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Abstract. We prove the existence and uniqueness of solutions in Sobolev spaces for the Moore–
Greitzer nonlinear partial differential equation (PDE) model for compression system instabilities
with mild conditions on the shape of the compressor characteristic and on the throttle control. To
achieve this, the model is reformulated as an evolution equation on a Banach space. Using this new
representation, we design a backstepping control of the model. Global stabilization of any axisym-
metric equilibrium to the right of the peak of the compressor characteristic is achieved. We also prove
that the dynamics can be restricted to the small neighborhood of the point on the left of the peak
of the compressor characteristic. Thus, it is possible to restrict the magnitude of stall to arbitrary
small values. In addition, finite-dimensional Galerkin projections of the partial differential equation
model are studied. It is shown that truncated control laws stabilize truncated models. Numerical
simulations of the model with and without control are presented.
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1. Introduction. Surge and stall instabilities that occur in compression systems
of jet engines are the topic of much research effort these days for two reasons: effi-
ciency and safety. In particular, jet engines are currently forced to operate in nonopti-
mal conditions (relatively large mass flow) in order to stay clear of the aforementioned
instabilities. Surge is an oscillatory instability of the mean mass flow: upon the onset
of surge the air in the compression system of a jet engine starts oscillating back and
forth, thus severely impairing its performance. Stall is characterized by the appear-
ance of the so-called stall cells—regions of decreased pressure rise and reversed mass
flow—at isolated locations around the rim of the compressor. A simplified model of
these instabilities has been proposed by Moore and Greitzer [15], and it is this model
(sometimes called the full Moore–Greitzer model) that is the topic of the present pa-
per. The model consists of a linear PDE governing the behavior of disturbances in
the inlet region of the compression system, with nonlocal and nonlinear boundary
conditions which describe the coupling of disturbances with the mean flow behavior.
Since such a system is hard to analyze, most of the research has been directed toward
establishing properties of low-order Galerkin truncations (see [15], [11]). The simplest
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approximate model used for bifurcation analysis (see [12]) and control (see [3], [6], [8],
[9], [10], [16], [1]) called MG3 used only the first Fourier mode of the nonaxisymmetric
flow disturbance (stall variable).

The Moore–Greitzer model deals with a simple compression system in which the
air enters the compressor (with one or more rotor/stator stages), goes to a plenum, and
exits through a throttle. Stationary operating points for the compressor correspond
to a constant pressure rise across the compressor and a constant, circumferentially
uniform mass flow through the compressor. The pressure rise versus mass flow curve
representing the stationary operating points is called the compressor characteristic.
For a given throttle opening the mass flow through the throttle is determined by
the pressure drop across the throttle. The corresponding static relationship can be
represented by the curve called the throttle characteristic. In a stationary condition
the pressure rise across the compressor is balanced by the pressure drop across the
throttle and the mass flow through the compressor and through the throttle are equal.
Therefore, the intersection of the compressor characteristic and the throttle charac-
teristic determines the operating point of the compressor. The operating point can be
changed by adjusting the throttle opening.

The dynamic model for compression systems derived by Moore and Greitzer [15]
describes the evolution of the mass flow and the pressure in plenum in a nonstation-
ary condition. When the pressure rise across the compressor is not balanced by the
pressure drop across the throttle, the resulting pressure difference is proportional to
the rate of change of mass flow (i.e., mass acceleration). Similarly, if the mass flow
through the compressor is not balanced by the mass flow through the throttle, the
resulting difference is proportional to the rate of pressure rise in the plenum.

In terms of the dynamic model of a compression system, the stationary operating
points are represented by the axisymmetric equilibria, surge corresponds to a limit
cycle involving pressure rise and mass flow, while rotating stall is represented by a
travelling wave of nonaxisymmetric mass flow around the compressor annulus with a
constant low value of pressure rise.

From the point of view of efficiency, the desired operating points for the compres-
sor should have high value of pressure rise and low mass flow that is uniform around
the compressor annulus. However, the analysis of the dynamic model shows that the
corresponding equilibria of the dynamic model have small domains of attraction that
are shrinking as the pressure rise increases. A small disturbance is likely to force a
transition of the compression system state to either rotating stall or surge.

In the present paper we study stabilization of a given axisymmetric equilibrium
using the throttle opening as a control variable. The throttle opening is considered
to be some function of the state of the system chosen so that the corresponding new
dynamic model has a unique globally stable equilibrium at the prescribed location.
While bounded disturbances would force the state of the system to evolve in some
neighborhood of the desired equilibrium, after they disappear, the state would even-
tually return to an arbitrary small neighborhood of the equilibrium. Physically, the
control would be implemented by varying the throttle opening in the way that pre-
vents transition into rotating stall or surge.

After some manipulation, the dynamic model of compression system will be rep-
resented as an evolution equation in a Banach space. Stabilization of the desired
equilibrium will be achieved by constructing a Lyapunov function for this equilib-
rium. A special pure feedback structure of the evolution equation will allow us to use
backstepping for construction of a Lyapunov function. This technique has been intro-

D
ow

nl
oa

de
d 

04
/1

9/
16

 to
 1

69
.2

31
.1

02
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1505

duced in [7] and applied to many systems described by nonlinear ordinary differential
equations (ODEs) with pure feedback structure, including a reduced-order model of
compressor dynamics, MG3, in [8] and [1].

Experimental observations of the nonaxisymmetric flow disturbance (stall) behav-
ior indicate that its shape is often far from sinusoidal [2]. Our investigations of the full
Moore–Greitzer model show that the resulting nonlinear behavior of the compressor is
well represented by the model [14]. It is then natural to ask what can be said about the
control of stall and surge using the PDE model. In this paper we show that a global
stabilization of the full Moore–Greitzer model is possible. We present a conceptually
simple but not necessarily optimal way of constructing a globally stabilizing controller
using backstepping control design [7]. To our knowledge, the present paper presents
the first successful attempt to globally stabilize a nonlinear PDE using backstepping.
We concentrate on a specific model here, but the methods that we develop can be
used more broadly. A variety of evolution equation problems with a pure feedback
structure can be treated in a way similar to that presented here. The backstepping
method presents a powerful tool even in the context of PDEs.

The paper is organized as follows. In section 2 we introduce some notation and
represent the full Moore–Greitzer model as an evolution equation in a Banach space,
using an operator that is an infinite-dimensional version of that studied by Mansoux,
Gyrling, Statiawan, and Paduaro in [11]. In section 3 we prove global existence and
uniqueness of solutions of this evolution equation by a simple application of the con-
traction mapping principle. We present some a priori estimates which, together with
the existence of a unique local solution, guarantee the existence of a unique global
solution. In section 4 we design a backstepping controller for the full Moore–Greitzer
model. We show that the peak and any axisymmetric equilibrium to the right of the
peak can be globally asymptotically stabilized.

In the case when the set-point parameter in the controller is such that there is
no stable axisymmetric equilibrium we can still guarantee that the dynamics of the
closed-loop system are confined to a ball, whose radius can be made arbitrarily small
by choosing sufficiently high gains in the controller.

In section 5 we prove that the truncated feedback controller globally stabilizes the
system of 2n + 2 ODEs consisting of the Galerkin projection of the PDE describing
the stall dynamics onto its first n-modes and the two ODEs describing the surge
dynamics. The results are valid for a general compressor characteristic.

2. Preliminaries.

2.1. The Moore–Greitzer model. The full Moore–Greitzer model is described
by the following equations (cf. [15])

lc
dΦ

dξ
= −Ψ(ξ) +

1

2π

∫ 2π

0

Ψc(Φ + φ′η|η=0)dθ,(1)

lc
dΨ

dξ
=

1

4B2
(Φ(ξ)−KT (Ψ, u)),(2)

where φ′ solves Laplace’s equation

φ′ηη + φ′θθ = 0(3)

for (η, θ) ∈ [0, 2π]× (−∞, 0). The boundary conditions are periodic in θ,

∂

∂ξ
(mφ′ +

1

a
φ′η)−

(
Ψc(Φ + φ′η)− 1

2π

∫ 2π

0

Ψc(Φ + φ′η)dθ − 1

2a
φ′θη

)
= 0(4)

D
ow

nl
oa

de
d 

04
/1

9/
16

 to
 1

69
.2

31
.1

02
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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Fig. 1. C′3 compressor characteristic.

at η = 0. At η = −∞ we have

φ′ = 0.(5)

(Note that we try to keep our notation consistent with that of the original paper by
Moore and Greitzer [15]. In particular, following [15] we use ξ to denote a nondimen-
sional time variable and η to denote a nondimensional axial distance variable.) The
state variables of this model are Φ, the nondimensionalized annulus averaged mass
flow coefficient through the compressor; Ψ, the nondimensionalized annulus averaged
pressure rise coefficient across the compressor; and φ′, the disturbance velocity poten-
tial. (Note that the prime symbol in φ′ does not refer to differentiation.) The function
Ψc(φ) is called the compressor characteristic and is found empirically. It gives the
local pressure rise when the local mass flow is φ. For most compressors it has an S
shape as seen in Figure 1. The parameters a, m, lc, and B are determined by the
geometry of the compressor and the throttle parameter KT (Ψ, u) is the fraction of
the throttle opening. Since the throttle parameter can be varied, it will be used as the
control. We assume that we can modify KT (Ψ, u) at will by a choice of the control
function u.

We assume that the compressor characteristic Ψc(Φ) is a general S-shaped curve.
In particular, we assume that the following characteristics hold.

1. The characteristic Ψc(Φ) is twice continuously differentiable.
2. The characteristic has one peak (Φ0,Ψ0) and, to the left of the peak, one well.

