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ABSTRACT

Microscale mixers can be divided into two broad clas-
si cations - passive and active. Passive mixers rely on
geometric properties of the channel shape whereas ac-
tive mixers rely on time-dependent perturbation of the
uid ow to achieve mixing. In this work, we consider

the problem of characterizing the mixing performance
of an active micromixer which consists of a main mixing
channel within which the ow is perturbed by pressure-
driven ow from three pairs of orthogonal secondary
channels. Using the newly developed measure of mix-
ing, the so-called “Mix-Norm”, we study optimal values
for the frequency and amplitude of the oscillating ow
in the secondary channels. It is shown that with one
side channel operating regions of poor mixing parame-
ter values interlay with good mixing parameter values
and that for the second and third channels mixing is
good for a large range of parameter values.
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1 Introduction

Mixing of uids at the microscale has gained a lot
of importance with the rapidly expanding use of mi-
cro uidic systems in biology and biotechnology. Flow
in microchannels typically have low Reynolds numbers
and are therefore laminar. Molecular di usion across
the channels are too slow to cause mixing within rea-
sonable time scales. These limitations make it neces-
sary to design micromixers which e ciently stretch and
fold uid elements so that di usion needs to act across
only smaller length scales to achieve complete mixing.
Microscale mixers can be divided into two broad classi-
cations - passive and active. Passive mixers rely on ge-

ometric properties of the channel shape to induce com-
plicated uid particle trajectories and thus cause mixing
([1], [2]). Active mixers rely on time-dependent pertur-
bation of the uid ow to achieve mixing. In this work,
we consider the problem of characterizing the mixing
performance of an active micromixer which is based on
the concept of chaotic advection. The concept of chaotic
advection was introduced by Aref [3] - the basic idea be-
ing that even ow elds which have a simple structure
from the Eulerian point of view could lead to complex

Lagrangian uid element trajectories, thereby causing
e cient stretching and folding of uid material result-
ing in the development of ner and ner structures in
the advected passive scalar eld. Books by Ottino [5]
and Wiggins [4] address the problem of mixing using
concepts and methods of dynamical systems theory.

To quantify the degree of mixing, we have developed
a new measure of mixing called the Mix-Norm [9]. The
Mix-Norm is able to capture the e ciency of the “stir-
ring” stage of the mixing process accurately by probing
the “mixedness” of the evolving density eld at vari-
ous scales. Previous approaches to this fundamental
problem of measurement of mixing include using the
entropy of the underlying dynamical system[7] as an ob-
jective for mixing and using the scalar variance of the
density eld which is being transported by a dynamical
system[6].

2 Micro-Mixer Geometry and Models

We study an active micro-mixing device proposed in
[8] and shown in Figure 1. It consists of a main mixing
channel and three pairs of transverse secondary chan-
nels. The ow in the main channel is perturbed by a
time-dependent pressure-driven ow from the secondary
channels, thereby enhancing mixing. Two unmixed u-
ids, one at the upper half and the other at the lower
half, enter the main channel. The two uids referred
to here are not two uids with di erent properties, but
can rather be thought of as the same uid with di erent
colored tracer particles in them.

For the purposes of our study, a simple analytical
form for the ow eld based upon superposition of el-
ementary velocity pro les is assumed. The ow in the
main channel follows a parabolic pro le in the horizon-
tal direction. The ow from the secondary channels con-
sists of a vertical velocity with a parabolic pro le that
varies sinusoidally in time at di erent frequencies. The
optimization problem here is to nd the amplitude and
frequency of oscillation in the secondary channels which
give the best mixing. This micro-mixer has been built
and studied experimentally [10]. In this analysis, dif-
fusion is neglected and our objective is to optimize the
“stirring” phase of the mixing process.

