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ABSTRACT

We provide an overview of the Koopman-operator analysis for a class of partial differential equations describing relaxation of the field vari-
able to a stable stationary state. We introduce Koopman eigenfunctionals of the system and use the notion of conjugacy to develop spectral
expansion of the Koopman operator. For linear systems such as the diffusion equation, the Koopman eigenfunctionals can be expressed as
linear functionals of the field variable. The notion of inertial manifolds is shown to correspond to joint zero level sets of Koopman eigenfunc-
tionals, and the notion of isostables is defined as the level sets of the slowest decaying Koopman eigenfunctional. Linear diffusion equation,
nonlinear Burgers equation, and nonlinear phase-diffusion equation are analyzed as examples.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011470

The Koopman-operator approach to nonlinear dynamical sys-
tems has received considerable attention recently, which focuses
on the evolution of the observables rather than on the sys-
tem state itself and provides a rigorous method for globally
linearizing the system dynamics. However, many studies of
the Koopman-operator analysis have focused only on finite-
dimensional dynamical systems described by ordinary differen-
tial equations or maps. We here show that the Koopman operator
approach can be formally generalized to infinite-dimensional
dynamical systems described by partial differential equations,
providing new perspectives on the analysis and control of their
nonlinear spatiotemporal dynamics.

I. INTRODUCTION

Recent developments in the operator-theoretic approach to
dynamical systems have provided new perspectives on the analy-
sis of their properties.1–9 By using eigenfunctions of the Koopman
operator originally introduced in the 1930s,10,11 which describes evo-
lution of observables rather than the system state itself, the system
dynamics can often be decomposed into linearly independent Koop-
man modes even if the system is nonlinear. In particular, if the
dynamics is ergodic but non-chaotic, the spectrum of the Koopman

operator in properly defined spaces does not contain (absolutely
or singularly) continuous parts6,7 and the observable of the system
can be represented as a linear combination of eigenfunctions asso-
ciated with discrete eigenvalues of the Koopman operator. In this
sense, the Koopman-operator approach gives a general method for
rigorously linearizing nonlinear dynamical systems,5,6 which can be
used to develop new methods for the analysis and control of their
behavior.2,8

When the system exhibits stable limit-cycle oscillations, the
Koopman operator of the system, restricted to the space of L2 func-
tions on a circle, has a “basic” pair of pure imaginary eigenvalues (as
well as integer multiples of these) and the level set of the associated
eigenfunction gives the isochron (equal-phase set) of the limit cycle,
a key concept in the classical phase reduction theory for limit-cycle
oscillators12–16 that gives foliation of the system dynamics around
the limit-cycle solution. In a similar spirit, it has recently been pro-
posed that the Koopman eigenfunction associated with the largest
eigenvalue can be used to define the isostable for a dynamical system
converging to a stable fixed point, which is the set of system states
that share equal-timing approach to the stable fixed point.17–20

In formulating the Koopman-operator analysis, the dynami-
cal systems studied so far have mainly been restricted to finite-
dimensional systems described by ordinary differential equations
(ODE’s) or maps, though the framework was originally set in the
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general context of nonlinear evolution equations in the Hilbert
space including partial differential equations (PDE’s) (see Sec. 3.1 of
Ref. 21 where Koopman modes are defined). However, as recently
discussed in several papers, the Koopman-operator analysis and the
notion of isostables can also be generalized to infinite-dimensional
dynamical systems described by PDE’s.20,22,23 Also, though not in
the context of the Koopman-operator analysis, the extension of the
notion of the isochron to PDE’s has been discussed in the phase
reduction analysis of rhythmic reaction–diffusion systems.24

For a system described by a PDE, the system state is a field vari-
able and thus the state space can be infinite-dimensional. Accord-
ingly, the notion of the Koopman eigenfunction of the system state
for finite-dimensional systems should be generalized to eigenfunc-
tional of the field variable. The aim of this paper is to provide an
overview of the Koopman-operator analysis for a general class of
PDE’s describing relaxation of the system state to a stable station-
ary state (fixed point) in the simple case. The key to our analysis
here is the definition of Koopman eigenfunctionals. It is shown that,
by introducing Koopman eigenfunctionals of the system states, the
Koopman-operator analysis can naturally be generalized to such
PDE’s on the basis of nonlinear functional analysis.25

We use the idea of conjugacy, which has been used in the Koop-
man mode decomposition earlier in the context of ordinary differ-
ential equations5,6,26 and data fusion,27 to develop spectral expansion
of the Koopman operator. We also discuss the relationship of spec-
tral expansions of Koopman operators for PDE’s to the concept
of inertial manifolds28–31 and argue that under certain conditions,
the inertial manifolds can be obtained as zero level sets of Koop-
man eigenfunctionals, enabling their computation. These ideas are
exemplified using conjugacy between linear diffusion equation and
nonlinear Burgers and phase-diffusion equations.

Although the dynamic mode decomposition (DMD),2,22,23,32,33

which is closely related to the Koopman-operator analysis, has
widely been used for analyzing spatiotemporal dynamics of PDE’s
in recent years, explicit formulations of the Koopman-operator the-
ory for PDE’s have yet to be developed. Our aim in this paper is to
provide an overview of the Koopman-operator approach to PDE’s
in the simple case, which would serve as a starting point for more
rigorous mathematical analysis as well as to various applications of
the Koopman-operator analysis for PDE’s that arise in various areas
of science and engineering.

This paper is organized as follows. In Sec. II, the Koopman for-
malism for PDE’s whose solution converges to a uniform stationary
state is introduced. In Sec. III, Koopman eigenfunctionals of linear
PDE’s are derived and three examples of solvable linear and nonlin-
ear PDE’s are analyzed in the context of conjugacy and compared
with numerical simulations. Section IV gives a summary, and the
Appendix provides the details of the calculations.

II. KOOPMAN-OPERATOR FORMALISM

A. System dynamics

For simplicity, we consider a spatially one-dimensional,
autonomous scalar PDE,

∂

∂t
u(x, t) = F {u(x, t)}, (1)

where u ∈ C is the system state, i.e., the field variable representing a
spatial pattern of the system, t ∈ R is the time, and x ∈ [0, L] is the
spatial coordinate. The space C is an appropriate function space on
[0, L], such as L2([0, L]) of square-integrable functions. The right-
hand side F describes the dynamics of the system, which includes
functions of u(x, t) and its partial derivatives. We assume appro-
priate boundary conditions at x = 0 and x = L, such as Dirichlet,
Neumann, or cyclic. We also assume that Eq. (1) has an expo-
nentially stable and isolated stationary uniform solution u0(x) = 0
(0 ≤ x ≤ L), satisfying F {u0(x)} = 0. If u0(x) is non-uniform, we
redefine u(x, t) − u0(x) as new u(x, t). We denote the basin of
attraction of this stationary solution as B ⊂ C.

In this paper, we simply assume that Eq. (1) with given bound-
ary conditions is well-posed and has a unique solution for a given
initial condition. We focus on the basin of attraction of an isolated
stationary solution. If Eq. (1) has multiple stationary solutions, the
analysis should be performed separately for each basin of attraction.
The validity of these assumptions has to be individually analyzed for
given PDE’s.

