defined to be

〈f, g〉 =
∫

Tn

f (x)g(x)µ(dx). (7)

To define the Mix-Norm let

d(c, p, s) =
∫
x∈B(p,s) c(x)µ(dx)

VolB(s)
= 〈c, χB(p,s)〉

VolB(s)
(8)

for all s ∈ (0, 1) andp ∈ T n. d(c, p, s) is the mean value of the functionc within the sphereB(p, s). Now define

φ(c, s) =
(∫

Tn

d2(c, p, s)µ(dp)

)1/2

= (〈d(c, ·, s), d(c, ·, s)〉)1/2 . (9)

Just as in the case for the circle,φ(c, s) is theL2 norm of the averaged functiond(c, ·, s) for a fixed scales. Then
the Mix-Norm ofc is given by

Φ(c) =
(∫ 1

0
φ2(c, s)µ(ds)

)1/2

. (10)

An equality similar to(4) holds true for higher dimensions also, but not equality(5).

2.2.1. The Mix-Variance
The degree of mixedness of a scalar field needs to be measured as a distance from a uniform field which is not

necessarily zero. For this purpose, we define the quantity referred to as the Mix-Variance of a scalar field and in fact,
it is the Mix-Variance which will be of greater relevance in the context of mixing. Let ¯c be the mean of the function.
i.e., c̄ = ∫

Tn c(x)µ(dx). Then we refer to the quantityΦ2(c − c̄) as the Mix-Variance ofc. This is in parallel to the
situation where we refer to‖c − c̄‖2

2 as theL2 variance ofc. To avoid any ambiguity, we write all the steps in the
definition of the Mix-Variance here.

d(c − c̄, p, s) =
∫
x∈B(p,s) c(x)µ(dx)

VolB(s)
− c̄ = d(c, p, s) − c̄ (11)

for all s ∈ (0, 1) andp ∈ T n. Now define

φ2(c − c̄, s) =
∫

Tn

d2(c − c̄, p, s)µ(dp) =
∫

Tn

(d(c, p, s) − c̄)2µ(dp). (12)

φ2(c − c̄, s) is theL2 “distance” between the averaged functiond(c, ·, s) at scales andc̄. Then the Mix-Variance of
c is given by

Φ2(c − c̄) =
∫ 1

0
φ2(c − c̄, s)µ(ds). (13)

2.2.2. The weighted Mix-Norm
A more general version of the Mix-Norm can be considered with a weighting function on the physical space and

scale space. Consider a functionw : T n × (0, 1) → 	 such thatw(p, s) ≥ 0. Then the Mix-Norm with weightw,
Φw(c) is obtained by replacing Eq.(8) by

dw(c, p, s) =
∫
x∈B(p,s) c(x)µ(dx)

VolB(s)
.
√

w(p, s) (14)
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and then following through the same steps. The effects of the weighting function on various aspects will be pointed
out throughout the paper, but mostly we will be dealing with the case where there is no weighting function.

2.3. Mix-Norm as a pseudo-norm

The Mix-Norm is a pseudo-norm on the space of functions, meaning that it satisfies the following properties.
For anyc : T n → R,

1. Φ(c) ≥ 0, andc = 0 ⇒ Φ(c) = 0.
2. Φ(λc) = |λ|Φ(c), whereλ is a scalar constant.
3. Φ(c1 + c2) ≤ Φ(c1) + Φ(c2).

A pseudo-norm is different from a norm in that a pseudo-norm can be zero for nonzero functions. In particular, the
Mix-Norm is zero for a special class of nonzero functions which have a mean of zero on all sets of nonzero measure,
but have a nonzeroL2 norm. This is related to the concept of weak convergence and will be discussed in Section3.1.
The triangle inequality property of the Mix-Norm follows from the fact that eachφ(c, s) is a pseudo-norm andΦ(c)
is a “summation” of these pseudo-norms. The proof for the triangle inequality property is included inAppendix A.
The introduction of a weighting function in the definition of the Mix-Norm as described before does not change its
properties as a pseudo-norm.

The Mix-Norm is bounded for all functionsc ∈ L2
Tn . This follows from the fact that the averaging op-

eration in (8) is a contraction fromL2
Tn to itself. Moreover,Φ(c) ≤ ‖c‖2 for all c ∈ L2

Tn . This will be
more obvious in the next subsection, when the connection between the Mix-Norm and the Fourier basis is
made.

2.4. The Mix-Norm as an inner product

From the previous sections, one can observe that the Mix-Norm can be written as a triple integral on the unit
circle and as a 3n integral on ann-dimensional torus. This section shows that the Mix-Norm can be written in a
much more compact form as an inner product. Let the linear operator [D(s)] : L2

Tn → L2
Tn be defined as follows

(all operators will be written in square brackets):

[D(s)]c(p) =
∫
x∈B(p,s) c(x)µ(dx)

VolB(s)
=
〈
c, χB(p,s)

〉
VolB(s)

. (15)

Now φ(c, s) can be written as:

φ(c, s) = (〈[D(s)]c, [D(s)]c〉)1/2 = (〈c, [D(s)]∗[D(s)]c
〉)1/2 (16)

where [D(s)]∗ is the adjoint operator of [D(s)]. Then the Mix-NormΦ(c) is given by

Φ2(c)=
∫ 1

0
φ2(c, s)µ(ds)=

∫ 1

0

〈
c, [D(s)]∗[D(s)]c

〉
µ(ds) =

〈
c,

[∫ 1

0
[D(s)]∗[D(s)]µ(ds)

]
c

〉
= 〈c, [M]c〉

(17)

where

[M] :=
∫ 1

0
[D(s)]∗[D(s)]µ(ds). (18)
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By the above definition of [M], we mean that its action on a functionc is given as follows:

[M]c(x) =
∫ 1

0
[D(s)]∗[D(s)]c(x)µ(ds) (19)

We refer to [M] as the Mix-Operator. Note that [M] is a symmetric definite operator by construction and that
[M] depends only on the domain under consideration. Thus, the Mix-Norm of any functionc can be computed
using the inner product ofc with [M]c. The following discussion presents some interesting facts about the Mix-
Operator [M]. It turns out that the Fourier basis functions are the eigenfunctions of the Mix-Operator [M]. This can
be inferred from the fact that [M] belongs to the class of spatially invariant operators for which the Fourier basis
functions are always eigenfunctions. Even though the Mix-Norm was defined for real valued functions in the previous
discussions, its extension to complex valued functions is straightforward and will be assumed in the following
discussions.