The micro-mixer is divided into three types of re-
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Figure 1: Micrograph of the micro-mixer device (device
fabrication courtesy of K.S. Breuer, Brown University
and R. Bayt, United Technologies)

gions: the main channel (horizontal), the secondary chan-
nels (vertical), and the intersection regions. The dimen-
sions of the mixer are as shown in Figure 2. A charac-
teristic dimension of the mixer device is h, which is the
half-width of the main channel, where h = 100 m. In all
our discussions, the origin of the x y plane is assumed
to be at the center of the inlet. The ordinary di erential
equations governing the motion of each particle are as
follows:

dx

dt
=

{
U0 1 ( y

h )2 , |y| h

0, |y| > h
(1)

dy

dt
=

{
2 rifih

[
1 4x̄

h

2
]
sin(2 fit), |x̄| 0.25h

0, |x̄| > 0.25h

where x̄ = x (3.5i 0.25)h, for i = 1, 2, 3. The scaling
constant 2 rifih is introduced so that in the absence
of the main channel ow, a particle along the centerline
of the secondary channel oscillates with amplitude rih.
When ri = 1, the amplitude of oscillation is exactly the
half-width of the main channel. Therefore we need to
optimize the amplitude ratios ri and the pump frequen-
cies fi. Introducing a non-dimensional time τ = (U0/h)t
and using the characteristic dimension h as the unit for
distance we get non-dimensional equations of the form:

dx

dτ
=

{
1 y2, |y| 1
0, |y| > 1

(2)

dy

dτ
=

{
2 riFi

[
1 (4x̄)2

]
sin(2 Fiτ), |x̄| 0.25

0, |x̄| > 0.25

where Fi = (h/U0)fi are the non-dimensional frequen-
cies.
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Figure 2: Dimensions of micro-mixer device

3 Simulation

To approximate the evolving density eld at the out-
let of the mixer a backward particle tracing method is
employed here. An intial scalar density eld is assumed
all over the mixer as follows:

c0(x, y) =

{
1, y > 0
0, y < 0

(3)

The incoming density eld is also of the form (3). One
can imagine a density of value 1 to represent a “blue”
uid and a density of value 0 to represent a “red” uid.

This density eld is evolving under the dynamics of (2).
We are interested only in the “mixedness” of the con-
centration eld at the outlet of the mixer. To make the
notation convenient, we de ne the space C = {Xo}
[ 1, 1] [T, T +Tp] where Xo is the x-coordinate of the
outlet, [ 1, 1] is the y-coordinate range at the outlet
and [T, T + Tp] is the time period within which we ob-
serve the outlet. Tp is chosen to be at least the period
of the velocity eld in (2) and T > 0 is some time be-
yond which we want to compute mixing. For each tracer
particle at the outlet, we simulate the trajectories using
(2), but backward in time. To be precise, for each initial
condition (Xo, y, τ) ∈ C, we solve the following ordinary
di erential equation

dx

dτb
= u(x, y, τ) (4)

dy

dτb
= v(x, y, τ)

dτ

dτb
= 1,

where τb is a dummy time variable and τ is time. Let
S : C → �2 be the solution of (4) which gives the x, y-
coordinates of the tracer particles when τ = 0. Then
the density eld in the space C can be written as

c(Xo, y, τ) = c0(S(Xo, y, τ)). (5)
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4 The Mix-Norm for Quantification of

Mixing

In this section we introduce the Mix-Norm. In [9] we
study the properties of the Mix-Norm from a theoretical
perspective. Here, we de ne the Mix-Norm for a nor-
malized 2-dimensional domain. Let c : [0, 1]2 → � be
a scalar density eld. The function c is assumed to be
extended in each direction periodically, oddly or evenly
based on the boundary conditions of the problem. All
vectors are written in bold font and their respective ele-
ments are written in usual font with indices as subscripts
and also for a given s ∈ (0, 1)2 and p ∈ [0, 1]2, A[p,s] =
[p1 s1/2, p1 + s1/2] [p1 s2/2, p2 + s2/2]. To de ne
the Mix-Norm let

d(c,p, s) =

∫
x∈A[p,s]

c(x)dx

s1.s2
(6)

for all s ∈ (0, 1)2 and p ∈ [0, 1]2. d(c,p, s) is the mean
value of the function c within the subset A[p,s]. Now
de ne

(c, s) =

⎛
⎜⎝ ∫

[0,1]2

[d(c,p, s)]2 dp

⎞
⎟⎠

1
2

.
(7)

(c, s) is the L2 norm of the averaged function d(c, ., s)
for a xed scale s ∈ (0, 1)2. Then the Mix-Norm of c is
given by

Φ(c) =

⎛
⎜⎝ ∫

s∈(0,1)2

2(c, s)ds

⎞
⎟⎠

1
2

. (8)