In Sec. III, we consider the diffusion equation

F {u(x, t)} =
∂2u(x, t)

∂x2
, (2)

the Burgers equation

F {u(x, t)} = −u(x, t)
∂u(x, t)

∂x
+

∂2u(x, t)

∂x2
, (3)

and the nonlinear phase-diffusion equation

F {u(x, t)} =
∂2u(x, t)

∂x2
+

(

∂u(x, t)

∂x

)2

, (4)

as examples, which are mutually conjugate in the sense explained
later.

B. Koopman operator and infinitesimal generator

In the Koopman-operator analysis, evolution of the observables
of the system rather than the system state itself is focused on.1,3,4 Even
if the system dynamics is nonlinear, the evolution of the observ-
ables is described by a linear Koopman operator. For ODE’s, the
observable is generally a nonlinear function that maps the system
states represented by finite-dimensional vectors to complex values.
For PDE’s, the observable is generally a nonlinear functional that
maps the system states represented by functions, i.e., field variables,
to complex values. For rigorous mathematical foundations of the
nonlinear functional analysis, see Ref. 25.

For systems described by PDE’s, the observable of the system is
given by an observation functional

g[u] : B → C (5)

of the field variable u ∈ B. Evolution of the observable is described
by a Koopman operator Ut, satisfying

Utg[u] = g[Stu], (6)

where Utg is the observable at time t starting from g at time 0 and Stu
is the field variable at t starting from u at time 0, respectively. Here,
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St : B → B is the flow of the PDE (1), which satisfies

Stu(x, s) = u(x, s + t) (7)

for arbitrary s and t. It is clear that U0 is an identity, U0g[u]
= g[S0u] = g[u], Ut is a linear operator,

Ut(c1g1[u] + c2g2[u]) = c1g1[S
tu] + c2g2[S

tu]

= c1U
tg1[u] + c2U

tg2[u] (8)

for any c1 and c2, and Ut is commutable, as g[SsStu] = UtUsg[u] and
g[SsStu] = g[StSsu] imply

UtUsg[u] = UsUtg[u]. (9)

The inverse operator U−t = (Ut)
−1

exists as long as the flow of the
PDE (1) is a group over t.

Infinitesimal evolution of a smooth observable Utg at t is
represented as

d

dt
{Utg[u]} = A{Utg[u]}, (10)

where the linear operator A is an infinitesimal generator of the
Koopman operator Ut given by

Ag[u] = lim
τ→0

Uτ g[u] − g[u]

τ
=

∫ L

0

F {u(x)}
δg[u]

δu(x)
dx. (11)

Here, δg[u]/δu(x) is a functional derivative of g[u] with respect
to u(x) (see the Appendix for details). Using the generator A, the
action of the Koopman operator Ut on the observable g[u] can be
expressed as

Utg[u] = exp(At)g[u] =

∞
∑

k=0

1

k!
tkAkg[u]. (12)

C. Koopman eigenfunctionals

Since Ut is a linear operator, we can consider its eigenvalue
λ ∈ C and eigenfunctional φλ[u] : B → C satisfying

Utφλ[u] = φλ[Stu] = eλtφλ[u], (13)

where λ rather than eλt is called the eigenvalue (this term is reserved
for the generator A of Ut introduced below). If φλ1 [u] is an eigen-
functional associated with λ1 and φλ2 [u] is an eigenfunctional asso-
ciated with λ2, the product φλ1 [u]φλ2 [u] is also an eigenfunctional
associated with the eigenvalue λ1 + λ2 because

Ut(φλ1 [u]φλ2 [u]) = φλ1 [Stu]φλ2 [Stu]

= eλ1tφλ1 [u]eλ2tφλ2 [u]

= e(λ1+λ2)tφλ1 [u]φλ2 [u]. (14)

Similarly, φn
λ[u] = (φλ[u])n is an eigenfunctional of Ut with eigen-

value nλ, and more generally

φ
k1
λ1

[u]φ
k2
λ2

[u] · · ·φ
kn
λn

[u], (15)

with non-negative integers k1, . . . , kn satisfying k1 + · · · + kn > 0
is an eigenfunctional of Ut associated with an eigenvalue

∑n
j=1 kjλj

for n = 2, 3, . . ..

A smooth eigenfunctional φλ[u] of the Koopman operator Ut

is also an eigenfunctional of the generator A, i.e.,

Aφλ[u] = λφλ[u] (16)

because

Aφλ[u] = lim
τ→0

Uτφλ[u] − φλ[u]

τ

= lim
τ→0

eλτ − 1

τ
φλ[u] = λφλ[u]. (17)

For the stationary state u0(x) satisfying F {u0(x)} = 0,
Stu0(x) = u0(x) holds for any t ≥ 0 and thus

Utφλ[u0] = φλ[Stu0] = φλ[u0] (18)

and

Aφλ[u0] = 0. (19)

Therefore, φλ[u0] can take non-zero values only when λ = 0. As
long as λ 6= 0 (eλt 6= 1), we have φλ[u0] = 0.

If the system has a conserved quantity represented by a func-
tional h[u], then h[u] satisfies

Uth[u] = h[Stu] = h[u] (20)

and

Ah[u] = 0. (21)

Thus, h[u] is a Koopman eigenfunctional of U and A associated with
a vanishing eigenvalue λ = 0 (eλt = 1).

Note that the system can generally possess two or more con-
served quantities. For example, for the 2D Euler equation with
appropriate boundary conditions, the energy (2nd moment of the
velocity field) and enstrophy (2nd moment of the vorticity field) are
both conserved and hence they are Koopman eigenfunctionals with
eigenvalue 0.

D. Linear systems

For linear PDE’s, we can derive an explicit formula for the
Koopman eigenvalues and eigenfunctionals. Consider a linear PDE,

∂

∂t
u(x, t) = L u(x, t), (22)

where L is a linear time-independent operator describing the evolu-
tion of the system. We introduce appropriate boundary conditions
and assume that Eq. (22) has a stable, isolated, stationary uniform
solution u0(x) = 0 for 0 ≤ x ≤ L. We assume that L has a discrete
spectrum with eigenvalues λ = λn (n = 1, 2, . . . , N) with negative
real part, where N can go to infinity. The case with zero eigenvalue
is excluded because we consider an isolated stable stationary state.
We denote the flow of Eq. (22) as

St
L

= eLt, (23)

and the corresponding Koopman operator as

Ut
L

= exp(ALt), (24)

where AL is the generator of Ut
L

.
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We denote the eigenfunction of L associated with eigenvalue
λ as qλ, i.e.,

L qλ(x) = λqλ(x), (25)

and the eigenfunctions of the adjoint operator L ∗ of L associated
with eigenvalue λ as wλ (the overline indicates complex conjugate),

L
∗wλ(x) = λwλ(x), (26)

where the adjoint operator L ∗ of L is defined with respect to

the inner product
∫ L

0
a(x)b(x)dx of two functions a(x) and b(x),

and appropriate adjoint boundary conditions for wλ(x) should be
introduced so that the bilinear concomitant vanishes.34

Using wλ as a weight function, we introduce a linear functional

φλ[u] =

∫ L

0

u(x)wλ(x)dx. (27)

This φλ[u] gives the eigenfunctional of the generator AL with
eigenvalue λ because

AL φλ[u] =

∫

{L u(x)}
δφλ[u]

δu(x)
dx

=

∫

{L u(x)}wλ(x)dx

=

∫

u(x){L ∗wλ(x)}dx

= λ

∫

u(x)wλ(x)dx = λφλ[u] (28)

from Eqs. (11) and (16). The above φλ[u] is also an eigenfunctional
of the Koopman operator Ut

L
because

Ut
L

φλ[u] = φλn [St
L

u] = φλn [eLtu]

=

∫

{eLtu(x)}wλ(x)dx

=

∫

u(x)eL ∗twλ(x)dx

= eλt

∫

u(x)wλ(x)dx = eλtφλ[u].

