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Abstract

Starting from measured data, we develop a method to compute the fine structure
of the spectrum of the Koopman operator with rigorous convergence guarantees. The
method is based on the observation that, in the measure-preserving ergodic setting,
the moments of the spectral measure associated to a given observable are computable
from a single trajectory of this observable. Having finitely many moments available,
we use the classical Christoffel-Darboux kernel to separate the atomic and absolutely
continuous parts of the spectrum, supported by convergence guarantees as the num-
ber of moments tends to infinity. In addition, we propose a technique to detect the
singular continuous part of the spectrum as well as two methods to approximate the
spectral measure with guaranteed convergence in the weak topology, irrespective of
whether the singular continuous part is present or not. The proposed method is simple
to implement and readily applicable to large-scale systems since the computational
complexity is dominated by inverting an N × N Hermitian positive-definite Toeplitz
matrix, where N is the number of moments, for which efficient and numerically stable
algorithms exist; in particular, the complexity of the approach is independent of the
dimension of the underlying state-space. We also show how to compute, from measured
data, the spectral projection on a given segment of the unit circle, allowing us to obtain
a finite-dimensional approximation of the operator that explicitly takes into account
the point and continuous parts of the spectrum. Finally, we describe a relationship
between the proposed method and the so-called Hankel Dynamic Mode Decomposi-
tion, providing new insights into the behavior of the eigenvalues of the Hankel DMD
operator. A number of numerical examples illustrate the approach, including a study
of the spectrum of the lid-driven two-dimensional cavity flow.
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1 Introduction

Spectral methods have been increasingly popular in data-driven analysis of large-scale nonlin-
ear dynamical systems. Among them, in particular, methods based on approximation of the
Koopman operator have been extremely successful across a wide range of fields. This opera-
tor, originally defined almost a century ago by Koopman [13], is a linear infinite-dimensional
operator that fully describes the underlying nonlinear dynamical system. An approximation
of the spectrum of the Koopman operator encodes information about the dynamics of the
underlying system. For example, global stability is analyzed in [22], whereas [23] deals with
the so-called isostables and isochrones; ergodic partition and mixing properties are analyzed
in [7], and [14, 6] utilize the Koopman operator approximations for control whereas [24]
for model reduction. Recent applications include fluid dynamics [30, 2], power grids [27],
neurodynamics [5], energy efficiency [9], molecular physics [43] and data fusion [41].

Since the early work [24], there has been a number of algorithms proposed for approximation
of the spectrum of the Koopman operator, including Fourier averages [24] and variations of
the dynamic mode decomposition (DMD), e.g. [28, 41]. The benefits of averaging methods lie
in their solid theoretical support with strong convergence results existing; a limitation of this
approach is the requirement of having a grasp on the eigenvalues of the operator beforehand1

and the fact that these methods do not provide any information on the continuous part of
the spectrum of the operator. On the other hand, the DMD-like methods do not require the
knowledge of the eigenvalues beforehand but their spectral convergence properties are not
as favorable [15] and similarly to averaging methods they do not systematically handle the
continuous part of the spectrum. Another approach was pursued in [10] where Koopman
eigenfunctions are computed through a regularized advection-diffusion operator.

The present article proposes a new harmonic analysis based, data-driven, approach for ap-
proximation of the spectrum of the Koopman operator that is capable of computing both
the point and continuous parts of the spectrum (with convergene guarantees), thereby gen-
eralizing the method of [24]. We start with the observation that, in the measure-preserving
ergodic setting, the moments of the spectral measure associated to a given observable are
computable from a single trajectory of this observable. Therefore, in this case, the problem
of approximating the spectrum of the Koopman operator reduces to that of reconstructing
a measure from its moments. Since the operator is unitary, the measure is supported on
the unit circle in the complex plane, which is an extremely well understood setting, with
the earliest results going back to classical Fourier analysis. In our work, we primarily rely
on the Christoffel-Darboux kernel which allows us to approximate both the atomic part of
the spectrum (i.e., the eigenvalues) as well as the absolutely continuous part. In addition,
we develop a method to detect the presence of the singular continuous part of the spectrum
as well as two methods to construct approximations to the measure converging weakly even
for complicated spectral measures with nonzero singular continuous spectrum. The first
method is based on quadrature (with the help of convex optimization) and the second one
on the classical Cesàro summation. This allows for a detailed understanding of the spec-
trum derived from raw data and opens the door to approximations of the Koopman operator
that explicitly take into account the continuous part of the spectrum. In this work, we ap-

1From a practical perspective, this downside is not so severe, since the Fourier averages can be computed
extremely fast using FFT and hence one can utilize grid-search of the eigenvalues.
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proximate the operator as a sum of spectral projections onto segments of the unit circle,
where the segments can be taken to be singletons if there is an eigenvalue at a given point.
These projections can be readily computed from data and the approximation converges in
the strong operator topology.