The characteristic is strictly decreasing to the right of the peak and to the left of the
well; it is strictly increasing between the well and the peak.

3. The characteristic has exactly one inflection point (Φinfl,Ψinfl) between the
well and the peak. One has Ψ′′c (Φ) < 0 for Φ > Φinfl, and Ψ′′c (Φ) is bounded away
from zero on any interval [Γ,+∞) for Γ > Φinfl.

Figure 1 shows a typical compressor characteristic Ψc(φ).
Let us give here a physical interpretation for the shape of the compressor charac-

teristic. The desired possible stationary operating points of the compressor lie on the
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1507

decreasing part of the characteristic to the right of the peak. The lower the value of
the axial component of the mass flow entering compressor, the more flow turning is
achieved by the blades. Consequently, more work is done on the air by the compressor
blades and the pressure rise is higher. However, there is a limit to the value of pressure
rise that can be achieved. When the axial component of the incoming air velocity is
small relative to the rotor velocity, so that the air is approaching the blade at a high
angle of attack, the flow separates on the suction side of a compressor blade; i.e., the
blade stalls. When a blade stalls, the pressure rise at that blade drops significantly.
The pressure rise of a stalled blade is represented by the part of the characteristic
between the well and the peak. The peak represents the stall inception point: the
maximum pressure rise is obtained by a blade that is just about to stall. When the
flow is reversed, the air at the suction side of the blade is attached again and the
pressure starts to rise. This is represented by the part of the characteristic to the left
of the well, called the back-flow part of the characteristic.

The physical mechanism for rotating stall and surge inception can now be ex-
plained. When a blade stalls, the pressure in the plenum is usually greater than the
local pressure rise produced by the compressor, so that the incoming air at the stalled
blade faces a negative pressure gradient and hence has a negative acceleration. The
mass flow at the stalled blade passage is locally reduced. There are several possible
scenarios of how the situation will evolve. The extreme ones are a transition to a surge
or rotating stall condition.

In surge the pressure in the plenum does not drop fast enough, and all the blades
stall at the same time. The flow eventually reverses, as the only mechanism to bal-
ance the high pressure in the plenum at the stalled blades is for the mass flow to
reach the back-flow part of the characteristic. This transition from the neighborhood
of the stall inception point to the back-flow characteristic is very fast. The pressure
in the plenum is now dropping, as the air escapes from the plenum both through the
throttle and through the compressor. The pressure in the plenum eventually drops
below the value of the pressure rise on the back-flow part of the characteristic and the
pressure gradient becomes positive. The air accelerates slowly until zero mass flow is
reached. The plenum pressure is now below the well value. The compressor starts to
deliver more pressure rise while the pressure in plenum is about the well level, so the
mass flow accelerates fast. Past the value corresponding to the peak the flow at the
blades becomes attached. When the flow through compressor becomes bigger than
the flow through the throttle, the pressure starts to rise and becomes bigger than the
one produced by the compressor. The flow starts to decrease. When the flow reaches
the value corresponding to the peak, pressure in the plenum is about the peak value,
which is the condition of a stall inception. One full surge cycle is now completed and
the next one is about to start.

When rotating stall occurs, one or several blades stall. Locally, the flow is redi-
rected to the neighboring unstalled blades. On one side of the region of stalled blades,
the angle of attack of the air flow will increase, causing more blades to stall. On
the other side the angle of attack will decrease, making the blades on that side less
susceptible to stalling. The air is coming to the blades in the direction of spinning
rotor at high angle of attack. These blades are likely to stall. At the same time the
blades neighboring the stalled ones in the direction opposite to the spinning rotor
accept air at the lower angle of attack than the stalled ones so they are not likely to
stall. More air coming through these blades may lower the angle of attack on the first
stalled blade, which will result in more local pressure rise. If the pressure in plenum
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drops fast enough, the pressure gradient on some of the stalled blades will become
positive and these blades will unstall. A stable rotating stall condition may develop
when some of the blades operate in a stalled condition and the rest are not stalled.
The cells of stalled air travel around the compressor so that each blade periodically
becomes stalled and unstalled. Note that in a rotating stall condition the average
pressure rise delivered by the compressor is low, as the stalled blades barely do any
work on the air. Note also that in a stable rotating stall condition the air mass flow
in the stalled blade passages is reversed, as the stalled blades cannot deliver enough
pressure rise to balance the pressure in the plenum.

At this point the physical mechanism for the stabilization of the operating point
close to the peak of the characteristic by varying the throttle opening can be explained.
In both stall and surge inception the mechanism of instability is the same: a stalled
blade cannot deliver enough pressure rise to balance the high pressure in the plenum
and the resulting negative pressure gradient decelerates and eventually reverses the
flow at some (stall) or all (surge) blade passages. The control action basically amounts
to opening the throttle fast enough so that the pressure in the plenum drops faster
than the pressure at a stalled blade. This produces the positive pressure gradient that
accelerates the flow to the desired value. After this value is reached, the throttle is
closed again.

2.2. Some function spaces. Let L2 be the space of square integrable functions
on the circle [0, 2π] and denote the norm by ‖ · ‖L2 . Let L2, L∞, and Hk, for k =
1, 2, . . . , denote the subspaces of L2 with zero average and norms ‖ · ‖L2 , ‖ · ‖L∞ ,
‖ · ‖Hk . These norms are given by

‖g‖L2 := (
∫ 2π

0
g2dθ)

1
2 = (π

∑∞
p=1Ap(ξ)

2)
1
2 ,

‖g‖Hk := (
∫ 2π

0
(∂

kg
∂θk

)2dθ)
1
2 = (π

∑∞
p=1(pkAp(ξ))

2)
1
2 ,

‖g‖L∞ := esssupθ∈[0,2π]g.

Here, the Ap’s represent the magnitudes of the complex Fourier coefficients of g,

g =
∞∑
p=1

Ap(ξ) sin(pθ + rp(ξ)).

We denote by 〈·, ·〉 the inner product of L2:

〈g1, g2〉 =

∫ 2π

0

g1g2dθ = π

∞∑
p=1

ApBp.

Here, the Ap’s and the Bp’s represent the Fourier coefficients of the functions g1 and
g2, respectively.

Let C0 denote the space of continuous functions on the circle [0, 2π] with zero
average, with the norm

‖g‖C0 := max
θ∈[0,2π]

g.

Note that for g ∈ C0 one has ‖g‖C0 = ‖g‖L∞ . Thus, to avoid using too many symbols
we will use ‖g‖L∞ to denote the norm of C0 functions.

For future reference, we collect here some inequalities in the following lemma.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1509

Lemma 2.1. One has H1 ↪→ C0 ↪→ L∞ ↪→ L2 and

‖g‖L2 ≤ √
2π‖g‖L∞ ,

‖g‖L∞ ≤
√
π√
6
‖g‖H1 ,

‖g‖L2 ≤ ‖g‖H1 .

Proof. We first prove the inequalities. The first inequality is clear. The second one

follows from ‖g‖L∞ ≤
∑∞
p=1 |Ap(ξ)| ≤ (

∑∞
p=1( 1

p2 ))
1
2 (
∑∞
p=1(pAp(ξ))

2)
1
2 =

√
π√
6
‖g‖H1 .

The third one is the Poincaré inequality. H1 ↪→ C0 is the Sobolev embedding of
H1 into C0 in spatial dimension one. The other embeddings follow from the inequal-
ities.

Assume for now that φ′ can be represented as

φ′ =
∞∑
p=1

epηαp(ξ) sin(pθ + rp(ξ)),(6)

where αp and rp are real functions.
Let g := φ′η|η=0; then

g =
∞∑
p=1

pαp(ξ) sin(pθ + rp(ξ)) =:

∞∑
p=1

Ap(ξ) sin(pθ + rp(ξ)).

Equation (4) can therefore be written as

∂

∂ξ
Kg = a

(
Ψc(Φ + g)− 1

2π

∫ 2π

0

Ψc(Φ + g)dθ − 1

2

∂g

∂θ

)
,(7)

where the operator K is defined as follows:

K

∞∑
p=1

αp(ξ) sin(pθ + rp(ξ)) =

∞∑
p=1

(
1 +

am

p

)
αp(ξ) sin(pθ + rp(ξ)).(8)

The operator K is an infinite-dimensional analogue of the operator introduced in [11]
for a study of finite-dimensional truncations of the full Moore–Greitzer model.

Remark 2.1. Suppose that we can show that the system (1), (2), and (7) has a
unique solution such that g ∈ H1. Then from the Fourier series representation of g
we can calculate the corresponding potential φ′. Since g ∈ H1, it follows that on the
cylinder [0, 2π]×(−∞, 0) the potential φ′ is in the Sobolev space H2([0, 2π]×(−∞, 0)).
In particular, the partial derivatives φ′ηη and φ′θθ are in L2([0, 2π]×(−∞, 0)). Note also
that from (6) it follows that φ′ satisfies the Laplace equation (3) and the boundary
conditions (4) and (5). The existence of solutions of the full Moore–Greitzer model
follows. The uniqueness follows from the uniqueness of g. It therefore suffices to prove
the existence and uniqueness of solutions for the system (1), (2), and (7) to obtain
the existence and uniqueness of solutions of the full Moore–Greitzer model.

The variable g represents the nonaxisymmetric mass flow disturbance, i.e., the
stall. We shall refer to g as the stall variable.

Proposition 2.1. Let Z = L2 or Hk, for k = 1, 2, . . .. K : Z 7→ Z is a bounded,
self-adjoint, positive definite operator with a bounded inverse. One has ‖K‖Z = 1+am,
and ‖K−1‖Z = 1. Moreover, K, ∂

∂ξ , and ∂
∂θ commute.
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1510 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

Proof. We have ‖Kg‖Z ≤ (1 + am
1 )‖g‖Z so K is bounded with ‖K‖Z = 1 + am.