Theorem 2.1. The eigenfunctions of the Mix-Operator [M] defined on the n-dimensional torus T n are {ck(x) =
ei2π(k·x)} for k ∈ Z

n and the corresponding eigenvalues are Λk = ∫ 1
0 K2

n(s, k)µ(ds), where

Kn(s, k) = 2(n−2)/2nΓ (n/2)Jn/2(sπ‖k‖)

(sπ‖k‖)n/2 (20)

and where Γ is the gamma function; Jn/2 is a Bessel function of the first kind;

‖k‖ =
√

k2
1 + k2

2 + . . . + k2
n. (21)

Proof. Motivated by(17), we can define a degenerate inner-productT asT (c1, c2) = 〈c1, [M]c2〉.T : L2
Tn × L2

Tn →
R is bilinear and symmetric but degenerate, meaning that there exist nonzero functionsc ∈ L2

Tn such thatT (c, c) = 0.
If we show thatT (cj, ck) = 0 whenj �= k, it follows that{ck} are indeed the eigenfunctions of [M]. Also, the
eigenvalues are given byΛk = T (ck, ck).

The Fourier basis functions satisfy the following mean-value property over spherical surfaces.∫
x∈S(p,r) ck(x) dx

Area(S(p, r))
= Γ (n/2)J(n−2)/2(r2π‖k‖)

(rπ‖k‖)(n−2)/2 ck(p), (22)

whereS(p, r) = {x : ‖x − p‖2 = r} and Area(S(p, r)) = Surface area of then-sphere. This implies a mean value
theorem for the interior of the sphere which is as follows:

[D(s)]ck(p) =
(

2(n−2)/2nΓ (n/2)Jn/2(sπ‖k‖)

(sπ‖k‖)n/2

)
ei2πk·p = Kn(s, k)ei2πk·p (23)

Details of this derivation are given inAppendix C. Now, computing the inner productT (cj, ck), we get

〈
cj, [M]ck

〉 =
〈

cj,

∫ 1

0
[D(s)]∗[D(s)]ckµ(ds)

〉
=
∫ 1

0

〈
[D(s)]cj, [D(s)]ck

〉
µ(ds)

=
∫ 1

0

[∫
Tn

Kn(s, j)ei2π(j.p)Kn(s, k)e−i2π(k·p)µ(dp)

]
µ(ds)

=
∫ 1

0

[
Kn(s, j)Kn(s, k)

∫
Tn

ei2π(j−k).pµ(dp)

]
µ(ds) =

{
0 if j �= k,∫ 1

0 K2
n(s, k)µ(ds) if j = k.

(24)
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The result in(24)says that when the Mix-Operator [M] acts on any one of the Fourier modes, the resulting function
has no components in any of the other Fourier modes. Therefore, it has to be that the Fourier basis functions are
eigenfunctions of the Mix-Operator [M]. �

Corollary 2.1. For a function c ∈ L2
Tn , which has a Fourier representation c(x) =∑k∈Zn akei2π(k·x), the Mix-Norm

is given by

Φ(c) =
(∑

k∈Zn

Λk|ak|2
)1/2

. (25)

The above corollary follows directly from(24). For the special case whenk = 0, Λk = 1. Also, for the special case
whenn = 1, the expression forΛk reduces to

Λk =
∫ 1

0

sin2(kπs)

(kπs)2
µ(ds). (26)

The key aspect of the eigenvaluesΛk given inTheorem 2.1is that they decay monotonically with respect to the
argument‖k‖. Fig. 1shows the variation ofΛk with respect to‖k‖ for n = 1 and 2. Moreover, there exist bounded
real constantsµ1, µ2 > 0 such that

µ1

(1 + (2π‖k‖)2)1/2 ≤ Λk ≤ µ2

(1 + (2π‖k‖)2)1/2 . (27)

Details of the above inequality are given inAppendix D. Therefore, the norm‖c‖H−1/2(Tn) defined as

‖c‖H−1/2(Tn) =
(∑

k∈Zn

1

(1 + (2π‖k‖)2)1/2 |ak|2
)1/2

, (28)

which is a Sobolev norm of negative indexs = −1/2, is equivalent to the Mix-Norm.H−1/2(T n) is the Sobolev
space of negative indexs = −1/2, defined as

H−1/2(T n) = {c : T n → R : ‖c‖H−1/2(Tn) < ∞}. (29)

Fig. 1. Decay of eigenvalues of Mix-Operator with respect to magnitude of wave-number vector.
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Therefore, for allc ∈ H−1/2(T n),
√

µ1‖c‖H−1/2(Tn) ≤ Φ(c) ≤ √
µ2‖c‖H−1/2(Tn). (30)

The intuition that should be gathered from(25) is that essentially the eigenvaluesΛk act as a weighting on the
energy contained in various Fourier modes. The larger the wave number, the smaller the weighting. Therefore, if
the energy of a scalar density field is concentrated in small scale(high wave-number) Fourier modes, its Mix-Norm
will be very small. In contrast, theL2 norm is insensitive to the particular Fourier modes within which energy is
concentrated due to Parseval’s Theorem. The formulation in(25) not only facilitates analysis, but also makes the
numerical computation of the Mix-Norm for a given field very efficient via FFT software.