The framework developed in our article is simple to implement and readily applicable to
high-dimensional systems since the computational complexity is fully determined only by
the number of the moments N and in particular is independent of the dimension of the
underlying state-space. To be more precise, the complexity is governed by the inversion
(or Cholesky factorization) of an N × N Hermitian positive-definite Toeplitz matrix which
can be carried out with asymptotic complexity O(N2) or even O(N log2(N)) as opposed to
O(N3) for a general matrix; see, e.g., [38, 36, 4].

For the rich history and relevance of the Christoffel-Darboux kernel in the theory of orthog-
onal polynomials we refer to the ample eulogy of Géza Freud by Nevai [26], the more recent
articles by Simon [33] and Totik [37] as well as the comprehensive books by Simon [34] and
Levin and Lubinsky [18]. See also the seminal work of Wiener [39] for a predecessor of the
methods used in this work. For a comprehensive reference on approximation of Toeplitz
operators, see [3].

2 Problem statement

Throughout this article we consider a discrete-time dynamical systems of the form

x+ = T (x), (1)

where x is the state of the system, x+ the successor state and T : X → X the transition
mapping defined on the state space X . Henceforth we work in an invertible measure pre-
serving setting, i.e., we assume that T is a bijection and that the state space X is endowed
with a sigma algebra of subsets M and a measure ν defined on M such that

ν(T−1(A)) = ν(A), ∀A ∈M. (2)

In applications, the state space X is typically a subset of Rn for finite-dimensional systems or
a subset of a Banach space for infinite dimensional systems (e.g., arising in the study of partial
differential equations) and the sigma algebra M is typically the Borel sigma algebra. In
practice, the assumption that the system is measure-preserving implies that we are interested
in on-attractor, post-transient, behavior of the dynamical system.

2.1 The Koopman operator

A canonical object associated to the dynamical system (1) is the Koopman operator U :
H → H defined for all f : X → C, f ∈ H, by

Uf = f ◦ T, (3)
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where ◦ denotes the composition of functions. The choice of the function space H depends
on the particular class of systems studied. In our case of measure-preserving systems, a
suitable choice2 is

H = L2(ν),

the Hilbert space of complex-valued functions square integrable with respect to the preserved
measure ν with the standard inner product

〈f, g〉 =

∫
X
fḡ dν,

where ḡ denotes the the complex conjugate of g. The Koopman operator U is a linear
operator (acting on an infinite dimensional space) which encodes an equivalent description
of the nonlinear dynamical system (1). The functions f ∈ H are referred to as observables
as they often represent physical measurements taken on the dynamical systems.

Notable in our setting, the operator U is unitary, i.e., U−1 = U∗, where U∗ denotes the
adjoint of U . Indeed, for any f ∈ H and g ∈ H we have

〈f, U∗g〉 = 〈Uf, g〉 =

∫
X

(f◦T )ḡ dν =

∫
X

(f◦T )(ḡ◦T−1◦T ) dν =

∫
X
f(ḡ◦T−1) dν = 〈f, U−1g〉,

where the third equality follows from bijectivity of T and the fourth from (2).

2.2 Spectral resolution

Since U is unitary, the spectrum of U , σ(U), lies on the unit circle T in the complex plane
and the spectral theorem [8, Part II, X.2.2, Theorem 1, p. 895] ensures the existence of a
projection-valued3 spectral measure E supported on σ(U) such that

U =

∫
T
z dE(z). (4)

The relation (4) is called the spectral resolution or spectral expansion of U . The measure E
decomposes into three mutually singular measures as

E = Eat + Eac + Esc, (5)

where the atomic part Eat is supported on the at most countable set of eigenvalues of U and
Eac and Esc are the absolutely continuous (AC) and singular continuous (SC) parts of E
with their supports referred to as the absolutely continuous respectively singular continuous
spectrum of U . The main goal of this work is to understand the individual components of
the spectrum from data and use this information to construct an approximation of U .

In order to do so, we observe that for any f ∈ H, the projection-valued measure E defines
an ordinary, real-valued, positive measure on T by

µf (A) := 〈E(A)f, f〉 (6)

2The fact that f ◦T ∈ L2(ν) for any f ∈ L2(ν) follows from the assumption of T being measure preserving
with respect to the measure ν.

3By a projection-valued measure, we mean a measure with values in the space of orthogonal projection
operators on H.
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for all Borel sets A ⊂ T. Crucially, by the spectral theorem, the moments of µf

mk :=

∫
T
zk dµf (z), k ∈ Z (7)

satisfy
mk = 〈Ukf, f〉, k ∈ Z. (8)

which will be instrumental in computing the moments from data in Section 3.

By density of the trigonometric polynomials in the space of continuous functions defined on
the unit circle, the moment sequence (mk)k∈Z uniquely determines the measure µf . In fact,
since the measure is real-valued, the relation m−k = m̄k holds and hence (mk)

∞
k=0 uniquely

determines µf .