Similarly, K−1 is bounded with ‖K−1‖Z = 1. Furthermore, 〈g,Kg〉 ≥ ‖g‖Z , so K is
positive definite and bounded away from zero. It is easy to see that K is self-adjoint.

On their domains the operators ∂
∂ξ ,

∂
∂θ , and K all commute. This is clear by letting

them operate termwise on the Fourier series.
For future reference, we note that the inverse of K is

K−1

( ∞∑
p=1

Ap(ξ) sin(pθ + rp(ξ))

)
:=

∞∑
p=1

(
p

p+ am

)
Ap(ξ)(sin(pθ + rp(ξ))).

Using K we can define weighted L2 and Hk norms as follows:

‖g‖L2
K

:=
√〈g,Kg〉,

‖g‖Hk
K

:=
√
〈∂kg
∂θk

,K ∂kg
∂θk
〉.

Note that L2 and Hk norms are equivalent with their weighted counterparts. In
fact, one has Lemma 2.2.

Lemma 2.2. We have that

‖g‖L2 ≤ ‖g‖L2
K
≤ √1 + am‖g‖L2 ,

‖g‖Hk ≤ ‖g‖Hk
K
≤ √1 + am‖g‖Hk .

We define

Ψc :=
1

2π

∫ 2π

0

Ψc(Φ + g(ξ, θ))dθ.

Then we can rewrite the model (4), (1), and (2) as

∂

∂ξ
g(ξ, θ) = K−1

(
a(Ψc(Φ(ξ) + g(ξ, θ))−Ψc)− 1

2

∂g(ξ, θ)

∂θ

)
,(9)

dΦ

dξ
=

1

lc
(Ψc −Ψ(ξ)),(10)

dΨ

dξ
=

1

4lcB2
(Φ(ξ)−KT (Ψ, u)).(11)

We will frequently use a formula for a difference of values of a C1 function at two
points.

Lemma 2.3. Let f be a C1 function. Then

f(x+ ∆x)− f(x) =

(∫ 1

0

f ′(x+ s∆x)ds

)
∆x.

3. Existence and uniqueness of solutions.

3.1. Moore–Greitzer model as an evolution equation on a Banach space.
To prove the existence and uniqueness of solutions of the full Moore–Greitzer model
we represent the model as an evolution equation of the form

dx

dξ
= Ax+ f(x),(12)
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1511

where x belongs to a Banach space X, A is an unbounded operator in X, and f is a
nonlinear operator.

Let X be a Banach space. We define the following two spaces:

C(0, T ;X) := {x(·) : [0, T ]→ X is strongly continuous in ‖ · ‖X norm},

C1(0, T ;X) := {x(·) : [0, T ]→ X is continuously differentiable in ‖ · ‖X norm}

with corresponding norms

‖x‖C(0,T ;X) = sup
ξ∈[0,T ]

‖x(ξ)‖X ,

‖x‖C1(0,T ;X) = sup
ξ∈[0,T ]

‖x(ξ)‖X + sup
ξ∈[0,T ]

‖ d
dξ
x(ξ)‖X .

We are going to use the following corollary from Kato’s theorem [4], [5].

Theorem 3.1. Let X be a Banach space, and let A be a generator of a strongly
continuous semigroup on X. Let Y be the domain of A. Suppose that f(·) satisfies the
conditions

‖f(x)‖Y ≤ Cbdd(‖x‖Y )(13)

and

‖f(x1)− f(x2)‖X ≤ CLip(‖x1‖X , ‖x2‖X , ‖Ax1‖X , ‖Ax2‖X)‖x1 − x2‖X ,(14)

where functions Cbdd and CLip are bounded on bounded sets. Then for all x0 ∈ Y
there exists a unique local strong solution of

dx

dξ
= Ax+ f(x)(15)

such that

x ∈ C(0, δ;Y ) ∩ C1(0, δ;X), x(0) = x0(16)

for some δ > 0.

Proof. See Theorem 10 of [4].

Define, for k = 0, 1, . . ., the spaces

Xk := Hk
K ×R2

(with H0
K := L2

K). The norms on Xk are defined by

‖(g,Φ,Ψ)‖2Xk = ‖g‖2Hk
K

+ |Φ|2 + |Ψ|2.

In this paper we will apply Theorem 3.1 with X = Xk−1 and Y = Xk.
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1512 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

3.2. Local existence and uniqueness. With suitable conditions on the com-
pressor characteristic, Ψc, the local existence of Xk solutions becomes rather elemen-
tary. In an attempt to appeal to a larger audience, here we will present a detailed
proof of the local existence and uniqueness of X1 solutions. We then state a theorem
which gives local existence and uniqueness in Xk and outline the proof.

We are going to apply Theorem 3.1 with

X = X0 = L2
K ×R2, Y = X1 = H1

K ×R2,

with the norms

‖(g,Φ,Ψ)‖2X1 = ‖g‖2H1
K

+ |Φ|2 + |Ψ|2,

‖(g,Φ,Ψ)‖2X0 = ‖g‖2L2
K

+ |Φ|2 + |Ψ|2.

These spaces are both Hilbert spaces, X1 is continuously embedded in X0, and
X1 is dense in X0. We now define the operator A : X1 → X0 as follows:

A(g,Φ,Ψ) :=

(
−1

2
K−1 ∂g

∂θ
, 0, 0

)
.(17)

This operator is closed and, as we will show, it is an infinitesimal generator of a
strongly continuous unitary semigroup on X0. We define

f(g,Φ,Ψ) := (aK−1(Ψc(Φ + g)− Ψ̄c),
1

lc
(Ψ̄c −Ψ),

1

4lcB2
(Φ−KT (Ψ, u)).(18)

Remark 3.1. Using a square throttle characteristic and constant throttle control
u (cf. [15]) will cause KT not to be Lipschitz on the hyperplane defined by Ψ = 0.
However, if we use a feedback control of the form u = u(g,Φ,Ψ), KT (Ψ, u) (and
hence also f(g,Φ,Ψ)) becomes a function of all the state variables. We assume that
the feedback was chosen such that KT (Ψ, u) is Lipschitz on bounded subsets of R.

Having defined the function spaces, the operator A, and the nonlinear operator f ,
we can prove the local existence and uniqueness of solutions of the full Moore–Greitzer
model. For this, we will show in the following two lemmas that A given by (17) and
f(g,Φ,Ψ) given by (18) satisfy the conditions of Theorem 3.1.

Lemma 3.1. The operator A given by (17) is a generator of a strongly continuous
unitary semigroup on X0.

Proof. Using the fact that K is self-adjoint and integration by parts one can
prove that A∗ = −A; i.e., A is a skew-adjoint operator. Thus, A generates a strongly
continuous unitary semigroup on X0 (cf. Theorem 8 of [4]).

Lemma 3.2. Suppose that Ψc ∈ C1(R). We also assume that KT (Ψ, u) is bounded
from X1 to R and X0-Lipschitz on X1-bounded sets, i.e., for all xi = (gi,Φi,Ψi) ∈
X1, i = 1, 2, KT (Ψ, u) satisfies

|KT (Ψ1, u(x1))−KT (Ψ2, u(x2))| ≤ CK‖x1 − x2‖X0 ,

where CK is a function of X1 norms of xi, i = 1, 2, which is bounded on bounded sets
in X1. Then the function f(g,Φ,Ψ) given by (18) satisfies conditions (13) and (14)
of Theorem 3.1.

Proof. Let M be a bounded subset of X1 and let (g,Φ,Ψ) ∈ M be arbi-
trary. Then, because of embedding H1 ↪→ C0, for every θ, Φ + g(θ) belongs to a
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1513

bounded interval IM ⊂ R. (Note that IM depends only onM.) Thus, |Ψ′c(Φ + g)| ≤
supφ∈IM |Ψ′c(φ)|. Therefore,

‖aK−1(Ψc(Φ + g)− Ψ̄c)‖2H1
K
≤ a2‖K−1‖

∥∥∥∥ ∂∂θΨc(Φ + g)

∥∥∥∥2

L2

≤ a2‖K−1‖ sup
φ∈IM

|Ψ′c(φ)|2‖g‖2H1

≤ a2 sup
φ∈IM

|Ψ′c(φ)|2‖g‖2H1
K
.(19)

We also have

|Ψ̄c| =
∣∣∣∣∫ 2π

0

Ψc(Φ + g)dθ

∣∣∣∣ ≤ sup
φ∈IM

Ψc(φ).(20)

Using (19) and (20), we easily show that f(g,Φ,Ψ) satisfies (13).
To show that f(g,Φ,Ψ) satisfies (14), let x1 = (g1,Φ1,Ψ1) ∈ M and x2 =

(g2,Φ2,Ψ2) ∈ M be arbitrary. To simplify notation, let us denote Fi := Ψc(Φi + gi)
for i = 1, 2. Recall that Fi denotes the average value of Fi. We have

‖f(x1)− f(x2)‖2X0

= a2〈K−1((F1 − F2)− (F1 − F2)), (F1 − F2)− (F1 − F2)〉

+
1

l2c
|(F1 − F2)− (Ψ1 −Ψ2)|2

+
1

(4lcB2)2
|(Φ1 − Φ2)− (KT (Ψ1, u(x1))−KT (Ψ2, u(x2)))|2

≤ a2‖K−1‖L2‖(F1 − F2)− (F1 − F2)‖2L2

+
2

l2c
|(F1 − F2)|2 +

2

l2c
|(Ψ1 −Ψ2)|2

+
2

(4lcB2)2
|(Φ1 − Φ2)|2 +

2C2
K

(4lcB2)2
‖x1 − x2‖2X0 .