2.4.1. Effects of a weighting function on the Mix-Operator
If we have a weighting functionw : T n × (0, 1) → 	 with w(p, s) ≥ 0, to define the weighted Mix-NormΦw(c),

as described before, we can define the linear operator [D(s)]w as follows:

[D(s)]wc(p) =
∫
x∈B(p,s) c(x)µ(dx)

VolB(s)

√
w(p, s). (31)

Then the Mix-Operator [M]w is defined as

[M]w =
∫ 1

0
[D(s)]∗w[D(s)]wµ(ds). (32)

If the weighting function is just a function of the scale variable (i.e.,w(p, s) = w(s)), then the Fourier basis functions
are still the eigenfunctions of the Mix-Operator [M]w. This is because the spatial invariance property of the Mix-
Operator without the weighting function is retained. By doing the same calulation as in(24), we get the correponding
eigenvalues to beΛk = ∫ 1

0 w(s)K2
n(s, k)µ(ds). When the weighting function depends on the space variablep, [M]w

is no more spatially invariant and therefore the Fourier basis functions are not necessarily eigenfunctions any more.
This can also be inferred from the fact that the calculation in(24)does not follow through anymore.

3. Applications of the Mix-Norm

3.1. The Mix-Norm and weak convergence

To rigorously justify the use of the Mix-Norm as a measure for mixing, we need to use the concept of weak
convergence. For a more detailed discussion on the relevance of weak convergence to mixing, refer to[10].

Definition 3.1. A sequence of functions{cm}, cm ∈ L2
Tn is weakly convergent toc ∈ L2

Tn if

lim
m→∞〈cm, g〉 = 〈c, g〉 for all g ∈ L2

Tn . (33)

Theorem 3.1. A sequence of functions {cm}, cm ∈ L2
Tn which is bounded in the L2 norm is weakly convergent to

c ∈ L2
Tn if and only if

lim
m→∞ Φ(cm − c) = 0. (34)

Proof. First, assume that{cm} converges weakly toc. We need to show that limm→∞ Φ(cm − c) = 0. By assump-
tion, limm→∞〈cm, g〉 = 〈c, g〉 for anyg ∈ L2

Tn . In particular, limm→∞〈cm, χB(p,s)〉 = 〈c, χB(p,s)〉 for all s ∈ (0, 1)
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andp ∈ T n. Therefore,

lim
m→∞ d(cm − c, p, s) = lim

m→∞
〈cm − c, χB(p,s)〉

VolB(s)
= lim

m→∞
〈cm, χB(p,s)〉 − 〈c, χB(p,s)〉

VolB(s)
= 0 (35)

for all s ∈ (0, 1) andp ∈ T n. Therefore,

lim
m→∞ φ2(cm − c, s) = lim

m→∞

∫
Tn

[d(cm − c, p, s)]2µ(dp) =
∫

Tn

lim
m→∞

[
d(cm − c, p, s)

]2
µ(dp) = 0 (36)

for all s ∈ (0, 1). Now

lim
m→∞ Φ2(cm − c, s) = lim

m→∞

∫ 1

0
φ2(cm − c, s)µ(ds) =

∫ 1

0
lim

m→∞ φ2(cm − c, s)µ(ds) = 0. (37)

The passage of the limit under the integral sign in both of the above equations is possible due to the boundedness
and the pointwise convergence of the respective integrands. Its an application of Lebesgue’s dominated convergence
theorem.

Now, assume that limm→∞ Φ(cm − c) = 0. This implies that

lim
m→∞

∫ 1

0

∫
Tn

d2(cm − c, p, s)µ(dp)µ(ds) = 0. (38)

It follows that for almost every (p, s) ∈ T n × (0, 1), limm→∞ d(cm − c, p, s) = 0. i.e.,

lim
m→∞〈cm, χB(p,s)〉 = 〈c, χB(p,s)〉 for almost every (p, s) ∈ T n × (0, 1). (39)

Therefore, the set of functions

K = {χB(p,s) : lim
m→∞ d(cm − c, p, s) = 0} (40)

is linearly dense inL2
Tn . Since{cm} is bounded in theL2 norm, it follows that limm→∞〈cm, g〉 = 〈c, g〉 for any

g ∈ L2
Tn . Thus{cm} converges weakly toc. �

For example, the sequence of functions{cm = sin(mπx)} onS1 converges weakly to zero. Therefore, limm→∞
Φ(cm) = 0 and limm→∞[M]cm = 0. This is also clear from the fact that limm→∞ Λm = 0.

3.2. Mixing by discrete dynamical systems

In this section, we explain how the Mix-Norm is able to capture the mixing effectiveness of discrete dynamical
systems. Of course, all the discussion here extends easily to continuous-time systems. Roughly speaking, a dynamical
system can be considered to be mixing if every portion of the phase space gets spread uniformly throughout the
phase space under the action of the dynamical system. If a scalar density field is being transported by a volume-
preserving dynamical system, it can be said to be mixing if the mean of the evolving scalar field in all subsets of
the phase space becomes closer and closer to the mean of the scalar field over the entire phase space. These were
the ideas behind the formulation of the Mix-Norm. Here we connect all of these concepts. In addition, we consider
particular discrete dynamical systems on the two-torus and study their mixing properties using the Mix-Norm. First,
we summarize some definitions concerning discrete dynamical systems and mixing. For a more detailed exposition,
refer to[10,2,14].
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Definition 3.2. Let (X, A, µ) be a measure space. IfS : X → X is a nonsingular transformation, the unique operator
[P ] : L2

X → L2
X defined by(41) is called theFrobenius-Perron operator corresponding to S.∫

A

[P ]c(x)µ(dx) =
∫

S−1(A)
c(x)µ(dx), for A ∈ A andc ∈ L2

X. (41)

The Frobenius-Perron operator [P ] is a linear operator that expresses how a scalar density field on the domain
evolves with time when advected by a mappingS on the domain. For invertible measure-preserving transformations
the Frobenius-Perron operator reduces to(42):

[P ]c(x) = c(S−1(x)). (42)

Definition 3.3. Let (X, A, µ) be a normalized measure space andS : X → X be a measure-preserving transfor-
mation.S is calledmixing if

lim
i→∞ µ(A ∩ S−i(B)) = µ(A)µ(B) for all A, B ∈ A (43)

Theorem 3.2. Let S : T n → T n be a measure-preserving transformation. Then the following statements are
equivalent

1. S is mixing;
2. The sequence of functions {[P ]ic} is weakly convergent to c̄ for all c ∈ L2

Tn ;
3. limi→∞ Φ([P ]ic − c̄) = 0 for all c ∈ L2

Tn ,

where c̄ = 〈c, χTn〉 is the mean of the function c over the whole phase space.