Importantly, the sole knowledge of µf determines the operator U provided that the function
f is ∗-cyclic, i.e.,

Hf := span{f, Uf, U−1f, U2f, U−2f, . . .} = H. (9)

For the sake of completeness we state and prove this known result here:

Proposition 1 If the observable f is ∗-cyclic, then the measure µf defined in (6) fully
determines the operator U .

Proof: First, by Riesz representation theorem in Hilbert space, the operator U is determined
by the values of 〈Ug, h〉 for all g, h ∈ H. Since f is cyclic, for any such g and h and any
ε > 0 there exists and N > 0 such that ‖g−

∑N
i=−N αiU

if‖ < ε and ‖h−
∑N

i=−N βiU
if‖ < ε

for some αi ∈ C and βi ∈ C. Denoting g̃ =
∑N

i=−N αiU
if and h̃ =

∑N
i=−N βiU

if

〈Ug, h〉 = 〈U(g − g̃), h− h̃〉+ 〈U
N∑

i=−N

αiU
if,

N∑
i=−N

βiU
if〉 = c(ε) +

∑
i,j

αiβ̄j〈U i+1−jf, f〉

= c(ε) +
∑
i,j

αiβ̄j

∫
T
zi+1−j dµf ,

where c(ε) = 〈U(g − g̃), h− h̃〉 satisfies |c(ε)| ≤ ε2 by Schwartz inequality and the fact that
‖U‖ = 1. Since ε was arbitrary, the proof is complete. �

Therefore, provided that f is ∗-cyclic, the sequence of complex numbers (mk)
∞
k=0 fully de-

termines the operator U , up to unitary equivalence.

Remark 1 If f is not ∗-cyclic (i.e., Hf 6= H), then the the measure µf determines the
operator U on Hf ⊂ H, which is the smallest closed subspace containing f invariant under
the actions of U and U∗.

Whether or not f is ∗-cyclic, the information contained in µf is of great importance for
understanding the spectrum of the operator U and for its approximation. In particular,
similar to E, the measure µf decomposes as

µf = µat + µac + µsc (10)
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with µat being atomic (i.e., at most a countable sum of Dirac masses), µac being absolutely
continuous with respect to the Lebesgue measure on T and µsc being singularly continuous
with respect to the Lebesgue measure on T. The supports of µat, µac, µsc are, respectively,
included in the supports of Eat, Eac and Esc, with equality of the supports if and only if f
is ∗-cyclic. In particular the locations of the atoms in µat corresponds to eigenvalues of U .

In this work we show:

1. How the moments (mk)
N
k=0, for any N ∈ N, can be computed from data.

2. How the measure µf can be approximately reconstructed from these moments.

3. How the operator U can be approximated using the knowledge of µf .

3 Computation of moments from data

In this section we describe how to estimate the first N moments

mk = 〈Ukf, f〉 =

∫
X

(f ◦ T k)f̄ dν, k = 1, . . . , N,

given data in the form of M measurements (or snapshots) of the observable f ∈ H in the
form

yi = f(xi), i = 1, . . .M. (11)

We distinguish between two assumptions on the data generating process:

3.1 Ergodic sampling

In the first scenario we assume the measure ν is ergodic in which case we assume that the
data (11) lie on a single trajectory, i.e., xi+1 = T (xi). In this case, by Birkhoff’s ergodic
theorem we infer, for ν-almost all initial conditions x1:

mk =

∫
X

(f ◦ T k)f̄ dν = lim
M→∞

1

M − k

M−k∑
i=1

(f ◦ T k(xi))f̄(xi) = lim
M→∞

1

M − k

M−k∑
i=1

yi+kȳi (12)

and therefore for large M

mk ≈
1

M − k

M−k∑
i=1

yi+kȳi. (13)

In practice, the ergodic measure ν will often be the so called physical measure in which
case the ergodic theorem holds also for Lebesgue almost all initial conditions and hence an
initial condition sampled at random from a uniform distribution over X will satisfy (12) with
probability one.
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4 IID sampling

In the second scenario we assume that the samples (11) are independently drawn at random
from the distribution of ν. In this case the moments mk satisfy (12) and (13) by virtue of
the law of large numbers. This sampling scheme requires the knowledge of the preserved
measure ν and hence is less relevant in applications than the ergodic sampling.