Note that ‖K−1‖L2 = 1 and

‖F1 − F2‖2L2 = ‖(F1 − F2)− (F1 − F2)‖2L2 + 2π|(F1 − F2)|2.
Hence,

‖f(x1)− f(x2)‖2X0

≤ C1‖F1 − F2‖2L2 + C2‖x1 − x2‖2X0 ,

where C1 := a2 + 2
l2c

and C2 := 2
l2c

+ 2
(4lcB2)2 +

2C2
K

(4lcB2)2 . We will show that

‖(F1 − F2)‖2L2 ≤ C3‖x1 − x2‖2X0 ,(21)

where C3 is a function of X1 norms of (gi,Φi,Ψi), i = 1, 2, which is bounded on
bounded sets in X1. For this, note that by Lemma 2.3

‖F1−F2‖2L2 = ‖
(∫ 1

0

Ψ′c(Φ2 + g2 + s(Φ1 + g1 − Φ2 − g2))ds

)
(Φ1−Φ2 + g1− g2)‖2L2
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1514 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

≤ 2 sup
φ∈IM

|Ψ′c(φ)|2(|Φ1 − Φ2|2 + ‖g1 − g2‖2L2
K

)

≤ 2 sup
φ∈IM

|Ψ′c(φ)|2‖x1 − x2‖2X0 .

Therefore, (21) holds with C3 := 2 supφ∈IM |Ψ′c(φ)|2. Note that C3 is bounded on
bounded sets in X1. Thus,

‖f(x1)− f(x2)‖2X0 ≤ C4‖x1 − x2‖2X0 ,

where C4 := C1C3 +C2. Note that C4 is bounded on bounded sets in X1. Therefore,
f(g,Φ,Ψ) satisfies (14).

Therefore, we can state the following result.
Theorem 3.2. Assume that Ψc is a C1 function. Then the Cauchy problem

dx

dξ
= Ax+ f(x, u), x(0) = x0 ∈ X1(22)

has a unique solution x ∈ C(0, δ;X1) ∩ C1(0, δ;X0), such that x(0) = x0, for suffi-
ciently small δ (depending on x0).

We now state a theorem which gives the local existence and uniqueness of Xk

solutions for k = 1, 2, . . ..
Theorem 3.3. Suppose that Ψc ∈ Ck+1(R). We assume that KT (Ψ, u) is bounded

from Xk to R and Xk−1-Lipschitz on XK-bounded sets, i.e., for all xi = (gi,Φi,Ψi) ∈
XK , i = 1, 2, KT (Ψ, u) satisfies

|KT (Ψ1, u(x1))−KT (Ψ2, u(x2))| ≤ CK‖x1 − x2‖Xk−1 ,

where CK is a function of Xk norms of xi, i = 1, 2, which is bounded on bounded sets
in Xk.

Then the Cauchy problem

dx

dξ
= Ax+ f(x, u), x(0) = x0 ∈ Xk

has a unique solution x ∈ C(0, δ;Xk) ∩ C1(0, δ;Xk−1), such that x(0) = x0, for
sufficiently small δ (depending on x0).

Proof. We only outline the proof.
Since Ψc ∈ Ck+1 and the underlying space has only one dimension, it follows

from the Sobolev embedding theorem that for Φ ∈ R we have that the mapping

Ψc(·)−Ψc(·) : Hk → Hk

is C1 for k > 1
2 . (See McOwen, [13, p. 221].) (Here, Hk denotes the usual Sobolev

space on the unit circle.) In particular, this mapping is locally Xk−1-Lipschitz Xk-
bounded sets and because of

‖f(x)‖2Xk ≤ ‖f(0)‖2Xk + ‖f(x)− f(0)‖2Xk ,
≤ ‖f(0)‖2Xk + CL‖x‖2Xk

it is also bounded on bounded sets. The result follows.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1515

3.3. A priori estimates for X1 solutions. We have Proposition 3.1.
Proposition 3.1. Assume that Ψc is a C2 function. Let X1, X0, f, and A be as

in section 3.2, and let x = (g,Φ,Ψ) ∈ C(0, δ;X1) ∩ C1(0, δ;X0) be a solution to (22)
for some δ > 0. Then

d

dξ

1

2
‖g‖2H1

K
= a

∫ 2π

0

Ψ′c(Φ + g)

(
∂g

∂θ

)2

dθ.(23)

Proof. In the proof we will deal with the expression ∂2g
∂θ2 which is not in L2 for all

X1 functions. Therefore, we first need to prove that (23) holds on a dense subset of

X1 solutions of (22) for which ∂2g
∂θ2 makes sense. For this subset we choose X2 solutions

of (22).
Assume that x = (g,Φ,Ψ) ∈ C(0, δ;X2) ∩ C1(0, δ;X1) is a solution to (22) for

some δ > 0. Then

d

dξ

1

2
‖g‖2H1

K
=

1

2

(〈
d

dξ

∂g

∂θ
,K

∂g

∂θ

〉
+

〈
∂g

∂θ
,
d

dξ
K
∂g

∂θ

〉)
.

Since K is self-adjoint and d
dξ , K, and ∂

∂θ commute, we have

d

dξ

1

2
‖g‖2H1

K
=

〈
∂g

∂θ
,
∂

∂θ
K
d

dξ
g

〉
.

Thus we have by (9),

d

dξ

1

2
‖g‖2H1

K
= a

〈
∂Ψc(Φ + g)

∂θ
,
∂g

∂θ

〉
− a

〈
∂Ψc

∂θ
,
∂g

∂θ

〉
− 1

2

〈
∂2g

∂θ2
,
∂g

∂θ

〉
.

One has ∂Ψc
∂θ = 0. Moreover,

1

2

〈
∂2g

∂θ2
,
∂g

∂θ

〉
=

∫ 2π

0

∂

∂θ

(
∂g

∂θ

)2

dθ = 0.

Thus,

d
dξ

1
2‖g‖2H1

K
= a〈∂Ψc(Φ+g)

∂θ , ∂g∂θ 〉
= a

∫ 2π

0
Ψ′c(Φ + g)(∂g∂θ )2dθ

for x ∈ X2. Since X2 local solutions of (22) are dense in the set of X1 local solutions
of (22), if we can show that the right-hand side of (23) is X1 continuous, then (23)
will hold for all X1 solutions of (22). Let M be a bounded subset of X1 and let
x1 = (g1,Φ1,Ψ1) ∈M and x2 = (g2,Φ2,Ψ2) ∈M be arbitrary. Then, by Lemma 2.1,
for every θ, Φ1+g1(θ) and Φ2+g2(θ) belong to a bounded interval IM ⊂ R. Therefore,
using Lemma 2.3 one obtains

|Ψ′c(Φ1 + g1)−Ψ′c(Φ2 + g2)|
≤ | ∫ 1

0
Ψ′′c (Φ2 + g2 + s(Φ1 − Φ2 + g1 − g2))ds(Φ1 − Φ2 + g1 − g2)|

≤ supφ∈IM |Ψ′′c (φ)|(|Φ1 − Φ2|+ ‖g1 − g2‖L∞)

≤ supφ∈IM |Ψ′′c (φ)|(|Φ1 − Φ2|+
√
π√
6
‖g1 − g2‖H1

K
)

≤ supφ∈IM |Ψ′′c (φ)|‖x1 − x2‖X1 .

D
ow

nl
oa

de
d 

04
/1

9/
16

 to
 1

69
.2

31
.1

02
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1516 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

We can now use this to show that the right-hand side of (23) is continuous in X1:∣∣∣∫ 2π

0
Ψ′c(Φ1 + g1)(∂g1

∂θ )2dθ − ∫ 2π

0
Ψ′c(Φ2 + g2)(∂g2

∂θ )2dθ
∣∣∣

≤ ∫ 2π

0

∣∣∣Ψ′c(Φ1 + g1)
(

(∂g1

∂θ )2 − (∂g2

∂θ )2
)∣∣∣+ |Ψ′c(Φ1 + g1)−Ψ′c(Φ2 + g2)| (∂g2

∂θ )2dθ

≤ supφ∈IM |Ψ′c(φ)|(‖g1‖2H1 − ‖g2‖2H1) + supφ∈IM |Ψ′′c (φ)|‖x1 − x2‖X1‖g2‖H1

≤ (supφ∈IM |Ψ′c(φ)|(‖g1‖H1
K

+ ‖g2‖H1
K

) + supφ∈IM |Ψ′′c (φ)|‖g2‖H1
K

)‖x1 − x2‖X1 .

Thus (23) holds for all X1 solutions of (22).
Corollary 3.1. H1

K solutions of (9) grow at most exponentially; i.e., there is
no finite-time blow-up of H1

K solutions of (9). In particular, one has

d

dξ
‖g‖2H1

K
≤ a sup

φ∈R
Ψ′c(φ)‖g‖2H1

K
(24)

and

d

dξ
‖g‖H1

K
≤ a sup

φ∈R
Ψ′c(φ)‖g‖H1

K
.(25)

Proof. Observe that it follows from our assumptions that Ψ′c is bounded from
above. Now, using Proposition 3.1 and Lemma 2.2 one obtains

d

dξ
‖g‖2H1

K
≤ a sup

φ∈R
Ψ′c(φ)‖g‖2H1

K
.

Observe that ∂
∂ξ

1
2‖g‖2H1

K
= ‖g‖H1

K

∂
∂ξ‖g‖H1

K
so upon dividing (24) by ‖g‖H1

K
we get

(25).
By Grönwall’s lemma we get that the solutions grow at most exponentially.