Proof. Here of course, we considerT n to be equipped with the Lebesgue measure and thatS preserves the Lebesgue
measure. For the proof on the equivalence of statements (1) and (2), refer to[10]. The equivalence of statements (2)
and (3) follows fromTheorem 3.1. �

Statements (1) and (2) help us to classify transformations as mixing or non-mixing, but don’t give an idea of
the “mixedness” of a certain scalar density field after a finite number of iterations of the transformation. Statement
(3) helps to address this problem and serves to design optimal mixing protocols tailored to a specific initial scalar
density field. Statement (2) is also equivalently captured in terms of the so-called correlation function. For two
functionsf andg (referred to as observables), the correlation function is defined as

ϕi(f, g) =
∣∣∣∣
∫

Tn

g(x)f (S−i(x))µ(dx) −
∫

Tn

g(x)µ(dx)
∫

Tn

f (x)µ(dx)

∣∣∣∣ (44)

If the mapS is mixing, then the correlation function for any two observables must decay to zero. The rate of decay of
correlations is considered to be a inidicator of the rate of mixing and their behaviour for various classes of mappings
is an active research topic in dynamical systems theory. In this paper, we propose that one needs to study only the
rate of decay of the Mix-Variance for a particular initial scalar field to study how efficiently the mapS is “mixing
it up”. For instance ifc = χA and if Φ([P ]ic − c̄) = O(t(i)), then it implies that for almost every sphere (i.e, for
almost every (p, s) ∈ T n × (0, 1)),

〈[P ]ic, χB(p,s)〉 − 〈c̄, χB(p,s)〉 = O(t(i)), (45)

which is equivalent to

µ(Si(A) ∩ B(p, s)) − µ(A)µ(B(p, s)) = O(t(i)). (46)
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Heret(i) could be an exponentially or algebraically decaying function of time and accordingly we would say thatS
“mixes up”c exponentially or algebraically. We will discuss this using some specific examples in the next subsections.
Before we proceed, we discuss the weaknesses of the approaches which were indicated in the Introduction.

3.2.1. Comparison with traditional approaches
Lyapunov exponents: Let S : T 2 → T 2 be a differentiable volume-preserving transformation on the two-

dimensional torus. Then the Lyapunov exponent for a given pointx ∈ T 2 underS is given by:

λ(x) = lim
n→∞

1

n
log‖DxS

n(x)‖ (47)

whereDxS
n(x) is the Jacobian of thenth iterate of the pointx underS. Then the so-called Kolmogorov–Sinai

entropy corresponding to the transformationS is given by

h(S) =
∫

T 2
λ(x)µ(dx). (48)

The above formula is known as Pesin’s formula[13,8]. The Kolmogorov–Sinai entropy is a measure of the disorder
created by the transformationS. The Lyapunov exponent at the pointx is the maximum average logarithmic expansion
rate of aninfinitesimal circle centred atx. From the point of view of control of mixing, if there was a parameter
associated with the transformationS, then one would choose it so as to maximize the Lyapunov exponents. To
illustrate the drawback of using Lyapunov exponents when we have a specific initial scalar field, consider the
following simple example. Consider the discrete version of a linear shear flow given by[

x′
1

x′
2

]
=
[

x1 + x2

x2

]
(mod 1). (49)

A straightforward calculation would show that this map has zero Kolmogorov–Sinai entropy (i.e. zero Lyapunov
exponents). But, the effects of this map on the two initial scalar fields shown inFig. 2are very different. It can be
shown that for initial distributions of the formc1(x1, x2) = f (x1), Φ([P ]ic1 − c̄1) will decay to zero when advected
by this map, although at an algebraic rate, whereas distrbutions of the formc2(x1, x2) = g(x2) remain invariant
under this map. This is an example of a transformation which has zero entropy, but can “mix-up" certain initial
scalar fields. This will be discussed in more detail in a following section. Similarly, there are transformations with
non-zero entropy, but may not completely “mix-up" certain initial scalar fields. The bottomline is that the Mix-Norm
helps to address the mixing efficacy of a flow with respect to an initial scalar field or fluid configuration whereas it
is not directly possible to do the same with information about Lyapunov exponents.

Fig. 2. The linear shear flow effects the two different density fields pictured above very differently. Density fields of the formc1(x1, x2) = f (x1)
get “mixed-up” at an algebraic rate, whereas density fields of the formc2(x1, x2) = g(x2) are invariants of the map.



34 G. Mathew et al. / Physica D 211 (2005) 23–46

Decay of L2 variance: The variance of a density fieldc given by

‖c − c̄‖2
2 =
∫

T 2
(c − c̄)2µ(dx) (50)

wherec̄ = 〈c, χT 2〉, measures how far the density field is from being spatially uniform or homogeneous. In the
absence of diffusion, the variance of a density field being advected by an invertible volume-preserving transformation
will remain constant. This can be verified as follows:∫

T 2
([P ]c(x) − c̄)2µ(dx) =

∫
T 2

(c(S−1(x)) − c̄)2µ(dx) =
∫

S−1(T 2)
(c(y) − c̄)2|det(S(y))|µ(dy)

=
∫

T 2
(c(x) − c̄)2µ(dx). (51)

But, byTheorem 3.2, the Mix-Variance of the advected field will decay to zero if the transformation is mixing and
the rate at which the Mix-Variance decays gives information about the mixing rate of the underlying transformation.
In any realistic physical system, there is going to be some diffusion and therefore one might be tempted to use the
variance anyway to measure mixing. But, in a typical mixing process, there is an initial phase during which the
variance remains almost constant and after which the variance decays exponentially. It is during this initial phase
that stretching and folding of fluid elements occur which eventually facilitate diffusion to act efficiently causing the
exponential decay of the variance. Therefore, to optimize this initial phase of stretching and folding or “stirring”
one needs some other notion of a mixing measure which the Mix-Variance serves as. In other words, the variance
fails to capture the “stirring" effects of a mixing protocol while the Mix-Variance succeeds to do so.