5 Reconstruction of µf

In this section we show how to approximately reconstruct µf using the truncated moment
sequence (mk)

N
k=0 computed from data in Section 3. For the remainder of this section we

suppress the dependency on the observable f and write µ for µf . The measure µ is supported
on a subset of the unit circle T and hence we can4 regard it as a measure on [0, 1]. We shall
use the symbol µ both for a measure on T and its representation on [0, 1], the distinction
always being clear from the context. Hence, the moments of µ (8) become the Fourier
coefficients

mk =

∫
[0,1]

ei2πθk dµ(θ), k ∈ Z. (14)

Regarding µ as a measure on [0, 1], the Lebesgue decomposition of µ (Eq. (10)) reads

µ = µat + µac + µsc , (15)

where the atomic part can be written as (with the symmetry convention µat({0}) = µat({1});
see Footnote 4)

µat =
nat∑
j=1

wiδθj

with wj > 0 and nat ∈ N ∪ {∞}, and the absolutely continuous part as

dµac = ρ dθ

with the density ρ ∈ L1([0, 1], dθ). In what follows we describe a procedure to recover the
weights wi and locations θi as well as the density ρ from the moment data, even in the
presence of the singular continuous part µsc (Section 5.1). We also show (in Section 5.2) how
to construct approximations µN of µ that converge weakly to µ as N tends to infinity, even
in the presence of µsc. In particular, denoting

F (t) := µ([0, t]), FN(t) := µN([0, t])

the right-continuous (cumulative) distribution functions of µ and µN , we will construct the
approximations FN such that

lim
N→∞

FN(t) = F (t) (16)

4 There is an ambiguity when representing a measure on T by a measure on [0, 1] if there is an atom at
1 = ei2π. Throughout this paper we shall assume that the representation on [0, 1] satisfies µ({0}) = µ({1}),
which eliminates the ambiguity. Therefore if there is an atom at 1 = ei2π with weight w > 0, then µ({0}) =
µ({1}) = w/2.
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at all points points of continuity of F . The weak approximations µN will be constructed
in two different ways, one purely atomic and one purely absolutely continuous. In addition
to (16), the absolutely continuous approximations will satisfy

lim
N→∞

FN(t) =
F (t) + F−(t)

2
, t ∈ (0, 1),

where F−(t) = µ([0, t)) denotes the left limit of F at t.

5.1 Christoffel-Darboux kernel

The main tool we use for the recovery of the atomic and AC parts is the classical Christoffel-
Darboux (CD) kernel defined for each N ∈ N and each z ∈ C, s ∈ C by

KN(z, s) =
N∑
i=0

ϕ̄i(z)ϕi(s),

where ϕi’s are the orthonormal polynomials associated to µ, i.e., degϕj = j and
∫
T ϕiϕ̄j dµ =

1 if i = j and zero otherwise. Note that the first N orthonormal polynomials (and hence the
kernel itself) can be determined from the first N moments (mk)

N
k=0 of the measure µ. The

following explicit formula is folklore (e.g., [31, Theorem 2.1]):

KN(z, s) = ψN(z)HM−1
N ψN(s), (17)

where MN is the positive semidefinite Hermitian Toeplitz moment matrix

MN =

∫
T
ψNψ

H
N dµ =



m0 m̄1 m̄2 . . . . . . m̄N

m1 m0 m̄1
. . . m̄N−1

m2 m1
. . . . . . . . .

...
...

. . . . . . . . . m̄1 m̄2
...

. . . m1 m0 m̄1

mN . . . . . . m2 m1 m0


, (18)

and
ψN(z) =

[
1, z, z2, . . . , zN

]>
, (19)

where AH denotes the Hermitian transpose of a matrix A (i.e, (AH)i,j = Āj,i) and A> the
ordinary transpose.

The expression (17) makes it clear that the kernel KN is well defined only if MN is invertible.
This is for example the case if the density ρ is strictly positive on a set of positive Lebesgue
measure or if the atomic part contains at least N + 1 atoms. We will not invoke any of these
assumptions but rather build the kernel (17) using the modified moment sequence

m̃k =

{
mk + 1 k = 0

mk k > 0.
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The moment sequence (m̃k)
∞
k=0 corresponds to the measure dµ̃ = dµ + 1dθ for which the

associated moment matrix is always invertible (since it is the sum of a positive semidefinite
matrix and the identity matrix). Whenever constructing any approximations to µ from
(m̃k)

N
k=0 we simply subtract the constant density at the final step of the approximation

process. The CD kernel constructed using the modified moment sequence will be denoted
by

K̃N(z, s) = ψN(s)HM̃−1
N ψN(z), (20)

where M̃N is as in (18) with mk replaced by m̃k.

Numerical aspects of evaluating the matrix inversion in (20) are discussed in Section 5.1.2.