3.4. Global existence and uniqueness of X1 solutions. In section 4 we will
construct a globally stabilizing feedback control u for the system (9), (10), and (11).
As a consequence, the global existence of solutions of the system (9), (10), and (11)
will be established. The main condition on characteristic Ψc is

sup
φ∈R

Ψ′c(φ) < +∞;

i.e., the positive slopes of the characteristic are bounded. Note that this condition
follows from our assumptions about the characteristic stated in the beginning of sec-
tion 2.1.

Theorem 3.4. Assume that X1, X0, f, and A are as before. Assume that

sup
φ∈R

Ψ′c(φ) <∞

and there exist constants N1, N2 such that |KT (Ψ, u(x))| ≤ N1 +N2‖x‖X1 . Then for
any T > 0 the Cauchy problem

dx

dξ
= Ax+ f(x), x(0) = x0 ∈ X1(26)

has a unique solution x ∈ C(0, T ;X1) ∩ C1(0, T ;X0) such that x(0) = x0.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1517

Proof. Since the derivative of the characteristic is bounded from above, there
exist positive constants L1, L2 such that Ψc(φ) > −L1 − L2|φ| when φ < 0 and
Ψc(φ) < L1 + L2φ for φ > 0. We now get

ΦΨc = 1
2π

∫ 2π

0
ΦΨc(Φ + g)dθ

≤ |Φ|(L1 + L2(|Φ|+ ‖g‖L∞))

≤ L1(1 + |Φ|2) + L2|Φ|2 + L2|Φ|‖g‖L∞
≤ L1(1 + |Φ|2) + L2|Φ|2 + L2

√
π√
6

1
2 (‖g‖2H1 + |Φ|2).

Therefore,

ΦΨc ≤ L1 +

(
L1 + L2

(
1 +

√
π√
6

1

2

))
‖x‖2X1 .(27)

Now by Corollary 3.1 we have

d
dξ

1
2‖x‖2X1 ≤ a supR Ψ′c‖g‖2H1

K
+ Φ d

dξΦ + Ψ d
dξΨ

= a supφ∈R Ψ′c(φ)‖g‖2
H1
K

+ 1
lc

ΦΨc − 1
lc

ΦΨ + 1
4lcB2 ΦΨ

− 1
4lcB2 ΨKT (Ψ, u(x))

≤ a supφ∈R Ψ′c(φ)‖g‖2
H1
K

+ L1 +
(
L1 + L2(1 +

√
π√
6

1
2 )
)
‖x‖2X1

+ ( 1
lc

+ 1
4lcB2 ) 1

2 (|Φ|2 + |Ψ|2) + 1
4lcB2 |ΨKT (Ψ, u(x))|

≤ a supφ∈R Ψ′c(φ)‖g‖2
H1
K

+ L1 +
(
L1 + L2(1 +

√
π√
6

1
2 )
)
‖x‖2X1

+ ( 1
lc

+ 1
4lcB2 ) 1

2 (|Φ|2 + |Ψ|2) + 1
4lcB2 (N1 + (N1 +N2)‖x‖2X1).

Therefore, we obtain

d

dξ

1

2
‖x‖2X1 ≤ C1 + C2‖x‖2X1 .(28)

Here

C1 = 1
4lcB2N1 + L1,

C2 = a supφ∈R Ψ′c(φ) + L1 + L2(1 +
√
π√
6

1
2 ) +

(
1
lc

+ 1
4lcB2

)
1
2 + N1+N2

4lcB2 .

By Grönwall’s lemma we now get

‖x‖2X1(ξ) ≤
(
‖x‖2X1(0) +

C1

C2

)
eC2ξ − C1

C2
.(29)

We therefore see that solutions of (22) are bounded for all finite times and thus we
have a global solution.

Because of the embedding H1 ↪→ L∞, this means that L∞ norms of H1 solutions
do not blow up in finite time either.

Global existence and uniqueness of H1
K solutions of the full Moore–Greitzer model

and the corresponding a priori estimates allow us to construct a controller that globally
stabilizes the peak or any axisymmetric equilibrium to the right of the peak. The
controller will have a similar form to a controller for an MG3 model with the H1

K

norm of the stall variable replacing the magnitude of the first Fourier mode of the
stall cell.
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1518 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

4. H1 backstepping. We are going to construct a feedback controller stabiliz-
ing the peak or any axisymmetric equilibrium to the right of the peak of the character-
istic for the full Moore–Greitzer model. The feedback is constructed by the following
backstepping procedure. In the first step we define a positive definite function V1(g)

and construct a function Φ̂(‖g‖) such that for Φ = Φ̂(‖g‖) V1(g) is a Lyapunov func-

tion for (9). V1(g) is called a control Lyapunov function and Φ̂(‖g‖) is called a virtual
control for (9). In the second step we define a control Lyapunov function V2(Φ, g)

and a virtual control Ψ = Ψ̂(‖g‖,Φ) for (9) and (10). In the third (and last) step we
construct the control Lyapunov function for the full system (9), (10), and (11) with
the throttle function u being the control variable. We will refer to this procedure as
H1 backstepping. The obtained feedback control law u uses the H1

K norm of a stall
cell and resembles familiar control laws for MG3 (see [3], [8], [9], [10], [16], [1]) with
A1 replaced with the H1

K norm of g. In terms of the Fourier coefficients Ai of g, this

norm is (
∑∞
p=1(1 + am

i )(iAi)
2)

1
2 . To simplify notation, let us from now on denote the

norm ‖ · ‖H1
K

by ‖ · ‖.
4.1. H1 backstepping: Step 1. As a control Lyapunov function for (9) we

will use the H1
K norm of g. Let

V1(g) :=
1

2
‖g‖2.

We will show that d
dξV1(g) can be made negative definite by a virtual control of the

form

Φ = Φ̂(‖g‖) = Γ + cg‖g‖(30)

for Γ ≥ Φ0 and sufficiently large positive cg. (Φ0 denotes the value of the mass flow
coefficient at the peak.) In this paper we assume that cg ≥ 0. We will need the
following result.

Lemma 4.1. For every θ ∈ [0, 2π],(
cg −

√
π√
6

)
‖g‖ ≤ cg‖g‖+ g ≤

(
cg +

√
π√
6

)
‖g‖.

Proof. Note that cg‖g‖ + g ≥ cg‖g‖ − ‖g‖L∞ ≥ (cg −
√
π√
6

)‖g‖ by Lemmas 2.1

and 2.2.
Let

eΦ := Φ− Φ̂(‖g‖) = Φ− Γ− cg‖g‖.
It follows from Proposition 3.1 and Lemma 2.3 that one can represent d

dξV1(g) as

d
dξV1(g) = a

∫ 2π

0
Ψ′c(Φ̂(‖g‖) + g)(∂g∂θ )2dθ

+ a(
∫ 2π

0
(
∫ 1

0
Ψ′′c (Φ̂(‖g‖) + seΦ + g)ds)(∂g∂θ )2dθ)eΦ.

Using Lemma 2.3 again, one obtains

d
dξV1(g) = a

∫ 2π

0
(Ψ′c(Γ) +

∫ 1

0
Ψ′′c (Γ + s(cg‖g‖+ g))ds(cg‖g‖+ g))(∂g∂θ )2dθ

+ a(
∫ 2π

0
(
∫ 1

0
Ψ′′c (Φ̂(‖g‖) + seΦ + g)ds)(∂g∂θ )2dθ)eΦ

= aΨ′c(Γ)‖g‖2H1

+ a
∫ 2π

0
(
∫ 1

0
Ψ′′c (Γ + s(cg‖g‖+ g))ds(cg‖g‖+ g))(∂g∂θ )2dθ

+ a(
∫ 2π

0
(
∫ 1

0
Ψ′′c (Φ̂(‖g‖) + seΦ + g)ds)(∂g∂θ )2dθ)eΦ.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1519

Note that if Γ > Φinfl then
∫ 1

0
Ψ′′c (Γ + s(cg‖g‖ + g))ds can be bounded from above

by a negative constant that depends only on Γ. Namely,∫ 1

0

Ψ′′c (Γ + s(cg‖g‖+ g))ds ≤ sup
Γ≤φ

Ψ′′c (φ) < 0.(31)

Define

c1 :=
a

1 + am
(cg −

√
π√
6

) sup
Γ≤φ

Ψ′′c (φ),

c2(Φ, ‖g‖) := a sup
min(Φ̂(‖g‖),Φ)−‖g‖L∞≤φ≤max(Φ̂(‖g‖),Φ)+‖g‖L∞

|Ψ′′c (φ)|.

Proposition 4.1. Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Then Ψ′c(Γ) ≤ 0, c1 < 0,

d
dξV1(g) ≤ ( a

1+amΨ′c(Γ) + c1‖g‖)‖g‖2
+ c2(Φ, ‖g‖)‖g‖2|eΦ|,

(32)

and

d
dξ‖g‖ ≤ ( a

1+amΨ′c(Γ) + c1‖g‖)‖g‖
+ c2(Φ, ‖g‖)‖g‖|eΦ|.

(33)

Proof. Note that it follows from Lemma 4.1 that cg‖g‖ + g ≥ (cg −
√
π√
6

)‖g‖.
Moreover, since Γ > Φinfl, (31) holds. Therefore,

d
dξV1(g) ≤ (aΨ′c(Γ) + a(cg −

√
π√
6

) supΓ≤φ Ψ′′c (φ)‖g‖)‖g‖2H1

+ c2(Φ, ‖g‖)‖g‖2H1 |eΦ|.

The first term is nonpositive; the last one is positive. Therefore, the inequality (32)
follows from Lemma 2.2. Now the inequality (33) follows from (32).