In Sec. III, we derive Koopman eigenfunctionals for a linear diffu-
sion equation using the above result.

E. Conjugacy

Generally, the spectrum of the Koopman operator Ut may con-
tain discrete and continuous parts. When the solution of the PDE
converges to a stationary solution u0(x) globally and exponentially
in some Banach space, the eigenvalues of Ut have negative real part
and, under certain conditions, they include the eigenvalues of the
linearized operator of F around u0(x). To show this, we introduce
the notion of conjugacy.1,3,6

Let St
F

and Ut
F

be the flow and Koopman operator for a PDE

∂

∂t
u(x, t) = F {u(x, t)}, (29)

and St
G

and Ut
G

be the flow and Koopman operator for another PDE

∂

∂t
v(x, t) = G {v(x, t)}, (30)

where u ∈ C and v ∈ C are the field variables and F and G describe
their dynamics.

These two systems are conjugate when a diffeomorphism, i.e.,
smooth mapping

v = 8(u) (31)

such that

8(St
F

u) = St
G

8(u) (32)

exists. Suppose that φλ[v] is an eigenfunctional of Ut
G

with eigen-
value λ. Then,

Ut
G

φλ[v] = φλ[St
G

v] = φλ[St
G

8(u)]

= φλ[8(St
F

u)] = Ut
F

φλ[8(u)]

= eλtφλ[v] = eλtφλ[8(u)], (33)

so φλ[8(u)] is an eigenfunctional of Ut
F

of the conjugate system
with the same eigenvalue λ.

Now, assume that a fully nonlinear problem

∂

∂t
u(x, t) = F {u(x, t)} (34)

has a stable stationary solution u0(x) = 0 and split F around u0(x)
as

F {u(x, t)} = L u(x, t) + N {u(x, t)}, (35)

where L is a linearized operator of F around u0(x) = 0 and N is
a nonlinear part satisfying N {u0(x)} = 0. We consider a linearized
problem

∂

∂t
v(x, t) = L v(x, t) = G {v(x, t)}, (36)

and assume that L has a discrete spectrum with eigenvalues λn

(n = 1, 2, . . .) with negative real part.
As before, let wλ be the eigenfunctions of the adjoint operator

L ∗ of L , satisfying

L
∗wλ(x) = λwλ(x). (37)

Then, the functional

φλ[v] =

∫

v(x)wλ(x)dx (38)

is an eigenfunctional of the Koopman operator Ut
L

for the linear
system Eq. (36) and satisfies

Ut
L

φλ[v] = φλ[eLtv] = eλtφλ[v]. (39)

Now suppose that the solutions of the original fully nonlinear
problem Eq. (34) and the linearized problem Eq. (36) are conjugate,

Chaos 30, 113131 (2020); doi: 10.1063/5.0011470 30, 113131-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

i.e.,

8(St
F

u) = eLt8(u), (40)

where St
F

is the flow of Eq. (34) and St
G

= eLt is the flow of Eq. (36).
Then, from Eq. (33), if φλ[v] is an eigenfunctional of Ut

L
with eigen-

value λ, then φλ[8(u)] is an eigenfunctional of Ut
F

with the same
eigenvalue λ. Thus, the eigenvalue λ of the linearized operator L

is also an eigenvalue of the Koopman operator Ut
F

. These eigenval-
ues λ1, λ2, . . . of the linearized operator L and of the generator A
will be called principal eigenvalues in the following discussion. They
are sorted in decreasing order of their real part as 0 >Reλ1

≥ Reλ2 ≥ · · · as usual.

F. Expansion of observables

We here discuss the expansion of analytic observables by the
principal Koopman eigenfunctionals. We consider a system

∂

∂t
u(x, t) = F {u(x, t)}, (41)

with an exponentially stable stationary state u0(x) = 0, and denote
the linearized operator of F around u0(x) as L . We assume that
the original and linearized systems are conjugate, and L has a dis-
crete spectrum with eigenvalues λj (j = 1, 2, . . .) that accumulate
only at infinity, limj→∞ Re λj = −∞. These eigenvalues are then the
principal eigenvalues of the Koopman operator Ut

F
. We denote the

eigenfunction of L associated with λn as qn and the field variable u
can be expressed as

u(x, t) =

∞
∑

j=1

aj(t)qj(x), (42)

where a1, a2, . . . are the expansion coefficients.
Similarly to the case of ODE’s,1 when the solution of the PDE

u(x, t) converges to a globally and exponentially stable stationary
solution u0(x) = 0, a sufficiently smooth observable g[u] can be
expanded as an infinite series over the set of Koopman eigenfunc-
tionals {φλn [u]} with principal eigenvalues {λn} (n = 1, 2, . . . , ∞)
as

g[u] = g[0] +

∞
∑

n=1

1

n!

∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn=1

cj1 ,j2 ,...,jn

× φλj1
[u]φλj2

[u] · · ·φλjn
[u], (43)

where cj1 ,j2 ,...,jn are expansion coefficients determined by functional
derivatives of g[u]. See the Appendix for the derivation and explicit
expression for the coefficients.

Evolution of the observable g[u] can be expressed as

Utg[u] = g[0] +

∞
∑

n=1

1

n!

∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn=1

cj1 ,j2 ,...,jn

× e(λj1
+λj2

+···+λjn )tφλj1
[u]φλj2

[u] · · ·φλjn
[u], (44)

where the summation is taken over all discrete eigenvalues. Thus,
by regarding the Koopman eigenfunctionals as new coordinates,
dynamics of the system can be decomposed into linear independent
components.

In particular, if the observable is chosen as

gx[u] = u(x), (45)

where the subscript x indicates that the observable gx[u] gives the
value of the function u at x, i.e., the field variable u(x) itself, the
evolution of the system state can be expressed as

u(x, t) = gx[S
tu] = Utgx[u]

=

∞
∑

n=1

1

n!

∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn=1

dj1 ,j2 ,...,jn(x)

× e(λj1
+λj2

+···+λjn )tφλj1
[u]φλj2

[u] · · ·φλjn
[u],

(46)

where gx[0] = u0(x) = 0 is used and dj1 ,j2 ,...,jn(x) are x-dependent
expansion coefficients of the observable gx[u], called the Koopman
modes.6 The lowest order terms of this expansion are given by

u(x, t) =

∞
∑

j1=1

dj1(x)e
λj1

tφλj1
[u] + · · · . (47)

Here, we give a lemma, which is useful for considering the
inertial manifolds and model reduction of the PDE.

Lemma. Let the real parts σj of the eigenvalues of L satisfy
limj→∞ σj = −∞, and let there be no finite accumulation points of
the spectrum in the left half of the complex plane. Let D < 0. Then, the
number of eigenvalues of the Koopman operator Ut such that σj > D
is finite.

Proof. There is the smallest K such that σk < D for k ≥ K. Also,
for any σj > σK, there is a positive integer n such that nσj < D.
Since the eigenvalues of the Koopman eigenfunctional take the form
∑n

j=1 kjλj, where kj ≥ 0 (j = 1, . . . , n), the number of eigenvalues

whose real parts are bigger than D is finite.35 �

G. Inertial manifold and isostables

Using Eq. (46), we can introduce the notion of inertial mani-
fold28–31 and isostable17–20 of the system. The existence of the inertial
manifold has been discussed for several class of PDE’s such as reac-
tion–diffusion systems.28–30 Also, the notion of isostable has recently
been applied to the control of ODE’s and PDE’s18,20,36 and also for
phase-amplitude reduction of limit-cycling systems.19,37–39

The inertial manifold of the system is a finite-dimensional
smooth manifold I , which satisfies StI ⊆I for t > 0 and expo-
nentially attracts all solutions of the system (hence I includes the
globally stable stationary state). When the Koopman eigenfunction-
als of the system are known, the inertial manifold can be defined as
joint zero level sets of the Koopman eigenfunctionals other than the
one associated with the largest eigenvalue.1,6 The isostable of a stable
stationary state is the set of system states that share the same asymp-
totic convergence to the stationary state, i.e., that converge to the
stationary state with the same timing as t → ∞. The isostable can
be defined as a level set of the Koopman eigenfunctional associated
with the eigenvalue with the largest real part.1,18,20
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For example, if λ1 is real and 0 > λ1 > Reλ2 ≥ · · · , the lowest
dimensional inertial manifold can be defined as

I = {u(x) ∈ B | φλn [u] = 0, ∀n ≥ 2}, (48)

and the evolution of the system state u(x, t) = Stu(x, 0) on I start-
ing from u ∈ I at time 0 can be represented as

u(x, t) = d1(x)e
λ1tφλ1 [u] + d1,1(x)e

2λ1t{φλ1 [u]}2 + · · · . (49)

From Eq. (46), all system states in B are exponentially attracted to
the one-dimensional inertial manifold I and converges to the stable
stationary state along I .

At sufficiently large t, the system state u(x, t) starting from arbi-
trary initial state in B approximately satisfies Eq. (49). Therefore, if
two system states u1(x) and u2(x) satisfy |φλ1 [u1]| = |φλ1 [u2]| ini-
tially, they converge to the stationary state u0(x) = 0 with the same
timing, satisfying ‖u1‖ ' ‖u2‖ asymptotically as t → ∞. Here, the

norm ‖a‖ of a function a(x) is defined as ‖a‖ = (
∫ L

0
|a(x)|2dx)

1/2
.

Thus, the level set of φλ1 [u] gives the isostable of the stationary state.
Note that the 1st Koopman mode d1(x) in Eq. (49) is simply

proportional to the eigenfunction q1(x) of L . At sufficiently large t,
the system state u(x, t) is close to u0(x) = 0 and approximately obeys
a linearized dynamics ∂u(x, t)/∂t = L u(x, t). Thus, the solution at
sufficiently large t is dominated by the slowest decaying mode q1(x)
with the largest λ1 as u(x, t) ≈ a1q1(x)e

λ1t, where a1 is a constant,
and the 1st Koopman mode d1(x) can be obtained from the field
variable u(x, t) by

d1(x)φ1[u] = lim
t→∞

{u(x, t)e−λ1t} = a1q1(x), (50)

i.e., d1(x) ∝ q1(x).
Similarly, if λ1 and λ2 are complex conjugate mutually, then

we have 0 > Reλ1 = Reλ2 > Reλ3 ≥ · · · . We thus have a two-
dimensional inertial manifold in this case, which can be defined
as

I = {u(x) ∈ B | φλn [u] = 0, ∀n ≥ 3}, (51)

and the evolution of the system state on the two-dimensional inertial
manifold I can be expressed as

u(x, t) = d1(x)e
λ1tφλ1 [u] + d2(x)e

λ2tφλ2 [u]

+ d1,1(x)e
2λ1t{φλ1 [u]}2 + d2,2(x)e

2λ2t{φλ2 [u]}2

+ d1,2(x)e
(λ1+λ2)tφλ1 [u]φλ2 [u] + · · · . (52)

The level sets of |φλ1 [u]| (or equivalently |φλ2 [u]|) give the isostables.
The above construction of the 1st Koopman mode is essentially

the same as those used in the analysis of isostables for ODE’s17 and
PDE’s.20

III. EXAMPLES

We here provide Koopman eigenfunctionals for three simple
examples of linear and nonlinear PDE’s that are mutually conju-
gate and illustrate by direct numerical simulations that the values of
the Koopman eigenfunctionals of the evolving system state actually
exhibit exponential relaxation.

A. Linear diffusion equation

1. Neumann boundary conditions

We first consider a linear diffusion equation on [0, L],

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), (53)

where u(x, t) ∈ L2([0, L]) is the field variable, and assume homoge-
neous Neumann boundary conditions,

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0. (54)

Then, Eq. (53) has a stable, spatially uniform stationary
solution

u0(x) =
1

L

∫ L

0

u(x′, 0)dx′ = const. (0 ≤ x ≤ L). (55)

In the following discussion, we redefine u(x, t) − u0(x) as the
new field variable u(x, t). Then, the new u(x, t) obeys the same diffu-
sion equation (53) and the boundary conditions (54) and u(x, t) →

0 as t → ∞. This eliminates the zero eigenvalue from the prob-
lem, which arises when Neumann boundary conditions are assumed
and the integral of u(x, 0) does not vanish. Note that, if we do not
subtract u0(x) from u(x, t) in this problem, we have a continuous
family of the final stationary solutions depending on the value of
∫ L

0
u(x, 0)dx, which is conserved through the evolution. This is not

the case if we add generic perturbations to the system.
We denote the flow, Koopman operator, and generator of the

Koopman operator of this system as St
D, Ut

D, and AD, respectively.
The linear operator in Eq. (53) is

L =
∂2

∂x2
, (56)

and we obtain by partial integration

∫ L

0

∂2u(x, t)

∂x2
v(x, t)dx = J +

∫ L

0

u(x, t)
∂2v(x, t)

∂x2
dx, (57)

where v(x, t) ∈ C2 and

J =

[

∂u(x, t)

∂x
v(x, t) − u(x, t)

∂v(x, t)