5.1.1 Approximation of µ using the CD kernel

When approximating µ using the CD kernel, relevant for us will be the diagonal values
K̃N(z, z) on the unit circle, i.e., with z = ei2πθ. The following well-known variational char-
acterization (e.g., [34, Proposition 2.16.2]) lies at the heart of the approximation results:

1

K̃N(z, z)
= min

{∫
C
|pN |2dµ̃ | pN(z) = 1, pN ∈ span{1, z, . . . , zN}

}
. (21)

The first classical result pertains to the atomic part of the measure µ:

Theorem 1 (Point spectrum) If µ is a positive measure on T and (mk)
N
k=0 its moments

defined by (8), then for all θ ∈ [0, 1]

lim
N→∞

[ 1

K̃N(ei2πθ, ei2πθ)
− 1

N + 1

]
= µ({ei2πθ}). (22)

Proof: The claim follows from (21) and the classical result (e.g., [32, Theorem 2.2.1]) im-
plying that K̃N(ei2πθ, ei2πθ)−1 → µ̃({ei2πθ}), and from the facts that µ({ei2πθ}) = µ̃({ei2πθ})
and (N + 1)−1 → 0. �

Two remarks are in order. First of all, the factor (N + 1)−1 does not influence the limit but
improves the accuracy of the estimate for finite N by compensating for the effect of adding
1dθ to the measure µ. This will become clear from Theorem 2 below. Second, the limit (22)
holds for all θ ∈ [0, 1], not almost all.

Theorem 1 asserts that we can extract the atomic part of the measure µ by studying the
behavior of K̃−1

N for large N . Whenever K̃−1
N (ei2πθ, ei2πθ) tends to zero, θ is not in the support

of the atomic part µat; if, on the other hand, K̃−1
N (ei2πθ, ei2πθ) converges to a nonzero value,

then θ is in the support of µat and the weight on the Dirac mass at θ is equal to the limit of
K̃−1
N (ei2πθ, ei2πθ).

The following theorem describes how to exploit the CD kernel for recovering the density ρ
of the AC part:

Theorem 2 (Density of AC part) If µ = µat + µac + µsc with dµac = ρ dθ is a positive
measure supported on [0, 1] and (mk)

N
k=0 its Fourier coefficients (14), then for Lebesgue almost
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all θ ∈ [0, 1]

lim
N→∞

[ N + 1

K̃N(ei2πθ, ei2πθ)
− 1
]

= ρ(θ). (23)

Proof: The result follows from Theorem 1 of [21] in view of the fact that the density
of the AC part of µ̃ is equal to ρ̃ = ρ + 1 and satisfies Szegö’s integrability condition∫ 1

0
log(ρ̃(θ)) dθ > −∞ for any nonnegative ρ and in view of (21). Under the integrability

condition, one has (N + 1)K̃N(ei2πθ, ei2πθ)−1 → ρ̃(θ) Lebesgue almost everywhere, which is
equivalent to (23). �

Remark 2 Theorem 2 provides a recovering method of the density ρ. We remark that (23)
holds for Lebesgue almost every θ ∈ [0, 1]. Precise characterization of when (23) holds is
given in Theorem 4 of [21]. This theorem in particular implies that (23) holds if θ is a
Lebesgue point of the density ρ and lies outside of the support of the singular parts µat and
µsc. On the other hand, Theorem 1 implies that the limit in (23) is infinite if θ lies in the
support of the µat. As far as our knowledge goes, a precise characterization of the limiting
behavior for θ belonging to the support of µsc remains an open question. Consult [34, 37] for
the state of the art on this matter.

Example 1 (Measure with AC part + atoms) We demonstrate the approximations us-
ing the CD kernel on the measure µ = µat +µac with µat = 0.05δ0 +0.05δ1 +0.1δ0.2 +0.1δ0.6 +
0.1δ0.8 and with the density of the AC part ρ(θ) = 4I[0.3,0.7](θ), where I[0.3,0.7] denotes the
indicator function of the interval [0.3, 0.7]. For ease of notation we set

ζN(θ) :=
N + 1

K̃N(ei2πθ, ei2πθ)
− 1. (24)

Figure 1 depicts the approximation ζN , i.e., the approximation to the AC part of Theorem 2,
whereas Figure 2 depicts the ζN/(N + 1), i.e., the approximation to the atomic part of
Theorem 1. Notice in particular the different scale of the vertical axis between the two
figures. Notice the rapid convergence of ζN(θ) to ρ(θ) for θ outside the support of µat. Notice
also the rapid convergence of ζN(θ)/(N + 1) to µ({θ}) = µat({θ}) for all θ ∈ [0, 1]. Notice
in particular that because of periodicity, one has ζN(0)/(N + 1) = ζN(1)/(N + 1) and this
value converges to µ({ei2π0}) which in our case is 0.05 + 0.05 = 0.1.