3.2.2. Arnold’s Cat Map
Arnold’s Cat Map is a volume-preserving diffeomorphism on the two-torusT 2 given by[

x′
1

x′
2

]
=
[

2 1

1 1

][
x1

x2

]
(mod 1)= M · x (mod 1). (52)

It is well known that the Cap Map is mixing in the sense described inDefinition 3.3. To prove statement (2) in
Theorem 3.2, one needs to prove it only for every element in a complete basis of functions (eg: Fourier basis
functions). The Frobenius-Perron operator [P ] corresponding to this map when acting on one of the Fourier modes
is given explicitly as follows:

[P ](ei2π(k1x1+k2x2)) = ei2π((k1−k2)x1+(−k1+2k2)x2). (53)

Thus, the resulting function is another Fourier mode with wave numbers (k1 − k2, −k1 + 2k2). We can think of a
mapping between the wave numbers as follows:[

k′
1

k′
2

]
=
[

1 −1

−1 2

][
k1

k2

]
= M−1 · k. (54)

The matrixM−1 has eigenvaluesσ1 = (3 − √
5)/2 < 1, σ2 = (3 + √

5)/2 > 1, and corresponding eigendirections
(1, (

√
5 − 1)/2), (−1, (

√
5 + 1)/2). Since the slope of the stable eigendirection is irrational and the wave numbers

(k1, k2) take only integer values, the magnitudes of the wave numbers (k1, k2) increase exponentially under the
mapping in(54), for any initial set of wave numbers. This gives an immediate proof that the Cat Map is actually
mixing. Moreover, when starting with a Fourier mode with wave numbers (q1, q2), the magnitude of the wave
numbers of the evolving distibution afteri iterations are such that (|k1| = O(σi

2), |k2| = O(σi
2)). In addition, since

we know thatΦ2(ei2π(k1x1+k2x2)) ≈ 1/(1 + 4π2(k2
1 + k2

2))1/2, the Mix-Variance at thei-th iteration,Φ2
i = O(σ−i

2 ).
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Thus, the Cat Map exponentially mixes each one of the Fourier modes and therefore any bounded linear combination
of the Fourier modes.

3.2.3. Mixing properties of the Standard Map
We consider the Standard MapS : T 2 → T 2 in the following form:[

x′
1

x′
2

]
=
[

x1 + x2 + ε sin(2πx1)

x2 + ε sin(2πx1)

]
(mod 1)= S(x). (55)

The above map is a volume-preserving diffeomorphism on the two-torus and was first introduced by Chirikov[18].
Its behaviour changes with the value ofε. For values ofε close to one, it has been observed to have chaotic properties.
Here we study its mixing properties. For the case whenε = 0, we get a mapping describing the evolution of the
wave numbers just as for the Cat Map, given by[

k′
1

k′
2

]
=
[

1 0

−1 1

][
k1

k2

]
= H · k. (56)

The matrixH is degenerate, meaning that it has only one eigenvalue (σ = 1) and one eigendirection (k = (0, 1)).
Therefore, Fourier modes with wave numberk = (0, q2) will be fixed points for the Frobenius-Perron operator of the
Standard Map whenε = 0. Also, when starting with a Fourier mode with wave numbers (q1, q2) whereq1 �= 0, the
wave numbers of the evolving distibution afteri iterations are given exactly as (k1 = q1, k2 = q2 − iq1). Coupled
with the fact thatΦ2(ei2π(k1x1+k2x2)) ≈ 1/(1 + 4π2(k2

1 + k2
2))1/2, we can approximate the Mix-Variance at theith

iteration asΦ2
i ≈ 1/(1 + 4π2(q2

1 + (q2 − iq1)2))1/2 = O(i−1). Therefore, whenq1 �= 0, the Integrable Standard
Map algebraically “mixes up” the density. The map can be said to be mixing on the orthogonal complement of the
space of functions which depend only on the variablex2 and the map is not even ergodic.

When the perturbationε �= 0, energy from one Fourier mode is transferred to more than one Fourier mode, thereby
making any kind of analysis harder. We resort to numerics to study the mixing properties of the Standard Map for
variousε. The computational domain is the square [0, 1] × [0, 1] whose sides are being identified (upper with lower,
left with right).We discretize the computational domain and let the grid points be (xi

1, x
j
2) wherexi

1 = idx, x
j
2 = jdy

for i = 0, 1, . . . , (Nx − 1) andj = 0, 1, . . . , (Ny − 1) and where dx = 1/Nx and dy = 1/Ny. The inverse of the
Standard Map is given explicitly as[

x1

x2

]
=
[

x′
1 − x′

2

x′
2 − ε sin(2π(x′

1 − x′
2))

]
(mod 1)= S−1(x). (57)

At the nth iterate, for each grid point we computeS−n(xi
1, x

j
2) using(57). Therefore, the discrete version of the

Frobenius-Perron operator can be written as

P̂nc(xi
1, x

j
2) = c0(S−n(xi

1, x
j
2)1, S

−n(xi
1, x

j
2)2) (58)

wherec0 is the initial density field. At each iteration, the Fourier coefficients of the density field were computed
using FFT software[7], and the Mix-Variance was computed using(25). Fig. 3shows the decay of the Mix-Variance
with time for various values ofε when starting with an initial density field ofc0(x1, x2) = cos(2πx2). Whenε = 0.0,
there is no mixing and as the value ofε is gradually increased, the mixing gets better.Fig. 4shows a plot ofφ(c − c̄, s)
versuss corresponding to the evolved density field after 10 and 100 iterations and for various values ofε. Fig. 5
shows the contour plot of the evolved density field after five iterations forε = 0.4 and 0.8.