∂x

]L

0

(58)

is a bilinear concomitant. This J vanishes by assuming homogeneous
Neumann boundary conditions

∂v

∂x
(0, t) =

∂v

∂x
(L, t) = 0 (59)

also for v(x, t). Thus, the problem is self-adjoint and if the weight
function w(x) = wλ(x) satisfies the adjoint eigenvalue equation

L
∗wλ(x) =

∂2

∂x2
wλ(x) = λwλ(x), (60)

with the adjoint boundary conditions

∂wλ

∂x
(0) =

∂wλ

∂x
(L) = 0, (61)
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then

φλ[u] =

∫ L

0

u(x)wλ(x)dx (62)

is an eigenfunctional of AD with the eigenvalue λ.
The eigenvalues of L = L ∗ are given by real numbers

λn = −
(nπ

L

)2

, (63)

and the weight functions wλ(x) can be taken as

wn(x) = cos(
√

|λn|x) = cos
(nπ

L
x
)

, (64)

where n = 1, 2, . . .. Note that the zero eigenvalue does not arise.
Therefore, the Fourier-cosine transform of u,

φD
n [u] =

∫ L

0

u(x) cos
(nπ

L
x
)

dx (65)

for n = 1, 2, . . ., gives the principal Koopman eigenfunctional of the
linear diffusion equation (53) with the boundary conditions (54),
where the Koopman eigenvalue λn is given in Eq. (63). Indeed, from
Eq. (28), we have

ADφD
n [u] =

∫

u(x)

{

∂2

∂x2
cos

(nπ

L
x
)

}

dx

= −
(nπ

L

)2
∫

u(x) cos
(nπ

L
x
)

dx

= λnφ
D
n [u]. (66)

The inertial manifold I of the system is given by a set of func-
tions satisfying φD

n [u] = 0 for n ≥ 2. From Eq. (65), this is simply a
function space spanned by cos(πx/L). Similarly, the isostable char-
acterizing asymptotic convergence to the stationary state is given

by the level set of φD
1 [u] =

∫ L

0
u(x) cos(πx/L)dx, i.e., by the 1st

Fourier-cosine coefficient of the field variable.
In Fig. 1, the numerical results for the linear diffusion equation

(53) with L = 20 are presented. Figure 1(a) shows several snapshots
of the field variable u(x, t) during the relaxation to the stationary
state u0(x) = 2 (which is subtracted in the theory as mentioned
before). Figure 1(b) plots the values of

φD
n [St

Du] =

∫ L

0

u(x, t) cos
(nπ

L
x
)

dx (67)

as a function of time t for n = 1, . . . , 5. The exponential decay of
the data points indicates that φD

n actually satisfies the eigenvalue
equation

φD
n [St

Du] = Ut
DφD

n [u] = eλntφD
n [u]. (68)

The Koopman eigenvalues evaluated numerically from the slopes of
the data in Fig. 1(b) are plotted in Fig. 4, which agree well with the
theoretical values given in Eq. (63), as expected.

FIG. 1. Linear diffusion equation with Neumann boundary conditions. (a) Relax-
ation of the field variable u(x, t) to a uniform stationary state. (b) Expo-
nential decay of the Koopman eigenfunctionals φD

n [u(x, t)] for n = 1, . . . , 5.
The initial state is u(x, 0) = 2 + cos(πx/L) + cos(2πx/L) + cos(3πx/L) +

cos(4πx/L) + cos(5πx/L) + cos(6πx/L).

2. Dirichlet boundary conditions

We next consider a linear diffusion equation on [0, L],

∂

∂t
v(x, t) =

∂2

∂x2
v(x, t), (69)

where v(x, t) is the field variable, with inhomogeneous Dirichlet
boundary conditions

v(0, t) = a, v(L, t) = b, (70)

where a and b are real constants. In this case, Eq. (69) has a stationary
solution

v0(x) = a +
b − a

L
x. (71)
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We introduce a new field variable u(x, t) = v(x, t) − v0(x), which
obeys

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), (72)

with homogeneous Dirichlet boundary conditions

u(0, t) = u(L, t) = 0. (73)

In this case, the bilinear concomitant J vanishes by assuming homo-
geneous Dirichlet boundary conditions also for the adjoint prob-
lem. Thus, the problem is self-adjoint and the weight function
w(x) = wλ(x) satisfies

L
∗wλ(x) =

∂2

∂x2
wλ(x) = λwλ(x) (74)

and

w(0) = w(L) = 0. (75)

The eigenvalues of L = L ∗, in this case, are the same as in
the Neumann case and are given by

λn = −
(nπ

L

)2

, (76)

and the weight functions wλ(x) are now given by

wn(x) = sin(
√

|λn|x) = sin
(nπ

L
x
)

(77)

for n = 1, 2, . . ..
Therefore, the Fourier-sine transform of u,

φD
n [u] =

∫ L

0

u(x) sin
(nπ

L
x
)

dx, (78)

is the principal Koopman eigenfunctional of Eqs. (72) and (73).
In terms of the original variable v, this is given in the form

φD
n [v] =

∫

{v(x) − v0(x)} sin
(nπ

L
x
)

dx. (79)

The inertial manifold I is now given by a function space
spanned by sin(πx/L), and the isostable is given by the level set

of φD
1 [u] =

∫ L

0
u(x) sin(πx/L)dx, i.e., by the 1st Fourier-sine coef-

ficient of the field variable.

3. Koopman modes

As explained in Sec. II G, the 1st Koopman mode d1(x)
of the linear diffusion equation is given by the eigenfunction
q1(x) associated with the eigenvalue λ1. For Neumann bound-
ary conditions, the field variable u(x, t) converges to 0 as u(x, t)
' a1 exp(−λ1t) cos(πx/L) with λ1 = −(π/L)2, so d1(x) = a1

cos(πx/L), where the constant a1 is determined by the initial con-
dition. Indeed, we can observe in Fig. 1(a) that the field variable u
at t = 30 is approximately a cosine function cos(πx/L). Similarly,
for Dirichlet boundary conditions, u(x, t) converges to 0 as u(x, t)
' a1 exp(−λ1t) sin(πx/L) and we have d1(x) = a1 sin(πx/L). These
functions represent, naturally, the slowest decaying spatial modes
of the linear diffusion equation with these boundary conditions.

B. Burgers equation

As the first example of the nonlinear PDE, we consider the
viscous Burgers equation, which is exactly solvable. The Koopman-
operator and related analysis for the Burgers equation has been
discussed by Kutz et al.,23 Page and Kerswell,22 Peitz and Klus,40

Wilson and Djouadi,36 and Balabane et al.41 In Refs. 22 and 23, the
spectrum and Koopman modes have been analyzed by using DMD
and kernel methods. In Ref. 40, model reduction and control of the
Burgers equation is discussed, and in Ref. 36, isostable reduction
for control of the Burgers equation is performed. In Ref. 41, rigor-
ous mathematical analysis on the Koopman operator of the Burgers
equation is performed. Here, we present the results on the Koop-
man eigenvalues and eigenfunctionals of the Burgers equation in the
context of conjugacy with the linear diffusion equation.