Example 2 (Measure with SC part) In this example we investigate the effect of the sin-
gular continuous part µsc. We use the same atomic and AC parts as in the previous example,
only add the singular continuous part µsc equal to the Cantor measure on [0, 1] whose mo-
ments ∫

[0,1]

ei2πθk dµsc(θ) = eiπθk
∞∏
n=1

cos
(2πθk

3n

)
(25)

are derived readily from its characteristic function known in closed form (see, e.g., [19]).
Figure 3 and Figure 4 are analogous to Figures 1 and 2 for this situation5. Extraction of

5Note that the support of the Cantor measure depicted in Figures 3 and 4 is a rough numerical approxi-
mation since the true support is the fractal Cantor set.
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Figure 1: Example 1 – Approximation of the absolutely continuous part of the spectrum
using the CD kernel (Theorem 2).
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Figure 2: Example 1 – Approximation of the atomic part of the spectrum using the CD
kernel (Theorem 1).

the atomic part is not particularly hampered as the conclusion of Theorem 1 holds for all
θ ∈ [0, 1]. This is witnessed by Figure 4 where we observe ζN(θ)/(N + 1) converging to zero
whenever θ is not in the support of the atomic part. On the other hand, extraction of the
density ρ is more difficult in this case since the conclusion of Theorem 2 holds only almost
everywhere (see Remark 2). Nevertheless, the behavior of ζN(θ) for different values of N is
still a guideline for disentangling the contributions of the AC and SC parts. Whenever θ lies
outside of the support of µsc and µat, we expect convergence to ρ(θ) whereas otherwise we
expect a divergent behavior. This is witnessed by Figure 3, where we observe this behavior;
notice in particular the different rate of divergence for θ belonging to the support of the SC
part versus for theta being in the support of the atomic part (see Remark 2). We shall re-
investigate this example using the tools described in the next section which will further help
disentangling the AC and SC parts.
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Figure 3: Example 2 – Approximation of the absolutely continuous part of the spectrum
using the CD kernel (Theorem 2).
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Figure 4: Example 2 – Approximation of the atomic part of the spectrum using the CD
kernel (Theorem 1).

5.1.2 Numerical computation of the CD kernel

In this section we discuss numerical aspects of evaluation of the modified CD kernel (20).
Fortunately, the matrix M̃N is positive definite Hermitian Toeplitz matrix which can be
inverted in O(N2) or even O(N log2(N)) floating point operations in a numerically stable
way, as opposed to O(N3) for a general matrix. See, e.g., [38, 36, 4]. Hence the CD kernel can
be accurately evaluated even for a very large number of moments (e.g., N � 1000). Whether
or not one should precompute the inverse or rather compute the Cholesky factorization of M̃N

(also with O(N2) complexity [35]) depends on the number of point evaluations of K̃N(z, s)
one expects to carry out. In our applications we required evaluation of K̃N(ei2πθ, ei2πθ) on a
very fine grid of θ in which case direct inversion was preferable.

If one requires also direct access to the orthonormal polynomials ϕ̃i of µ̃, then Cholesky
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factorization M̃N = LHL is preferred since we have
ϕ̃0(z)
ϕ̃1(z)

...
ϕ̃N(z)

 = L−H


1
z
...
zN

 , (26)

where we used the fact that M̃N =
∫
T ψNψ

H
N dµ̃ (see (18)).

The orthonormal polynomials (26) have a number of interesting properties, one of which
being the relation of their zeros to the eigenvalues of the dynamic mode decomposition
approximation of the Koopman operator U . This is explored in Section 7.

5.2 Weak approximation of µ

In Section 5.1 we showed how the atomic and absolutely continuous parts of µ can be
recovered. In this section we show how to construct approximations µN to µ such that
µN converges weakly6 to µ. This is equivalent to saying that the distribution function
FN(t) = µN([0, t]) of µN converges pointwise to F = µ([0, t]) at every point of continuity of F .
Since the support of our measures is compact, all continuous test functions are automatically
bounded, hence the notion of weak convergence we refer to throughout this article coincides
with the classical weak-∗ convergence.

We describe two methods of constructing µN . The first approximation results in the approxi-
mation µN being absolutely continuous with respect to the Lebesgue measure with a smooth
density ρN , whereas the second approximation results in a purely atomic approximation µN .

5.2.1 Cesàro sums

The first method uses the classical Cesàro summation. Given moments (mk)
N
k=−N , with

m−k = m̄k, the nth partial sum of the Fourier series is defined by

Sn(θ) :=
n∑

k=−n

ei2πθkm̄k. (27)

Then we define the density ρCS
N to be the Cesàro sum

ρCS
N (θ) :=

1

N + 1

N∑
n=0

Sn(θ) (28)

and we set for any 0 ≤ a ≤ b ≤ 1

µCS
N ([a, b]) :=

∫ b

a

ρCS
N (θ) dθ. (29)

6A sequence of measures (µN )∞N=1 converges to µ weakly if
∫
f dµN →

∫
f dµ for all continuous bounded

functions.
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Hence the cumulative distribution function of µCS
N is

FCS
N (t) =

∫ t

0

ρCS
N (θ) dθ. (30)

Theorem 3 Let ρCS
N be the Cesàro sum (28) associated to the moment sequence (14) of

a positive measure µ on [0, 1] and let µCS
N and FCS

N be defined by (29) and (30). Then
FCS
N (0) = 0, FCS

N (1) = µ([0, 1]) and

lim
N→∞

FCS
N (t) =

F (t) + F−(t)

2
, t ∈ (0, 1),

where F = µ([0, t]) is the right-continuous distribution function of µ and F−(t) = µ([0, t))
its left limit at t. In particular, µCS

N converges weakly to µ.

