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Data-driven and rigorous analysis of fluid flows?

high-dimensional state space time series

Answer: Koopman Operator Theory,
Dynamic Mode Decomposition (DMD) Algorithm,
Ergodicity Assumption.



Koopman viewpoint is to lift the dynamics to the observable space.
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Koopman decomposition can linearize
nonlinear dynamical systems.

f(x0, t) =
∞∑
k=1

vkφk(x0)eλk t + · · ·

- Mezić, “Spectral properties of dynamical systems, model reduction and

decompositions”, 2005



DMD approximates a linear map.

t1 t2 tn

X =

 x1 x2 . . . xn


t2 t3 tn+1

Y =

 x2 x3 . . . xn+1


Compute the linear map A:

Y = AX

and its spectrum,

Av = λv

λ: dynamic eigenvalues ∼ Koopman eigenvalues
v : dynamic modes related to Koopman eigenfunctions

DMD uses data vector projections.

- Tu et al., “On DMD, theory and application”, 2013



Dynamics on attractor is usually ergodic.

Measurements on a trajectory:

f̃ (z0) = [f (z0), f ◦ T (z0), . . . , f ◦ Tm−1(z0)]

g̃(z0) = [g(z0), g ◦ T (z0), . . . , g ◦ Tm−1(z0)].

Then

lim
m→∞

1

m
< f̃m(z0), g̃m(z0) >=

∫
A
fg∗dµ, for a.e. z0.

- Giannakis, “Data-driven spectral decomposition and forecasting of

ergodic dynamical systems”, 2015



To approximate the Koopman operator, we need to
represent functions numerically.

Krylov sequence:

Uf ,Ut1f , . . . ,Utn f

Embedding via Hankel matrix:

H =


f (t0) f (t1) . . . f (tn)
f (t1) f (t2) . . . f (tn+1)

...
...

. . .
...

f (tm) f (tm+1) . . . f (tm+n)



- Brunton et al., “Chaos as an Intermittently Forced Linear System”, 2016



DMD + Ergodicity + Hankel = approximation of Koopman

Theorem
Apply DMD to H and UH.
Assumptions: Ergodicity, f is in a k-dimensional invariant
subspace.
Then as m→∞:

a) DMD eigenvalues → Koopman eigenvalues.

b) DMD modes → sampling of Koopman eigenfunctions.

- Arbabi & Mezić , “Ergodic Theory, DMD and Computation of Koopman Spectral

Properties”, 2016



Example: cavity flow at Re = 16k

quasi-periodic

snapshot of vorticity

basic Koopman frequencies:

ω1 = 0.9762, ω2 = 0.6089

(from FFT+Harmonic average)

kinetic energy

Hankel matrix of kinetic energy:

HE =


E1 E2 . . . En

E2 E3 . . . En+1

E3 E4 . . . En+2

...
...

. . .
...

Em Em+1 . . . Em+n

 .

Apply DMD to HE and UHE .



Hankel+DMD is accurate and fast.

O(10−5) error in frequencies.

O(10−2) L2−error in eigenfunctions.



Hankel+DMD can be extended to multiple observables.

two observables
Apply DMD to Hankel-block matrices:

H = [HE ,Hv ], UH = [UHE ,UHv ]



We can compute the asymptotic phase using Hankel+DMD.

What will be the phase difference of z1 and z2?
Find eigenfunction φ0 associated with ω0.

Let θ = ∠φ0.

Hankel+DMD finds ω0 and φ0 in the same computation!

- Mauroy & Mezić , “On the use of Fourier average to compute global isochrons of

quasi-periodic attractors”, 2012



Hankel-DMD gives fast, scalable and accurate computation of
Koopman spectra from time series.
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arXiv:1611.06664, 2016.

2) “Study of dynamics in unsteady flows using Koopman Mode

Decomposition”, H. Arbabi and Igor Mezić, arXiv:1704.00813, 2017.
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