Fig. 6shows the decay of the Mix-Variance with time when starting with an initial density field ofc0(x1, x2) =
cos(2πx1). Whenε = 0.0, there is an algebraic decay of the Mix-Variance as can be observed from the log–log plot
in Fig. 6. In this case, whenε is increased, there is actually a decrease in the mixing efficiency as can be seen for
ε = 0.2, 0.4 and 0.6.Figs. 7 and 8give a closer look at this behaviour.Fig. 7 shows a plot ofφ(c − c̄, s) versuss
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Fig. 3. Mixing properties of the Standard Map. Decay of Mix-Variance with respect to iteration for different values ofε when starting with an
initial density field ofc0(x1, x2) = cos(2πx2).

corresponding to the evolved density field after 10 and 100 iterations. The curve corresponding toε = 0.0 indicates
good “mixedness” which is due to the algebraic decay of the Mix-Variance as described earlier. Fromε = 0.0 to
0.2, there is a sharp jump from a well “mixed” field to a badly “mixed” field. For values ofε beyond 0.2, there is
again a gradual improvement in the mixing efficiency.
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Fig. 4. Plot ofφ(c, s) vs.s for the evolved density fields after 10 and 100 iterations of the Standard Map and for various values ofε, when starting
with an initial density field ofc0(x1, x2) = cos(2πx2).

Fig. 8shows the corresponding plots for values ofε ranging from 0.0 to 0.22 and then 0.24 to 0.4. One can observe
a gradual decrease in the “mixedness” of the density field asε increases from 0.0 to 0.22. Then, asε increases from
0.24 to 0.4, there is a gradual increase in the “mixedness” of the density field. One could attribute the initial decline
in the mixing performance to the formation of regular islands which prevent the continuous shearing of “fluid”
which happenes for the case whenε = 0.0. This is validated by the contour plots inFig. 9which show the evolved
density field after 10 iterations forε = 0.0, 0.1 and 0.2. A precise mathematical explanation for this behaviour is
beyond the scope of this paper.

3.3. Mixing by diffusion

Consider the diffusion equation onT n with a diffusivity rateD > 0.

∂c

∂t
= D

n∑
i=1

∂2c

∂x2
i

= D∆c. (59)

Fig. 5. Contour plot of density field after five iterations of the Standard Map forε = 0.4 and 0.8, when starting with an initial density field of
c0(x1, x2) = cos(2πx2).
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Fig. 6. Mixing properties of the Standard Map. Decay of Mix-Variance with respect to iteration for different values ofε when starting with an
initial density field ofc0(x1, x2) = cos(2πx1).
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Fig. 7. Plot ofφ(c, s) vs.s for the density fields after 10 and 100 iterations of the Standard Map and for various values ofε, when starting with
an initial density field ofc0(x1, x2) = cos(2πx1).

First, note that the Mix-Operator [M] and the Laplacian operator∆ have the same eigenfunctions (i.e., ei2π(k.x)). A
Fourier mode with wavenumberk decays exponentially at a rate of 4π2‖k‖2 under pure diffusion. Therefore, if one
were to arrange the Fourier modes in descending order of their amplitude when acted upon by pure diffusion over
a unit time interval, one would get the same order as when arranging them in descending order of their eigenvalues
when acted upon by the Mix-Operator.

Now, assume an initial density fieldc(x, 0) onT n, whose average is given by

c̄ =
∫

x∈Tn

c(x, 0) dx. (60)

Let the distribution at timet bec(x, t) ≥ 0. In work by Ashwin et al.[3] theL2 andL∞ norms are used to measure
mixing. Also, they define the time to 95% mixing,t95 to be the smallestt > 0 such that

‖c(x, t) − c̄‖α ≤ 0.05 (61)

Fig. 8. Plot ofφ(c, s) vs.s for the density fields after 10 iterations of the Standard Map and for various values ofε, when starting with an initial
density field ofc0(x1, x2) = cos(2πx1).
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Fig. 9. Contour plot of density field after 10 iterations of the Standard Map forε = 0.0, 0.1 and 0.2, when starting with an initial density field
of c0(x1, x2) = cos(2πx1).
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whereα refers to the norm used. Note thatt95 is a function of the initial distribution, the norm chosen and the mixing
protocol. Assume thatc(x, 0) has a Fourier expansion

c(x, 0) =
∑
k∈Zn

ake2πi(k·x), (62)

whereak = ∫ c(x, 0)e−2πi(k·x)dx. The distribution at timet is given by

c(x, t) =
∑
k∈Zn

ake2πi(k·x)e−4π2‖k‖2Dt. (63)

An upper bound fort95 corresponding to theL2 norm can be computed as in[3] to be

t95 ≤ log(20‖c(x, 0) − c̄‖2)

4π2D
. (64)

Doing the same computation corresponding to the Mix-Norm we obtain

Φ2(c(x, t) − c̄) =
∑
k �=0

Λk|ak|2e−8π2‖k‖2Dt ≤ e−8π2Dt
∑
k �=0

Λk|ak|2 = e−8π2DtΦ2(c(x, 0) − c̄). (65)

Thus, an upper bound fort95 corresponding to the Mix-Norm can be found as

t95 ≤ log(20Φ(c(x, 0) − c̄))

4π2D
. (66)

The difference in the estimates obtained fort95 corresponding to the Mix-Norm compared to that in(64) can be
demonstrated as follows. Consider initial distributions of the formc(x, 0) = cm = 1 + sin(2mπx) on the circle.
‖cm − 1‖2 is a constant for allm whereasΦ(cm − 1) is small for largem. According to(66), diffusion will achieve
almost perfect mixing in much less time for largem, whereas the estimate in(64)does not depend on the magnitude
of m. In general, if the initial distribution has strong components in high wave number Fourier modes, then the
diffusion process will achieve mixing very quickly, which is reflected in the estimate obtained using the Mix-Norm.
However, note that(66) does not directly say anything about the decay of theL2 variance. A more useful estimate
corresponding to theL2 norm may probably be obtained using a combination of the Mix-Variance andL2 variance
of the initial distribution. If the ratio betweenΦ(cm − 1) and‖cm − 1‖2 is very small, it necessarily implies that
there exist strong components of high wave number Fourier modes in the initial distribution. The smaller this
ratio, the faster the diffusion process will be. Unfortunately, it is not straightforward to derive any estimates fort95
corresponding to theL2 norm just from this ratio.