Proposition 4.1 is the most important result. It allows us to carry out the back-
stepping procedure for an infinite-dimensional system (9), (10), and (11) without the
necessity of working with its infinite-dimensional part (9). What we have done here
is a replacement of an infinite-dimensional evolution equation (9) with two finite-
dimensional differential inequalities (32) and (33). As we shall see this replacement
makes the next two backsteps quite standard.

In particular, for Φ = Φ̂(‖g‖) one obtains

d

dξ
V1(g) ≤

(
a

1 + am
Ψ′c(Γ) + c1‖g‖

)
‖g‖2.

If Γ ≥ Φ0 then Ψ′c(Γ) ≤ 0, c1 < 0, and hence for Φ = Φ̂(‖g‖) d
dξV1(g) is negative

definite. For ‖g‖ small, if Γ > Φ0 then Ψ′c(Γ) < 0 and d
dξV1(g) depends quadratically

on ‖g‖, whereas for Γ = Φ0 one has Ψ′c(Γ) = 0 and therefore the dependence of
d
dξV1(g) on ‖g‖ is cubic.

Remark 4.1. Note that the essential property of the virtual control (30) that
allows us to make the time derivative of the control Lyapunov function negative
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1520 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

was the ability of moving the stall cell “over the top,” so that the whole mass flow
Φ̂(‖g‖)+g is to the right of the peak, where the slope of the characteristic is negative.
The Sobolev embedding was used to guarantee that property. A natural question is
why did we not use the L∞ norm of the stall cell or its minimum value instead of
the H1

K norm. The reason is that in the next step of the backstepping procedure we
will need a bound on the time derivative of whatever norm of the stall cell we use in
the first step. We have such information about the time derivative of the H1

K norm,
but we do not yet have the information about the L∞ norm of the stall cell. We are
currently working on the design that uses L∞ norm of the stall cell or its minimum
in the first step of backstepping.

4.2. H1 backstepping: Step 2. As a control Lyapunov function for (9) and
(10) we will use

V2(Φ, g) :=
1

2
‖g‖2 +

1

2
e2

Φ.

We will show that d
dξV2(Φ, g) can be made negative definite by a virtual control of

the form

Ψ = Ψ̂(‖g‖,Φ)

= Ψc(Γ) + cΦ(‖g‖,Φ)eΦ

for sufficiently large cΦ(‖g‖,Φ). (For semiglobal stabilization cΦ(‖g‖,Φ) can be chosen
to be a constant depending on the desired region of operation.)

Let

eΨ := Ψ− Ψ̂(‖g‖,Φ)

= Ψ−Ψc(Γ)− cΦ(‖g‖,Φ)eΦ.

To calculate d
dξV2(Φ, g) we will need to express d

dξ eΦ in terms of eΦ, eΨ, and g. For
this, note that

d
dξ eΦ = d

dξΦ− d
dξ Φ̂(‖g‖)

= 1
lc

(Ψc(Φ + g)−Ψ)− cg ddξ‖g‖.
Applying Lemma 2.3 twice, one obtains

d
dξ eΦ = 1

lc
(Ψc(Γ) +

∫ 2π

0
(
∫ 1

0
Ψ′c(Γ + s(cg‖g‖+ g))ds)(cg‖g‖+ g)dθ

+ (
∫ 2π

0
(
∫ 1

0
Ψ′c(Φ̂(‖g‖) + seΦ + g)ds)dθ)eΦ

− Ψ̂(‖g‖,Φ)− eΨ)− cg ddξ‖g‖
= 1

lc
(
∫ 2π

0
(
∫ 1

0
Ψ′c(Γ + s(cg‖g‖+ g))ds)(cg‖g‖+ g)dθ

+ (
∫ 2π

0
(
∫ 1

0
Ψ′c(Φ̂(‖g‖) + seΦ + g)ds)dθ)eΦ

− cΦ(‖g‖,Φ)eΦ − eΨ)− cg ddξ‖g‖.
To simplify calculations, we introduce the following notation:

c0 := a
1+amΨ′c(Γ),

c3(g) := |(cg + 1)
∫ 2π

0

∫ 1

0
Ψ′c(Γ + s(cg‖g‖+ g))dsdθ|,

c4(Φ, g) :=
∫ 2π

0

∫ 1

0
Ψ′c(Φ̂(‖g‖) + seΦ + g)dsdθ.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1521

Note that c3(g) and c4(Φ, g) can be bounded by functions of ‖g‖. For clarity, in the
following calculations we use notation ci instead of ci(g), etc.

Lemma 4.2. Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Then

| ddξ eΦ| ≤ 1
lc

(c3‖g‖+ (|c4 − cΦ|)|eΦ|+ |eΨ|)
+ cg(|(c0 + c1‖g‖|)‖g‖+ c2‖g‖|eΦ|).

and
eΦ

d
dξ eΦ ≤ 1

lc
(c3‖g‖|eΦ|+ (c4 − cΦ)e2

Φ + |eΦeΨ|)
+ cg(|(c0 + c1‖g‖)|‖g‖|eΦ|+ c2‖g‖e2

Φ).

Therefore, assuming Γ ≥ Φ0 and cg >
√
π√
6

one has

d
dξV2(Φ, g) = d

dξV1(g) + eΦ
d
dξ eΦ

≤ (c0 + c1‖g‖)‖g‖2 + c2‖g‖2|eΦ|
+ 1

lc
(c3‖g‖|eΦ|+ (c4 − cΦ)e2

Φ + |eΦeΨ|)
+ cg(|(c0 + c1‖g‖)|‖g‖|eΦ|+ c2‖g‖e2

Φ)

≤ (c0 + c1‖g‖)‖g‖2
+ (c2‖g‖+ 1

lc
c3 + cg|(c0 + c1‖g‖)|)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ + 1

lc
|eΦeΨ|.

Define

c5 := (cg + 1)|Ψ′c(Γ)|,
c6(g) := (cg + 1)| ∫ 2π

0

∫ 1

0

∫ 1

0
Ψ′′c (Γ + s1s2(cg‖g‖+ g))ds1ds2dθ|.

Note that c6(g) can be bounded by functions of ‖g‖. It follows from Lemma 2.3 that

c3 ≤ c5 + c6‖g‖.
Therefore, one obtains

d
dξV2(Φ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (c2‖g‖+ 1
lc

(c5 + c6‖g‖) + cg|(c0 + c1‖g‖)|)‖g‖|eΦ|
+ ( 1

lc
c4 + cgc2‖g‖ − 1

lc
cΦ)e2

Φ + 1
lc
|eΦeΨ|.

Hence, we have the following result.

Proposition 4.2. Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Then

d
dξV2(Φ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ + 1

lc
|eΦeΨ|.

Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Observe that if Ψ = Ψ̂(‖g‖,Φ) then

d
dξV2(Φ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ

= c11‖g‖2 + 2c12‖g‖eΦ + c22e
2
Φ,

(34)
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1522 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

where

c11 := (c0 + c1‖g‖),
c12 := 1

2 (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖),

c22 := ( 1
lc

(c4 − cΦ) + cgc2‖g‖).

Note that the right-hand side of (34) is a quadratic form in ‖g‖ and eΦ (with coef-
ficients being functions of ‖g‖ and eΦ). This quadratic form can be made negative
definite by choosing sufficiently large cΦ. A sufficient condition for d

dξV2(Φ, g) to be

negative definite for Ψ = Ψ̂(‖g‖,Φ) is

∆1 := c11 < 0,
∆2 := c11c22 − c212 > 0,

which is satisfied if

cΦ ≥ c4 + lccgc2‖g‖+ lc
(cg|c0|+ 1

lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)2

4|c0 + c1‖g‖| .(35)

Observe that Γ = Φ0 implies that c0 = 0, so that it may seem that the gain
function cΦ blows up when g = 0. However, this is not the case. Note that Γ = Φ0

also implies that cg|c0| + 1
lc
c5 = 0. Therefore, for Γ = Φ0 the right-hand side of the

inequality (35) becomes

c4 + lccgc2‖g‖+ lc
(c2 + 1

lc
c6 + cg|c1|)2‖g‖2
4|c1|‖g‖ .

For ‖g‖ = 0 this quantity is not defined. However, it has a finite limit c4 at ‖g‖ = 0.
Hence, one can conclude that V2(Φ, g) is a valid control Lyapunov function also for
Γ = Φ0.

4.3. H1 backstepping: Step 3. As a control Lyapunov function for full model
(9), (10), and (11) we will use

V3(Φ,Ψ, g) :=
1

2
‖g‖2 +

1

2
e2

Φ +
4lcB

2

2
e2

Ψ.

We will show that d
dξV3(Φ,Ψ, g) can be made negative definite by a throttle control

of the form

KT (Ψ, u) = Φ + cΨ(‖g‖,Φ)eΨ(36)

for sufficiently large cΨ(‖g‖,Φ). (For semiglobal stabilization cΨ(‖g‖,Φ) can be chosen
to be a constant depending on the desired region of operation.)

To calculate d
dξV3(Φ,Ψ, g) we will need to express d

dξ eΨ in terms of eΦ, eΨ, and g.

(Throughout the paper, for simplicity, we skip the arguments of functions.) One has

d
dξ eΨ = d

dξΨ− d
dξ Ψ̂

= 1
4lcB2 (−cΨeΨ)− eΦ

d
dξ cΦ − cΦ d

dξ eΦ

= 1
4lcB2 (−cΨeΨ)− ∂cΦ

∂‖g‖
d
dξ‖g‖ − ∂cΦ

∂Φ
d
dξΦ− cΦ d

dξ eΦ.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1523

Thus, using Proposition 4.1 and Lemma 4.2 one obtains

4lcB
2eΨ

d
dξ eΨ ≤ −cΨe2

Ψ

+ 4lcB
2(| ∂cΦ∂‖g‖ |((|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|)

+ |∂cΦ∂Φ |( 1
lc

(c3‖g‖|eΨ|+ |(c4 − cΦ)||eΦeΨ|+ e2
Ψ)

+ cΦ( 1
lc

(c3‖g‖|eΨ|+ (|c4 − cΦ|)|eΦeΨ|+ e2
Ψ)

+ cg(|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|))).