Proof: Using (27), (28) and (14), we get

ρCS
N (x) =

1

N + 1

N∑
n=0

Sn(x) =

∫
[0,1]

1

N + 1

N∑
n=0

n∑
k=−n

ei2πk(x−θ) dµ(θ)

=

∫
[0,1]

GN+1(2π(x− θ)) dµ(θ)

where

GN(x) =
1

N

N−1∑
n=0

n∑
k=−n

eikx =
1

N

(sin Nx
2

sin x
2

)2

(31)

is the N th Fejér kernel. Therefore

FCS
N (t) =

∫ 1

0

I[0,t]ρ
CS
N (x)dx =

∫ 1

0

∫
[0,1]

I[0,t]GN+1(2π(x− θ)) dµ(θ)dx

=

∫
[0,1]

∫ 1

0

I[0,t]GN+1(2π(x− θ)) dx dµ(θ) =

∫
[0,1]

gN,t(θ) dµ(θ),

where gN,t(θ) := (I[0,t] ∗GN+1)(θ) is the convolution of the Fejér kernel with the the indicator
function of the interval [0, t]. Here we used the Fubini theorem and the symmetry of the
Fejér kernel. By basic properties of the Fejér kernel (e.g., [44, Ch. III, p. 88, 89]) we have
for any t ∈ (0, 1)

g∞,t(θ) := lim
N→∞

gN,t(θ) =



1/2 θ = 0

1 θ ∈ (0, t)

1/2 θ = t

0 θ ∈ (t, 1)

1/2 θ = 1

and g∞,t(θ) = 0 for all θ ∈ [0, 1] for t = 0 and g∞,t(θ) = 1 for all θ ∈ [0, 1] for t = 1. Since
|I[0,t]| ≤ 1, we also have |gN,t| ≤ 1 and hence by the dominated convergence theorem we have

lim
N→∞

FCS
N (t) =

∫
[0,1]

g∞,t(θ)dµ(θ) =


µ([0, t)) + 1

2
µ({t}) t ∈ (0, 1)

0 t = 0

µ([0, 1]) t = 1,
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where in the first line we used the fact that µ({0}) = µ({1}) (see Footnote 4). Therefore,
for any t ∈ (0, 1)

F (t) + F−(t)

2
=
µ([0, t]) + µ([0, t))

2
= µ([0, t)) +

1

2
µ({t}) = lim

N→∞
FCS
N (t)

as desired. This also implies convergence of FCS
N (t) to F (t) in every point of continuity of F

and hence weak convergence of µCS
N to µ.

�

5.2.2 Quadrature

In this section we develop purely atomic approximations µN that converge weakly to µ. For
this we use the so called quadrature, i.e., we seek a measure µN in the form

µQ
N =

nq∑
j=0

γjδηj , (32)

where γj ≥ 0 and ηj ∈ [0, 1] are nonnegative weights and atom locations, respectively. The
weights and locations are selected such that∫

[0,1]

hN dµ
Q
N(θ) =

∫
[0,1]

hN dµ(θ)

for all hN ∈ span
{
e−i2πNθ, . . . , ei2πNθ

}
, i.e., for all trigonometric polynomials of degree no

more than N . This is equivalent to the moment matching condition

mk =

∫
[0,1]

ei2πkθ dµQ
N(θ) =

nq∑
j=0

γje
i2πkηj ∀ k ∈ {0, . . . , N}, (33)

where we use the fact that m−k = m̄k. There is a well developed theory on choosing the
locations ηj such that nonnegative weights γj satisfying (33) exist. These locations are
given by the zeros of the so called paraorthogonal polynomials that can be readily computed
from the orthonormal polynomials ϕ; see [34, Ch. 2.15] and [12, Sec. 7]. It is highly
relevant for our study that, as N → ∞, these zeros become uniformly distributed on the
unit circle [34, Theorem 2.15.4]. Therefore, since we typically work with large N , in order
to avoid the numerically slightly troublesome process of polynomial root finding, we use
directly a uniform grid of points

ηj =
j

nq

, j = 0, . . . , nq (34)

with nq > N . In order to ensure symmetry (see Footnote 4), we impose the additional
constraint

γ0 = γnq .
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Given the atom locations (34), the weights γj are determined by solving the quadratic
program (QP)

ε∗N = min
γ0,...,γnq

∑N
k=0(mk −

∑nq

j=0 γje
i2πkηj)2

s.t. γj ≥ 0, j = 0, . . . , nq

γ0 = γnq ,

(35)

where in the objective function we penalize the discrepancy in the moment matching con-
dition (33). In particular, whenever nq is such that the optimal value ε∗N of (35) is zero,
the moment matching condition is satisfied exactly. Alternatively, one can solve a linear
programming (LP) feasibility problem by casting the moment matching condition (33) as a
constraint. In this case, however, if nq is such that exact matching cannot be achieved, then
the LP does not provide us an approximation to µN whereas the QP (35) provides an ap-
proximation whether or not an exact matching can be achieved. Computational complexity
of solving a QP is comparable to that of an LP with many mature solvers existing for both
(e.g., MOSEK, GUROBI, CPLEX and many others) and hence we prefer the QP (35).