4. Conclusions

A multiscale measure for quantifying mixing which is particularly useful for studying mixing of chaotic flows
and maps has been presented. Its properties as a pseudo-norm induced by an inner product and its connection with
the Fourier spectrum have been discussed. Its validity as a measure for mixing has been rigorously justified through
the notion of weak convergence. Although we derived the mixing rates for a couple of classical examples and
performed some numerical experiments for the Standard Map, the real usefulness of this measure is to the problem
of designing mixing protocols tailored to mix a specific initial density field. This problem can be framed as an
optimal control problem and is being currently pursued. Such a notion of a measure for mixing can also be very
useful for optimizing the design of mixing devices. This new measure has been successfully used for optimization
of mixing in microdevices[11] and has provided valuable insights.
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In an interesting paper[15], Protas et al. have studied issues of optimal flow control in spaces other thanL2. Since
we have shown equivalence of the Mix-Norm to theH−1/2 norm, it is natural to pursue optimal control problems in
this context. The equivalence of these two norms raises the following question – why not just use theH−1/2 norm
instead of the Mix-Norm? We think that it is perfectly fine to use theH−1/2 norm or for that matter any Sobolev
space norm of negative index instead of the Mix-Norm. But, we wish to convey in this paper that by defining a norm
based on the intuitive notion of averaging function values over spherical sets and by weighing the average values
over spherical sets of all radii equally, we get a norm equivalent to theH−1/2 norm. Such an intuition did not exist
before and even Sobolev space norms of negative index have not been usefully applied for control and optimization
of mixing. Note that by weighing average values over spheres of different radii differently, we would not necessarily
have equivalence with theH−1/2 norm. Also note that, by defining the Mix-Norm based on averaging over sets of
different shapes (say rectangular sets), we would not necessarily have equivalence with any Sobolev space norm.
Future work includes the generalization of the Mix-Norm to arbitrary domains and also its application it as a means
of comparing the statistical properties of dynamical systems.
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Appendix A. Proof for triangular inequality property of the Mix-Norm

Proof. Let c1, c2 : T n → 	. We need to prove thatΦ(c1 + c2) ≤ Φ(c1) + Φ(c2). Clearly,

d(c1 + c2, p, s) = d(c1, p, s) + d(c2, p, s). (67)

Now,

φ2(c1 + c1, s) =
∫

Tn

d2(c1 + c2, p, s)µ(dp) =
∫

Tn

[d(c1, p, s) + d(c2, p, s)]2µ(dp)

=
∫

Tn

[d2(c1, p, s) + d2(c2, p, s) + 2d(c1, p, s)d(c2, p, s)]µ(dp)

= φ2(c1, s) + φ2(c2, s) + 2
∫

Tn

[d(c1, p, s)d(c2, p, s)]µ(dp). (68)

Applying the Cauchy-Schwarz inequality to the above equation,

φ2(c1 + c2, s) ≤ φ2(c1, s) + φ2(c2, s) + 2

√(∫
Tn

d2(c1, p, s)µ(dp)

)(∫
Tn

d2(c2, p, s)µ(dp)

)

= φ2(c1, s) + φ2(c2, s) + 2φ(c1, s)φ(c2, s). (69)

It follows that

Φ2(c1 + c2) ≤ Φ2(c1) + Φ2(c2) +
∫ 1

0
2φ(c1, s)φ(c2, s)µ(ds). (70)
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Applying the Cauchy-Schwarz inequality once again, we get

Φ2(c1 + c2) ≤ Φ2(c1) + Φ2(c2) + 2

√√√√(∫ 1

0
φ2(c1, s)µ(ds)

)(∫ 1

0
φ2(c2, s)µ(ds)

)

= Φ2(c1) + Φ2(c2) + 2Φ(c1)Φ(c2) = (Φ(c1) + Φ(c2))2. � (71)

Appendix B. Proof for Eqs. (4) and (5)

Consider the delta sequence

δs(x) =




0 forx < − s

2
1

s
for − s

2
≤ x ≤ s

2

0 forx >
s

2

(72)

Then forc ∈ L2
S1, we have

d(c, p, s) =
∫ 1

0
c(x)δs(p − x)µ(dx) = c ∗ δs(p) (73)

i.e., the functiond(c, ·, s) is the convolution ofc andδs. For continuous functionsc, since

lim
s→0

d(c, p, s) = lim
s→0

c ∗ δs(p) = c ∗ δ(p) = c(p), (74)

it is straightforward to see that

lim
s→0

φ(c, s) = lim
s→0

(∫ 1

0
d2(c, p, s)µ(dp)

)1/2

=
(∫ 1

0
lim
s→0

d2(c, p, s)µ(dp)

)1/2

=
(∫ 1

0
c2(p)µ(dp)

)1/2

.