For our purposes, the density distribution c : C → �
is periodically extended in the τ -direction and even-
extended in the y-direction and we compute Φ(c 0.5).
For perfect mixing, any set with nonzero area within C
should have an equal amout of “red” and “blue” uid.
The basic idea behind the Mix-Norm is to parametrize
all rectangular sets within C and to measure the vari-
ance of the mean values of the function c within all
these sets from the mean cm = 0.5. For good mixing,
Φ(c 0.5) will be almost zero whereas for poor mixing,
Φ(c 0.5) will be close to 0.5. Also, if we know the func-
tion c : [0, 1]2 → �, in terms of its Fourier expansion as
follows

c(x1, x2) =
m=∞∑

m= ∞

n=∞∑
n=0

am,nei2πmx1 .(eiπnx2 + e iπnx2)

=
m=∞∑

m= ∞

n=∞∑
n=0

am,nfm,n(x1, x2),

(9)

where am,n = 〈c, fm,n〉 / 〈fm,n, fm,n〉, then its Mix-Norm
is given by

Φ(c) =

(
m=∞∑

m= ∞

n=∞∑
n=0

λp
mλe

na2
m,n〈fm,n, fm,n〉

)1/2

, (10)

where

λp
m =

{
1 if m = 0∫ 1

0
sin2(mπs)

(mπs)2 ds if m �= 0

λe
n =

{
1 if n = 0∫ 1

0

sin2( n
2 πs)

( n
2 πs)2 ds if n �= 0.

(11)

Here, λp
m and λe

n are the eigenvalues of certain symmet-
ric de nite operators [9] and both of them are of O(1/k)
where k is the wavenumber.

5 Optimization of Mixing

By doing the simulations as in Section 3 and quan-
tifying the mixing as in Section 4, we can study how
the optimization parameters (amplitude ratios and fre-
quencies of the pumps) in uence the mixing. The space
C de ned in the above section is discretized uniformly
in both directions and for each grid point, we solve (4)
using a 4th order Runge-Kutta method. In all our com-
putations, we set T = 30 and Tp = 10. Then the density
eld in the space C is approximated using (5).

First we discuss the selection of optimum parame-
ters when only one pump is turned on, i.e, in (2) we
set F2 = F3 = 0 and optimize for F1 and r1. Fig-
ure 3(a) shows the Mix-Norm as a function of the fre-
quency, F1 and amplitude ratio, r1. There is an element
of non-robustness as regions of poor mixing parameter
values interlay with good mixing parameter values. The
optimum parameters with lowest energy input to the
mixer are F1 = 0.7 and r1 = 1.0. Note that these opti-
mum parameters are also more robust when compared
to other minimas. Even with high energy input to the
micromixer, one can achieve very poor mixing as can
be seen with parameter values F1 = 1.5 and r1 = 1.0.
This shows how crucial the selection of the actuation
frequencies are.

Next we discuss the variation of the Mix-Norm when
the rst two pumps are turned on. We set F3 = 0,
keep the rst pump xed at its optimum parameters
(F1 = 0.7, r1 = 1.0) and vary F2 and r2. Figure 3(b)
shows the Mix-Norm as a function of F2 and r2. It
can be seen that reasonable mixing is achieved for a
large range of frequency and amplitude values. Note
that when F2 = 0.7, for amplitude ratio values ranging
from 0.5 to 1.0, there is a sharp decrease in the mix-
ing performance and for amplitude ratio values ranging
from 1.4 to 1.7, there is a sharp increase in the mixing
performance. This clearly proves that keeping all the
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Figure 3: (a)Φ(c 0.5) as a function of F1 and r1 with
2nd and 3rd pumps o . (b))Φ(c 0.5) as a function of F2

and r2 with F1 = 0.7, r1 = 1.0 and F3 = 0. (c))Φ(c 0.5)
as a function of F3 and r3, with F1 = 0.7, r1 = 1.0, F2 =
0.7 and r2 = 1.5

pumps at the same parameters gives the worst mixing.
Another interesting observation is that for the parame-
ter space of the rst pump which gave reasonable mix-
ing, the second pump gives poor mixing and vice versa.
Also, for low amplitude values around r2 = 0.5 we get
good mixing, the reason being that the length scales
which need to be mixed decreases after the rst pump.
Finally, keeping the second pump parameters xed at
F2 = 0.7 and r2 = 1.5, we optimize for the third pump.
Figure 3(c) shows the Mix-Norm as a function of F3 and
r3. The same observations as seen for the second pump
optimization can be clearly seen for the third pump op-
timization.
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