(37)

Hence, using Proposition 4.2 and (37) one obtains

d
dξV3(Φ,Ψ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ + 1

lc
|eΦeΨ|

− cΨe
2
Ψ

+ 4lcB
2(| ∂cΦ∂‖g‖ |((|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|)

+ |∂cΦ∂Φ |( 1
lc

(c3‖g‖|eΨ|+ |(c4 − cΦ)||eΦeΨ|+ e2
Ψ)

+ cΦ( 1
lc

(c3‖g‖|eΨ|+ (|c4 − cΦ|)|eΦeΨ|+ e2
Ψ)

+ cg(|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|)))
= c11‖g‖2 + 2c12‖g‖|eΦ|+ 2c13‖g‖|eΨ|+ c22e

2
Φ + 2c23|eΦ||eΨ|+ c33e

2
Ψ,

(38)

where

c11 = (c0 + c1‖g‖),
c12 = 1

2 (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖),

c22 = ( 1
lc

(c4 − cΦ) + cgc2‖g‖),
c13 := 1

2 (4lcB
2| ∂cΦ∂‖g‖ |((|(c0 + c1‖g‖)|)

+4B2|∂cΦ∂Φ |c3 + 4B2cΦc3 + 4lcB
2cΦcg(|(c0 + c1‖g‖)|),

c23 := 1
2 ( 1
lc

+ 4lcB
2c2‖g‖+ 4B2|∂cΦ∂Φ ||(c4 − cΦ)|

+4B2cΦ|c4 − cΦ|+ 4lcB
2cΦcgc2‖g‖),

c33 := −cΨ + 4B2|∂cΦ∂Φ |+ 4B2cΦ.

Note that the right-hand side of (38) is a quadratic form in ‖g‖, |eΦ|, and |eΨ|
(with coefficients being functions of g and eΦ that can be bounded by functions

of ‖g‖ and eΦ. Assuming that cg >
√
π√
6

and cΦ satisfies (35), we can make this

quadratic form negative definite by choosing sufficiently large cΨ. Sufficient conditions
for d

dξV3(Φ,Ψ, g) to be negative definite everywhere are

∆1 = c11 < 0,
∆2 = c11c22 − c212 > 0,

∆3 := c33∆2 + 2c12c13c23 − c22c
2
13 − c11c

2
23 < 0.

The condition ∆1 < 0 is obviously satisfied (see Step 1). To enforce the condition
∆2 > 0 one should choose cΦ that satisfies (35) (see Step 2). Finally, once cΦ satisfies
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1524 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

the inequality (35), to assure that ∆3 < 0, at each point, the gain cΨ should satisfy
the inequality

cΨ > 4B2|∂cΦ∂Φ |+ 4B2cΦ +
2c12c13c23−c22c

2
13−c11c

2
23

∆2
.(39)

If Γ > Φ0 then ∆2 > 0 holds everywhere and hence the right-hand side of the inequal-
ity (39) is defined for everywhere (see Step 2).

However, Γ = Φ0 implies that c0 = 0, and thus ∆2 vanishes if g = 0. Therefore,
it may seem that the gain function cΨ blows up when g = 0. However, this is not
the case. One can show that the quantity 2c12c13c23 − c22c

2
13 − c11c

2
23 also vanishes if

g = 0 and
2c12c13c23−c22c

2
13−c11c

2
23

∆2
has a finite limit as ‖g‖ goes to zero. Hence, one can

conclude that V3(Φ,Ψ, g) is a valid control Lyapunov function also for Γ = Φ0. (See
similar remarks at the end of section 4.2.)

4.4. The case Γ < Φ0. If the position of the peak is unknown or if the charac-
teristic shifts from its nominal position (because of disturbance, etc.), it may happen
that Γ < Φ0. In that case it follows from Proposition 3.1 that (Φ,Ψ, g) = (Γ,Ψc(Γ), 0)
is an unstable equilibrium that cannot be stabilized by the virtual control (30). How-
ever, one can prove that the controller of the form (36) will guarantee that the dy-
namics of the closed-loop system are confined to a ball containing (Γ,Ψc(Γ), 0). The
radius of the ball can be made arbitrarily small if one can use arbitrarily high gains in
the controller. This modification of the gains in the controller in comparison with the
case Γ ≥ Φ0 is to be expected, as the controller gains proposed for the case Γ ≥ Φ0

were not designed to work also in the case Γ < Φ0.
What we present below is a simple, but not necessarily optimal, way of construct-

ing a controller that confines the dynamics to a ball. Our goal was to provide a simple
proof that this is possible, not to actually design a controller that is optimal in any
sense.

Assume that Φinfl < Γ < Φ0. We are going to use notation of the previous
sections. We need to introduce two new symbols:

c0 := aΨ′c(Γ),

c11 := c0 + c1‖g‖.

These quantities will replace c0 and c11, respectively. One can show that

d

dξ
V3(Φ,Ψ, g) ≤ c11‖g‖2 + 2c12‖g‖|eΦ|+ 2c13‖g‖|eΨ|+ c22e

2
Φ + 2c23|eΦ||eΨ|+ c33e

2
Ψ.

Observe that we had to replace c0 and c11 with c0 and c11 since now Ψ′c(Γ) > 0.
It will be also useful to introduce the following notation. Let

DV 2(Φ, g) := c11‖g‖2 + 2c12‖g‖|eΦ|+ c22e
2
Φ.

Then

d

dξ
V3(Φ,Ψ, g) ≤ DV 2(Φ, g) + 2c13‖g‖|eΨ|+ 2c23|eΦ||eΨ|+ c33e

2
Ψ.

Note that c0 > 0 and c1 < 0. Therefore, the upper bound on d
dξV3(Φ,Ψ, g)

cannot be made negative everywhere; as for eΦ = eΨ = 0 and 0 < ‖g‖ < −c0
c1

one has
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1525

c11 > 0. However, we will show that one can arbitrarily reduce the size of the set where
d
dξV3(Φ,Ψ, g) > 0 by using high gains in the controller. This can be accomplished as
follows. First, one can arbitrarily reduce the interval on which c11 > 0 by using a
high gain cg, which makes c1 big negative. Second, one can use high gains cΦ and cΨ,
which make c22 and c33 big negative.

Let ε be an arbitrary positive number. We are going to show that by using suf-
ficiently high gains cg, cΦ, and cΨ one can guarantee that d

dξV3(Φ,Ψ, g) < 0 outside

the set Mε := {(Φ,Ψ, g) : ‖g‖ < ε, |eΦ| < ε, |eΨ| < ε}.
Step 1. Choose cg such that for ‖g‖ ≥ ε one has c11 ≤ −3.

Step 2. Choose cΦ such that the following conditions (2a) and (2b) are satisfied:

(2a) For ‖g‖ ≥ ε one has c22 ≤ c212

c11+2 .

Note that for a fixed ‖g‖, DV 2(Φ, g) can be viewed as a quadratic function of
|eΦ|. One can show using some elementary algebra that our choice of cΦ guarantees
that for ‖g‖ ≥ ε one has DV 2(Φ, g) ≤ −2ε2.

(2b) For ‖g‖ < ε one has −2c12

c22
+
√
| c11

c22
|+
√
| 2
c22
| < 1.

One can show using some elementary algebra that this choice guarantees that for
‖g‖ < ε and |eΦ| ≥ ε one has DV 2(Φ, g) ≤ −2ε2.

Step 3. Choose cΨ so that the following conditions (3a) and (3b) are satisfied:

(3a) For ‖g‖ ≥ ε or |eΦ| ≥ ε one has c33 ≤ (c13‖g‖+c23|eΦ|)2

DV 2(Φ,g)+ε2
.

Note that c33 is bounded, as the choice of cΦ in Step 2 guarantees that for ‖g‖ ≥ ε
or |eΦ| ≥ ε one has DV 2(Φ, g) + ε2 ≤ −ε2.

One can show that this choice of cΨ guarantees that for ‖g‖ ≥ ε or |eΦ| ≥ ε one
has d

dξV3(Φ,Ψ, g) ≤ −ε2.

(3b) For ‖g‖ < ε and |eΦ| < ε one has −2c13−2c23

c33
+
√
|c11|+|c22|+2c12+1

|c33| < 1.

One can show that this choice guarantees that for ‖g‖ < ε and |eΦ| < ε, but for
|eΨ| ≥ ε one has d

dξV3(Φ,Ψ, g) ≤ −ε2.

Therefore, we have the following result.

Proposition 4.3. Let the gains cg, cΦ, and cΨ satisfy the conditions stated in
Steps 1–3 above. Then outside the set Mε = {(Φ,Ψ, g) : ‖g‖ < ε, |eΦ| < ε, |eΨ| < ε}
one has

d

dξ
V3(Φ,Ψ, g) < −ε2.

Therefore, the state of the closed-loop system enters in a finite time the set

Nε :=

{
(Φ,Ψ, g) : V3(Φ,Ψ, g) <

4lcB
2

2(1 + 4lcB2)
ε2
}
.

Note that the high gains of the controller presented in this section are required
if one wants to reduce the size of the dynamics and in particular of the stall cell, not
to stabilize a small stall cell. If one just wants to confine the dynamics to a ball, high
gains are not required.

It is not clear at the moment what are the dynamics of the closed-loop system
inside the absorbing set Nε. This issue is currently under investigation.