The viscous Burgers equation can be expressed as

∂

∂t
z(x, t) = −z(x, t)

∂

∂x
z(x, t) +

∂2

∂x2
z(x, t) (80)

after rescaling, where z(x, t) is the field variable on [0, L]. We assume
homogeneous Dirichlet boundary conditions,

z(0, t) = z(L, t) = 0. (81)

In this case, the field variable z(x, t) converges to a stable station-
ary state z0(x) = 0 as t → ∞ after transient. We denote the flow,
Koopman operator, and generator of the Koopman operator of this
system as St

B, Ut
B, and AB, respectively.

It is well known that the Burgers equation and linear diffusion
equation are related via the Hopf–Cole transformation,42,43

z(x, t) = −2
∂

∂x
ln v(x, t) = −2

1

v(x, t)

∂

∂x
v(x, t), (82)

v(x, t) = c(t) exp

(

−
1

2

∫ x

0

z(y, t)dy

)

, (83)

where the coefficient c(t) should be chosen appropriately so that
v(x, t) obeys the diffusion equation. Namely, if z(x, t) satisfies
Eqs. (80) and (81), then v(x, t) satisfies the linear diffusion equation

∂

∂t
v(x, t) =

∂2

∂x2
v(x, t), (84)

with the Neumann boundary conditions

∂v

∂x
(0, t) =

∂v

∂x
(L, t) = 0, (85)

and if v(x, t) satisfies Eqs. (84) and (85), then z(x, t) satisfies the
Burgers equation (80) with the Dirichlet boundary conditions (81).
Thus, the Hopf–Cole transformation gives the mapping 8 of conju-
gacy in Eq. (40).

Substituting Eq. (83) into Eq. (84), it turns out that c(t) should
satisfy

d

dt
ln c(t) =

1

2

(

−
∂z(x, t)

∂x

∣

∣

∣

∣

x=0

+
1

2
z(0, t)2

)

. (86)

In the present case with the Dirichlet boundary conditions for z(x, t),
the above equation is satisfied by22

c(t) =

(∫ L

0

exp

(

−
1

2

∫ x

0

z(y, t)dy

)

dx

)−1

. (87)
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The solution v(x, t) of Eq. (84) with Eq. (85) approaches a constant
v∞ as t → ∞,

v∞ = lim
t→∞

v(x, t) = lim
t→∞

c(t) =
1

L
, (88)

and by introducing a new field variable

u(x, t) = v(x, t) − v∞, (89)

u(x, t) satisfies Eqs. (53) and (54) and u(x, t) → 0 as t → ∞, for
which Eq. (65) gives the Koopman eigenfunctional. Therefore, we
find that the functional

φB
n [z] =

∫ L

0

{

c[z] exp

(

−
1

2

∫ x

0

z(y)dy

)

− v∞

}

× cos
(nπ

L
x
)

dx, (90)

with

c[z] =

(∫ L

0

exp

(

−
1

2

∫ x

0

z(y)dy

)

dx

)−1

(91)

giving the principal Koopman eigenfunctional of the Burgers
equation (80) with the Dirichlet boundary conditions (81) satisfying

φB
n [St

Bz] = Ut
Bφ

B
n [z] = eλntφB

n [z], (92)

where we represented the coefficient c(t) in Eq. (83) as a functional
c[z] of the field variable z. Because of the conjugacy, the associated
eigenvalues λn are the same as those for the linear diffusion equation
with Neumann boundary conditions,

λn = −
(nπ

L

)2

(n = 1, 2, . . .). (93)

The inertial manifold I for the Burgers equation is given by a set
of functions z satisfying φB

n [z] = 0 for n ≥ 2, and the isostables are
given by the level sets of φB

λ1
[z].

Figure 2(a) shows several snapshots of the field variable
z(x, t) = St

Bz(x, 0) of the Burgers equation with L = 20 during relax-
ation to the stationary solution obtained by direct numerical sim-
ulations. It can be seen that the peak of z(x, t) gradually moves to
the right due to advection and then decays to zero due to viscosity.
Figure 2(b) plots the values of φB

n [St
Bz] (n = 1, 2, . . . , 5) given in Eqs.

(90) and (91) with respect to t during the relaxation, which exhibit
clear exponential decay despite the nonlinear evolution of z(x, t),
indicating that Eq. (92) is actually satisfied. The Koopman eigen-
values evaluated numerically from the slopes of the data points in
Fig. 2(b) are plotted in Fig. 4, which agree well with the theoretical
values [Eq. (93].

In Ref. 22, Page and Kerswell reported that the Koopman
eigenvalues are highly degenerate, namely, the multiplicity of the
Koopman eigenvalue increases quickly with n. This is because the
products of principal Koopman eigenfunctionals are also Koopman
eigenfunctionals and because the eigenvalues, Eq. (93), have quite a
simple quadratic dependence on n. In such cases, due to the same
reason, the expansion of the field variable in Eq. (46) will be com-
posed of a number of different Koopman eigenfunctionals with the
same growth rate.

In Ref. 44, a modified Burgers equation, which exhibits a pitch-
fork bifurcation, is considered and an explicit expression of the

FIG. 2. Burgers equation with Dirichlet boundary conditions. (a) Relaxation
of the field variable z(x, t) to a uniform stationary state. (b) Exponen-
tial decay of the Koopman eigenfunctionals φB

n [z(x, t)] for n = 1, . . . , 5.
The initial state is z(x, t) = sin(πx/L) + 0.9 sin(πx/L) + 0.8 sin(3πx/L)
+ 0.7 sin(4πx/L) + 0.6 sin(5πx/L).

center manifold near the bifurcation point is derived. Though not
discussed in the present study, the Koopman-operator approach can
also be developed for PDE’s possessing a center manifold and, when
spectral expansions exist, we can use it for uniquely constructing the
center manifold in a similar way to the inertial manifold discussed in
this study (see Sec. III of Ref. 6). It would then be insightful to com-
pare the results obtained by the standard center manifold theory and
that obtained by the newly developed Koopman-operator approach.

C. Nonlinear phase-diffusion equation

As the second example of the nonlinear PDE, we consider a
“nonlinear phase-diffusion equation” on [0, L], which describes the
dynamics of the phase field of self-oscillatory media, such as the
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propagation and collision of phase waves.13 It is given by

∂

∂t
y(x, t) =

∂2

∂x2
y(x, t) +

(

∂

∂x
y(x, t)

)2

(94)

after rescaling, where y(x, t) is the field variable representing local
phase of an oscillatory medium and the natural frequency of the
medium is subtracted without loss of generality. The above equation
also gives the deterministic part of the Kardar–Parisi–Zhang
equation describing stochastic growth of rough interfaces.45 We
assume inhomogeneous Dirichlet boundary conditions,

y(0, t) = q, y(L, t) = p. (95)

We denote the flow, Koopman operator, and generator of the
Koopman operator of this system as St

P, Ut
P, and AP, respectively.