(75)

The proof for anyc ∈ L2
S1 is as follows. Let ˆc, d̂(c, ·, s) and δ̂s be the Fourier transforms ofc, d(c, ·, s) andδs

respectively, i.e.,

ĉ(k) =
∫ 1

0
c(x)e−i2πkxµ(dx). (76)

Then, we have

d̂(c, k, s) = ĉ(k)δ̂s(k) (77)

Now, by Parseval’s identity∫ 1

0
d2(c, p, s)µ(dp) =

∑
k∈Z

d̂2(c, k, s) =
∑
k∈Z

ĉ2(k)δ̂2
s (k) (78)
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Since,

lim
s→0

δ̂s(k) =
∫ 1

0
δ(x)e−i2πkxµ(dx) = 1, (79)

we have

lim
s→0

∫ 1

0
d2(c, p, s)µ(dp) =

∑
k∈Z

ĉ2(k) lim
s→0

δ̂2
s (k) =

∑
k∈Z

ĉ2(k) =
∫ 1

0
c2(x)µ(dx). (80)

The proof for Eq.(5) follows easily from noting that

lim
s→1

d(c, p, s) =
∫ p+1/2
p−1/2 c(x)µ(dx)

1
=
∫ 1

0
c(x)µ(dx) = c̄. (81)

Therefore,

lim
s→1

φ(c, s) = lim
s→1

(∫ 1

0
d2(c, p, s)µ(dp)

)1/2

=
(∫ 1

0
lim
s→1

d2(c, p, s)µ(dp)

)1/2

=
(∫ 1

0
(c̄)2µ(dp)

)1/2

= |c̄| =
∣∣∣∣∣
∫ 1

0
c(x)µ(dx)

∣∣∣∣∣ . (82)

Appendix C. Derivation for the eigenvalues of the Mix-Operator

The eigenfunctions of the Laplacian operator or solutions of the Helmholtz equation

�f + λf = 0, (83)

satisfy the following mean value property over spherical surfaces[5].∫
x∈S(p,r) f (x) dx

Area(S(p, r))
= Γ (n/2)J(n−2)/2(r

√
λ)

(r
√

λ/2)(n−2)/2
f (p), (84)

whereS(p, r) = {x : ‖x − p‖2 = r} and Area(S(p, r)) = Surface area of then-sphere. The Fourier basis functions
{ck(x) = ei2πk·x} being solutions of the Helmholtz equation on the torus domain forλ = 4π2‖k‖2, we have∫

x∈S(p,r) ck(x) dx

Area(S(p, r))
= Γ (n/2)J(n−2)/2(r2π‖k‖)

(rπ‖k‖)(n−2)/2 ck(p) (85)

This implies a mean value theorem for the interior of the sphere thereby giving

[D(s)]ck(p) = 1

VolB(s)

∫ s/2

0

Γ (n/2)J(n−2)/2(r2π‖k‖)ei2π(k·p)Area(S(p, r))

(rπ‖k‖)(n−2)/2 dr (86)

where VolB(s) is the volume of then-dimensional sphere with radiuss/2. Substituting the formula for
Area(S(p, r)) = 2πn/2r(n−1)/Γ (n/2), we get

[D(s)]ck(p) = ei2π(k·p)

VolB(s)

∫ s/2

0

J(n−2)/2(r2π‖k‖)2πn/2r(n−1)

(rπ‖k‖)(n−2)/2 dr (87)
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Multiplying and dividing the integrand by (r2π‖k‖)n/2, we get

[D(s)]ck(p) = ei2π(k·p)

VolB(s)(2π)(n−2)/2(‖k‖)(n−1)

∫ s/2

0
J(n−2)/2(r2π‖k‖)(r2π‖k‖)n/2dr

= ei2π(k·p)

VolB(s)(2π)n/2(‖k‖)n

∫ sπ‖k‖

0
J(n−2)/2(y)yn/2 dy. (88)

Using the derivative identity d[xmJm(x)]/dx = xmJ(m−1)(x) and using the formula for VolB(s) = (2πn/2/Γ (n/2))
((s/2)n/n) we get

[D(s)]ck(p) = ei2π(k·p)

VolB(s)(2π)n/2(‖k‖)n
[(sπ‖k‖)n/2Jn/2(sπ‖k‖)]

=
(

2(n−2)/2nΓ (n
2)Jn/2(sπ‖k‖)

(sπ‖k‖)n/2

)
ei2πk·p = Kn(s, k)ei2πk·p. (89)

Appendix D. Proof for the inequality in (27)

For k �= 0, the following holds true:

Λk =
∫ 1

0

2n−2n2Γ 2(n/2)J2
n/2(sπ‖k‖)

(sπ‖k‖)n
ds = 2n−2n2Γ 2(n/2)

‖k‖π
∫ ‖k‖π

0

(
Jn/2(y)

yn/2

)2

dy

≤ 2n−1n2Γ 2(n/2)

2π‖k‖
∫ ∞

0

(
Jn/2(y)

yn/2

)2

dy = γn

2π‖k‖ , (90)

where

γn = 2n−1n2Γ 2
(n

2

)∫ ∞

0

(
Jn/2(y)

yn/2

)2

dy. (91)

Now, for anya ≥ 2 (in fact for anya ≥
√

1 + (1/4π2)), the following holds true:

Λk ≤ γn

2π‖k‖ = aγn

((a2π‖k‖)2)1/2 ≤ aγn

(1 + (2π‖k‖)2)1/2 . (92)

Therefore, by choosinga sufficiently large, we can makeµ2 = aγn ≥ Λ0 = 1. Therefore,

Λk ≤ µ2

(1 + (2π‖k‖)2)1/2 for all k. (93)

Again, fork �= 0 and 0< ε < π, the following holds true

Λk = 2n−2n2Γ 2(n/2)

‖k‖π
∫ ‖k‖π

0

(
Jn/2(y)

yn/2

)2

dy ≥ 2n−1n2Γ 2(n/2)

2π‖k‖
∫ ε

0

(
Jn/2(y)

yn/2

)2

dy

= βn(ε)

2π‖k‖ ≥ βn(ε)

(1 + (2π‖k‖)2)1/2 . (94)
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where

βn(ε) = 2n−1n2Γ 2
(n

2

)∫ ε

0

(
Jn/2(y)

yn/2

)2

dy. (95)

Clearly, we can chooseε small enough so thatµ1 = βn(ε) ≤ Λ0 = 1. Therefore,

Λk ≥ µ1

(1 + (2π‖k‖)2)1/2 for all k. (96)
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