5. Controllers for Galerkin projections of the full model. In section 4 we
constructed a feedback controller stabilizing a peak or any axisymmetric equilibrium
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1526 ANDRZEJ BANASZUK, HÖSKULDUR ARI HAUKSSON, AND IGOR MEZIĆ

to the right of the peak for the full Moore–Greitzer PDE model. The feedback law is
given by (36) and has a general form

KT (Ψ, u) = KT (‖g‖H1
K
,Φ,Ψ).

In terms of the magnitudes Ap of the Fourier modes of a stall cell g the control
law looks like familiar backstepping control laws for MG3 with A1 replaced with
(
∑∞
p=1(1 + am

p )(pAp)
2)

1
2 . An implementation of this control law would require access

to an infinite number of modes of a stall cell g, which is practically impossible.
Remark 5.1. The following was communicated to the authors by Richard Murray

from Caltech.
The number of accessible modes depends on the number of pressure sensors used

to detect a nonaxisymmetric pressure distribution and their distance from the com-
pressor face. Since it requires 2n+1 sensors to instantaneously detect the first n modes
(by fitting a linear combination of spatial sinusoids), the number of sensors gets some-
what large for higher modes. In addition, with the minimal number of sensors, the
last mode is pretty noisy.

The Caltech compressor rig has six sensors so that a measurement of up to second
mode magnitude is possible. The rig has enough ports to use 16 sensors, which would
make it possible to measure the magnitudes of up to the seventh mode.

Another factor is the distance back from the compressor face. Recall that the
magnitudes of the Fourier modes of a stall cell fall off by e−ηn where η is the nondi-
mensional distance from the compressor face. For the Caltech rig, η is about 0.5, so
beyond the third or fourth mode one would not be able to pick out the signal from
the noise.

Remark 5.2. An alternative to an instantaneous detection of the first n modes by
using 2n+ 1 sensors would be using fewer sensors and an observer to reconstruct the
modes. If the speed of rotation of the stall cell is known, then one can easily verify
that the first few modes are observable (even from a single sensor). The fast decay
of the higher modes because of the distance of the sensors from the compressor face
makes the observability of these modes poor and therefore is still a limiting factor in
the number of detectable modes.

If n modes are accessible, a practical implementation of the controller could use
(
∑n
p=1(1+ am

p )(pAp)
2)

1
2 , i.e., a truncation of the infinite series (

∑∞
p=1(1+ am

p )(pAp)
2)

1
2

representing the H1
K norm of the stall cell g. A natural question arises: what can we

say about the controller of the form (36) that uses first n modes of the stall cell g? In
this section we will show that this controller stabilizes the Galerkin projection of the
full Moore–Greitzer PDE model onto its first n modes.

It is easy to show that the ODEs describing evolution of the pth mode of g are

ȧp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + g) sin(pθ)dθ +
1

2
pbp

)
,

ḃp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + g) cos(pθ)dθ − 1

2
pap

)
or, equivalently,

Ȧp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + g) sin(pθ + rp)dθ

)
,
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1527

ṙp =
p

p+ am

(
−1

2
p+

a

πAp

∫ 2π

0

Ψc(Φ + g) cos(pθ + rp)dθ

)
,

where g is represented as

g =
∞∑
p=1

(ap sin(pθ) + bp cos(pθ)) =
∞∑
p=1

Ap sin(pθ + rp).

A Galerkin projection of the stall PDE with n modes would be the set of 2n
ODEs as above with g replaced with

gn :=
n∑
p=1

Ap sin(pθ + rp).

Hence, an approximate model would consist of equations

Ȧp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + gn) sin(pθ + rp)dθ

)
,(40)

ṙp =
p

p+ am

(
−1

2
p+

a

πAp

∫ 2π

0

Ψc(Φ + gn) cos(pθ + rp)dθ

)
(41)

for p = 1, . . . , n and (10) and (11).
One can prove the following result.
Theorem 5.1. The controller of the form (36) that uses first n modes of the stall

stabilizes the system of 2n+ 2 ODEs consisting of the Galerkin projection of (9) onto
first n-modes of g and (10) and (11).

Proof. We are going to use a backstepping controller design, almost identical to
the one used for the full model.

Step 1. As a control Lyapunov function for (40) and (41) one uses

V n1 (Φ,Ψ, gn) :=
1

2
‖gn‖2H1

K
=

1

2

n∑
p=1

(
1 +

am

p

)
(pAp)

2.

One has

d

dξ
V n1 (Φ,Ψ, gn) =

n∑
p=1

(
1 +

am

p

)(
p2Ap

d

dξ
Ap

)
,

a

π

∫ 2π

0

(
Ψc(Φ + gn)

n∑
p=1

p2Ap sin(pθ + rp)dθ

)
.

Integrating by parts, one gets

d

dξ
V n1 (Φ,Ψ, gn) =

a

π

∫ 2π

0

(
Ψ′c(Φ + gn)

dgn
dθ

n∑
p=1

pAp cos(pθ + rp)dθ

)

=
a

π

∫ 2π

0

Ψ′c(Φ + gn)

(
dgn
dθ

)2

dθ.

Steps 2 and 3 of the backstepping procedure are exactly the same as in the case of
the full model (with g replaced with gn).
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Simulations. In this section we illustrate the action of a truncated H1-controller
with some simulations. The full Moore–Greitzer model has been simulated using 64
Fourier modes (128 states) to represent the stall cell dynamics. The compressor char-
acteristics are assumed to be a cubic function [15]

Ψc(φ) := ψ0 +H

(
1 +

3

2

(
φ

W
− 1

)
− 1

2

(
φ

W
− 1

)3
)
.

The coefficients ψ0, H, and W represent, respectively, the shut-off pressure rise, semi-
height, and semiwidth of the characteristic. The parameters ψ0, H, W , a, m, lc, and
B determine the compressor model. The Greitzer B parameter determines if the com-
pressor is likely to stall or surge. Stalling compressors are characterized by a low value
of the B parameter, while surging compresssors are characterized by a high value of
the B parameter. We simulated a low B compressor and a high B compressor. We
initialized both models with the initial condition for the surge dynamics near the
peak of the compressor characteristic. The initial shape of the stall cell was a pure
first mode.

Figures 2 and 3 show that, as expected, the state of the uncontrolled low B
compressor settled at a rotating stall condition with a significant pressure drop.

The simulations of uncontrolled dynamics are followed by simulations of the dy-
namics controlled with a truncated H1-controller using first four Fourier modes of the
stall variable and constant gains. The control function was saturated at 0 to avoid us-
ing negative values of the throttle coefficient. We see the state of the low B compressor
after a transient period of growing the stall variable and a drop in pressure settled
at the desired axisymmetric equilibria near the peak of the compressor characteristic.
Figures 4 and 5 show the state evolution.

Figures 6 and 7 show the evolution of the state of the uncontrolled high B com-
pressor. The stall cell initially grows fast, but after the mean mass flow reaches the
reverse flow part of the characteristic, it decays. The state of the system undergoes a
deep surge cycle.

Figures 8 and 9 show the evolution of the state of the controlled high B com-
pressor. The controller opens the throttle and prevents a transition into a deep surge
cycle. Note that the mean flow spends more time in the interval between the well and
the peak than in the uncontrolled case. This causes the stall variable to grow and
stay large. The stall variable starts to decay only after the mean mass flow becomes
bigger than the value corresponding to the peak of the compressor characteristic.
This explains why the stall variable decays faster in the uncontrolled case than in the
controlled one.

Conclusion. We have constructed a feedback controller stabilizing a peak or any
axisymmetric equilibrium to the right of the peak of the compressor characteristic for
the full Moore–Greitzer model. The control law resembles control laws for a one-mode
truncation of the full model. In the case when the set-point parameter in the controller
is such that there is no stable axisymmetric equilibrium we can still guarantee that
the dynamics of the closed-loop system are confined to a ball, whose radius can be
made arbitrarily small by choosing sufficiently high gains in the controller.

A practical implementation of theH1
K-controller would use a finite sum (

∑n
p=1(1+

am
p )(pAp)

2)
1
2 . We proved that this truncated feedback controller actually globally sta-

bilizes the system of 2n+2 ODEs consisting of the Galerkin projection of the PDE de-
scribing the stall onto its first n-modes and two ODEs describing the surge dynamics.
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BACKSTEPPING CONTROL OF MOORE–GREITZER PDE MODEL 1529

Simulations: stall and surge dynamics
Low B, uncontrolled.
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Stall cell evolution
Low B, uncontrolled
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Simulations: stall and surge dynamics
Low B, controlled

Fig. 4.
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Stall cell evolution
Low B, controlled
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Simulations: stall and surge dynamics
High B, uncontrolled
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Stall cell evolution
High B, uncontrolled
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Simulations: stall and surge dynamics
High B, controlled

Fig. 8.
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Stall cell evolution
High B, controlled
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While one may argue that the necessity of finding the magnitudes of the Fourier modes
of a stall cell for a feedback requires complicated implementation, let us observe that
such information would be necessary anyway for any feedback law based on a Galerkin
approximation of a Moore–Greitzer PDE model with a finite number of modes.

One feature of the H1-controller is not desirable. Namely, its gain increases for
higher order modes of the stall cell. This does not seem to be necessary (see Re-
mark 4.1). We conjecture that one can replace the H1

K norm of g with the L∞ norm
of g or with the minimum of g in the controller and have the same stabilizability
property without using a higher gain for higher order modes of the stall cell. We are
currently working on the proof of this conjecture.

Although we have concentrated on a specific model here, the methods developed
in this paper can be used, with slight variations, in a variety of problems involving
evolution equations.
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