As shown in Ref. 13, the phase-diffusion equation (94) is closely
related to the Burgers equation, and by introducing a new field
variable

v(x, t) = exp y(x, t), (96)

it transforms into the linear diffusion equation (69) with the inho-
mogeneous Dirichlet boundary conditions, Eq. (70) with a = eβq

and b = eβp. The stationary solution Eq. (71) for the linear diffusion
equation corresponds to a stationary solution

y0(x) =
1

β
ln

(

eβq +
eβp − eβq

L
x

)

(97)

of the nonlinear phase-diffusion equation (94).
Thus, from Eq. (79) for the principal Koopman eigenfunctional

of the linear diffusion equation with Dirichlet boundary conditions
and Eq. (96) for the conjugacy, we obtain

φP
n [y] =

∫

{exp y(x) − exp y0(x)} sin
(nπ

L
x
)

dx (98)

as the Koopman eigenfunctional of Ut
P and AP of the nonlinear

phase-diffusion equation associated with eigenvalue

λn = −
(nπ

L

)2

(n = 1, 2, . . .), (99)

satisfying

φP
n [St

Py] = Ut
Pφ

P
n [y] = eλntφP

n [y]. (100)

As before, the inertial manifold I for the nonlinear phase-diffusion
equation is given by a set of functions satisfying φP

n [y] = 0 for n ≥ 2,
and the isostables are given by the level sets of φP

λ1
[y].

Figure 3(a) shows several snapshots of the field variable
y(x, t) = St

Py(x, 0) during relaxation to the stationary solution y0(x)
of the nonlinear phase-diffusion equation with L = 40 obtained by
direct numerical simulations. The phase field converges to a sta-
tionary pattern determined by the boundary conditions. Figure 3(b)
plots the values of φP

n [St
Py] (n = 1, 2, . . . , 5) with respect to t, which

again exhibit clear exponential decay despite nonlinear evolution of
y(x, t) and indicate that Eq. (100) is actually satisfied. The Koopman
eigenvalues evaluated numerically from the slopes of the data points
in Fig. 3(b) are plotted in Fig. 4, which agree well with the theoretical
values. Because of the conjugacy, the eigenvalues of the nonlin-
ear phase-diffusion equation coincide with those of the diffusion
equation as well as the Burgers equation.

FIG. 3. Nonlinear phase-diffusion equation with inhomogeneous Dirichlet bound-
ary conditions. (a) Relaxation of the system to a uniform state. (b) Expo-
nential decay of the Koopman eigenfunctionals φP

n [y(x, t)] for n = 1, . . . , 5.
The boundary values are q = 5 and p = 1, and the initial state is given
by y(x, 0) = 3 + 0.5{cos(πx/L) − sin(2πx/L) + cos(3πx/L) − sin(4πx/L)
+ cos(5πx/L) − sin(6πx/L) + cos(7πx/L) − sin(8πx/L)}.

IV. SUMMARY

We have shown that the spectral Koopman-operator formalism
can formally be generalized to a PDE describing relaxation of the
system state to a stationary state by introducing the concept of the
Koopman eigenfunctionals. Using exactly solvable examples of lin-
ear and nonlinear PDE’s (treated via conjugacy), we have illustrated
that the system can be decomposed into independent Koopman
modes, and the dynamics of the system can be described by a set
of linear equations for them. We have also provided the general
definition of isostables for a class of PDE’s and the inertial mani-
folds by using level sets of Koopman eigenfunctionals. These results
have been illustrated for three PDE’s that are mutually conjugate,
namely, the diffusion equation, Burgers equation, and nonlinear
phase-diffusion equation.
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FIG. 4. Koopman eigenvalues for the linear diffusion, Burgers, and nonlinear
phase-diffusion equations. Numerical results are compared with the theoretical
values.

The Koopman-operator analysis for PDE’s discussed in this
paper provides a general framework for linearizing nonlinear
dynamical systems described by PDE’s in the basin of attraction
of the stationary state, which will be useful for their analysis and
control. The same framework can be further generalized to include
limit-cycling PDE’s, which is closely related to the phase or phase-
amplitude reduction methods for PDE’s.20,24,46,47

We have used the conjugacy relation between Burgers and non-
linear phase-diffusion equations with the linear diffusion equation
to derive their Koopman eigenvalues and eigenfunctionals. It is
generally expected that the original nonlinear system is conjugate
to its linearized system around an exponentially stable, hyperbolic
stationary state of the PDE. Such a conjugacy relation has been
proven, e.g., in the context of the Hartman–Grobman theorem
for reaction–diffusion equations in a neighborhood of a stationary
solution.48

Finally, though we considered only solvable examples for which
the Koopman eigenfunctionals can be explicitly obtained, it is gen-
erally difficult to obtain the Koopman eigenfunctionals explicitly.
However, we should still be able to derive rigorous theoretical results
and develop approximate or numerical methods for PDE’s on the
basis of the general formulation of the Koopman-operator analy-
sis. For example, we can use statistical or machine-learning methods
to approximate the dominant Koopman eigenfunctional for given
PDE’s and then use them to analyze their dynamics and develop
methods for control and optimization.
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APPENDIX: FUNCTIONAL TAYLOR SERIES AND

EXPANSION OF OBSERVABLES

In this appendix, the definition of the functional derivatives
and the derivation of the expansion of analytic observables are
informally given using physics notations. Mathematical theories on
Banach calculus can be found in Refs. 25, 49, and 50.

1. Functional derivatives

The functional derivative δg[u]/δu(x) of a smooth functional
g[u] by u(x) is defined by a Gâteaux derivative as

dg[u + ε ′η]

dε ′

∣

∣

∣

∣

ε′=0

=

∫

δg[u]

δu(x)
η(x)dx, (A1)

where η(x) is a test function. The left-hand side of Eq. (A1) is
explicitly given by

dg[u + ε ′η]

dε ′

∣

∣

∣

∣

ε′=0

= lim
ε′→0

g[u + ε ′η] − g[u]

ε ′
. (A2)

The generator A of the Koopman operator Uτ can be derived using
this expression as

Ag[u] = lim
τ→0

Uτ g[u] − g[u]

τ

= lim
τ→0

g[Sτ u] − g[u]

τ

= lim
τ→0

g[u + τF {u(x)} + O(τ 2)] − g[u]

τ

=
dg[u + τF {u(x)}]

dτ

∣

∣

∣

∣

τ=0

=

∫ L

0

δg[u]

δu(x)
F {u(x)}dx, (A3)

where we used

Sτ u(x) = u(x) + τF {u(x)} + O(τ 2) (A4)

for sufficiently small τ .
Similarly, higher-order functional derivatives of a smooth func-

tional g[u] by u(x) are defined by the Taylor expansion of g[u + εη]
in ε around ε = 0,

g[u + εη] = g[u] +
dg[u + ε ′η]

dε ′

∣

∣

∣

∣

ε′=0

ε

+
1

2

d2g[u + ε ′η]

dε ′2

∣

∣

∣

∣

ε′=0

ε2 + · · ·

=

∞
∑

n=0

1

n!

dng[u + ε ′η]

dε ′n

∣

∣

∣

∣

ε′=0

εn, (A5)

where the nth expansion coefficient gives the nth order functional
derivative of g[u] evaluated at u(x),

dng[u + ε ′η]

dε ′n

∣

∣

∣

∣

ε′=0

=

∫

η(x1)η(x2) · · · η(xn)

×
δng[u]

δu(x1)δu(x2) · · · δu(xn)
dx1dx2 · · · dxn.

(A6)
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Note that

d0g[u + ε ′η]

dε ′0

∣

∣

∣

∣

ε′=0

= g[u] (A7)

when n = 0.
Setting ε = 1 in the above expression, the functional Taylor

expansion of g[u + η] around u is given by

g[u + η] = g[u] +

∫

δg[u]

δu(x1)
η(x1)dx1

+
1

2!

∫

δ2g[u]

δu(x1)δu(x2)
η(x1)η(x2)dx1dx2 + · · ·

= g[u] +

∞
∑

n=1

1

n!

∫

δng[u]

δu(x1)δu(x2) · · · δu(xn)

× η(x1)η(x2) · · · η(xn)dx1dx2 · · · dxn. (A8)

For a finite Taylor series of functionals, see, e.g., Ref. 50.

2. Derivation of the expansion of g[u]

We consider the system equation (41) with an exponentially
stable stationary state u0(x) = 0. We assume that the linearized
operator L of F around u0(x) = 0 has a discrete spectrum of eigen-
values {λj}, where limj→∞ Re λj = −∞ and this is the only accu-
mulation point. We denote by φλj

[u] a Koopman eigenfunctional

associated with λj.
We assume that the observation functional g[u] is analytic and

can be expanded in functional Taylor series around u = 0 as

g[u] =

∞
∑

n=0

1

n!

∫

δng[u]

δu(x1)δu(x2) · · · δu(xn)

× u(x1)u(x2) · · · u(xn)dx1dx2 · · · dxn, (A9)

where the functional derivatives are evaluated at u(x) = u0(x) = 0.
By using the Koopman eigenfunctionals, we introduce new

variables from the field variable u(x) as

yi = φλi
[u] (i = 1, 2, . . .), (A10)

each of which satisfies dyi/dt = λiyi from Eq. (17). When
u(x) = u0(x) = 0, we have yi = φλi

[0] = 0 for all i because u0(x)
= 0 is exponentially stable and, therefore, Reλi < 0. We assume that
the field variable u(x) can be expressed inversely using these new
variables as

u(x) = Vx(y1, y2, . . .) (0 ≤ x ≤ L), (A11)

where Vx is a x-dependent function satisfying Vx(0, 0, . . .)
= u0(x) = 0.

We assume that the field variable u(x) = Vx(y1, y2, . . .) can be
expanded around (y1, y2, . . .) = (0, 0, . . .) as

u(x) =
∑

j

∂Vx

∂yj

yj +
1

2!

∑

j,k

∂2Vx

∂yj∂yk

yjyk

+
1

3!

∑

j,k,l

∂3Vx

∂yj∂yk∂yl

yjykyl + · · · , (A12)

where the partial derivatives of Vx(y1, . . . , yN) are evaluated at
(y1, y2, . . .) = (0, 0, . . .) and each of j, k, and l runs from 1 to ∞.
Plugging this expression into the functional Taylor expansion of g[u]
in Eq. (A9), we obtain

g[u] = g[0] +

∫

dx1

δg[u]

δu(x1)







∑

j

∂Vx1

∂yj

yj

+
1

2!

∑

j,k

∂2Vx1

∂yj∂yk

yjyk +
1

3!

∑

j,k,l

∂3Vx1

∂yj∂yk∂yl

yjykyl + · · ·







+
1

2!

∫

dx1dx2

δ2g[u]

δu(x1)δu(x2)







∑

j,k

∂Vx1

∂yj

∂Vx2

∂yk

yjyk

+
1

2!

∑

j,k,l

(

∂Vx1

∂yj

∂2Vx2

∂yk∂yl

+
∂Vx2

∂yj

∂2Vx1

∂yk∂yl

)

yjykyl + · · ·







+
1

3!

∫

dx1dx2dx3

δ3g[u]

δu(x1)δu(x2)δu(x3)

×







∑

j,k,l

∂Vx1

∂yj

∂Vx2

∂yk

∂Vx3

∂yl

yjykyl + · · ·







+ · · · . (A13)

Thus, the observation functional g[u] can be expanded using
the Koopman eigenfunctionals as

g[u] = g[0] +
∑

j

φλj
[u]

∫

δg[u]

δu(x1)

∂Vx1

∂yj

dx1

+
1

2!

∑

j,k

φλj
[u]φλk

[u]

{∫

δg[u]

δu(x1)

∂2Vx1

∂yj∂yk

dx1

+

∫

δ2g[u]

δu(x1)δu(x2)

∂Vx1

∂yj

∂Vx2

∂yk

dx1dx2

}

+
1

3!

∑

j,k,l

φλj
[u]φλk

[u]φλl
[u]

×

{∫

δg[u]

δu(x1)

∂3Vx1

∂yj∂yk∂yl

dx1 +
3

2

∫

δ2g[u]

δu(x1)δu(x2)

×

(

∂Vx1

∂yj

∂2Vx2

∂yk∂yl

+
∂Vx2

∂yj

∂2Vx1

∂yk∂yl

)

dx1dx2

+

∫

δ3g[u]

δu(x1)δu(x2)δu(x3)

∂Vx1

∂yj

∂Vx2

∂yk

∂Vx3

∂yl

dx1dx2dx3

}

+ · · ·

= g[0] +

∞
∑

n=1

1

n!

∑

j1 ,j2 ,...,jn

cj1 ,j2 ,...,jnφλj1
[u]φλj2

[u] · · ·φλjn
[u],

(A14)
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where cj1 ,j2 ,...,jn are the expansion coefficients. The first three of them
are given by

cj1 =

∫

δg[u]

δu(x1)

∂Vx1

∂yj1

dx1, (A15)

cj1 ,j2 =

∫

δg[u]

δu(x1)

∂2Vx1

∂yj1∂yj2

dx1

+

∫

δ2g[u]

δu(x1)δu(x2)

∂Vx1

∂yj1

∂Vx2

∂yj2

dx1dx2, (A16)

cj1 ,j2 ,j3 =

∫

δg[u]

δu(x1)

∂3Vx1

∂yj1∂yj2∂yj3

dx1

+
3

2

∫

δ2g[u]

δu(x1)δu(x2)

(

∂Vx1

∂yj1

∂2Vx2

∂yj2∂yj3

+
∂Vx2

∂yj1

∂2Vx1

∂yj2∂yj3

)

dx1dx2

+

∫

δ3g[u]

δu(x1)δu(x2)δu(x3)

×
∂Vx1

∂yj1

∂Vx2

∂yj2

∂Vx3

∂yj3

dx1dx2dx3 (A17)

and can further be calculated in a similar way.
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6I. Mezić, “Spectrum of the Koopman operator, spectral expansions in functional
spaces, and state-space geometry,” J. Nonlinear Sci. 30, 2091–2145 (2020).
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