The following result is immediate.

Theorem 4 Let for each N the measure µQ
N be of the form (32) with (γj)

nq

j=0 being an optimal

solution to (35). If the associated optimal values ε∗N converge to zero as N → ∞, then µQ
N

converges weakly to µ. In particular the distribution function of µQ
N

FQ
N (t) := µQ

N([0, t]) =

nq∑
j=0
ηj≤t

γj (36)

converges to the distribution function F (t) = µ([0, t]) in every point of continuity of F .

Proof: The condition ε∗N → 0 implies pointwise convergence of the moment sequences of µN
to the moment sequence of µ, which implies weak convergence of µN to µ by compactness
of T. �

Example 3 (Distribution functions, quantifying singularity) In this example we com-
pare the distribution function obtained using the Cesàro sums and using quadrature. We use
the same measure as in Example 2, i.e., µat = 0.05δ0 + 0.05δ1 + 0.1δ0.2 + 0.1δ0.6 + 0.1δ0.8, the
density of the AC part is ρ(θ) = 4I[0.3,0.7](θ) and the SC part is equal to the Cantor measure

with moments given by (25). Figure 5 depicts the comparison of FCS
N and FQ

N , where the
quadrature weights were obtained using (35) with nq = 10N , which was sufficient for exact
moment matching (i.e., ε∗N = 0 in (35)). We observe a very good accuracy of both methods,
with the piecewise constant FQ

N being able to capture the fine features of F slightly better than
the smooth FCS

N , especially for N = 1000. Note that we have also plotted the function

FζN (t) =

∫ t

0

ζN(θ) dθ,

where ζN is defined in (24). This function is expected to be a good approximation to F
only if µ is absolutely continuous. In our example both singular parts of µ are non-zero
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and hence we expect a discrepancy. Note that the overall shape of FζN is similar to F
although the exact magnitude of increase at points of singularity is underestimated by FζN .
In fact, the ratio F (1)/FζN (1) = m0/FζN (1) can be used to quantify the singularity of µ.
If F (1)/FζN (1) = 1, then µ is AC; if F (1)/FζN (1) > 1, then µ contains a singular part.
In fact, in view of Theorem 2, one expects limN→∞ F (1)/FζN (1) = µ([0, 1])/µac([0, 1]). In
addition, instead of the global quantity F (1)/FζN (1), one can also quantify singularity of µ
locally by (F (b)− F (a))/(FζN (b)− FζN (a)) for every 0 ≤ a < b ≤ 1. Since F is not known,

this quantity can be approximated by replacing F with FCS
N or FQ

N . In Figure 6 we plot

∆N(tk) =
FCS
N (tk+1)− FCS

N (tk)

FζN (tk+1)− FζN (tk)
− 1 (37)

for tk = 10−3k, k = 0, . . . 103 − 1. As expected we observe ∆N(ti) ≈ 0 when ti is outside
the support of the singular parts and ∆N(ti) > 0 otherwise, although it appears that a large
number of moments is needed to get an accurate estimate of the supports, especially the
support of the SC part.
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Figure 5: Example 3 – Approximation of the distribution function (Theorems 3 and 4)
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6 Approximation of the Koopman operator

In this section we describe a method to construct an approximation of the Koopman operator
U from data. This can be done in a number of different ways, e.g., using the finite section
method (also referred to as the finite central truncation). A numerical algorithm to carry
out this approximation for the Koopman operator is called the Extended Dynamic Mode
Decomposition (EDMD) [42] (see Section 7 for a relation of a particular version of EDMD
to the CD kernel analysis developed in the previous sections).

Here, we take a slightly different path, constructing an approximation that explicitly takes
into account the contributions of the atomic and continuous parts of the spectrum. The
starting point is the representation of U as the spectral integral

U =

∫
[0,1]

ei2πθdE(θ)

provided by the spectral theorem. The approximation UK of U is then given by

UK =
K∑
j=1

ei2πθjPAj (38)

where PAj := E(Aj) is the spectral projection on the set Aj ⊂ [0, 1] and θj ∈ Aj. The sets
Aj are chosen such that they form a disjoint partition of [0, 1], i.e., Aj ∩Ak = ∅ if j 6= k and
∪Kj=1Aj = [0, 1]. In what follows we discuss

1. Convergence of UK to U as K tends to infinity.

2. Computation of the spectral projections PAj from data.

3. Choice of the partition (Aj)
K
j=1.

The results of this section can be seen as a generalization of the results of [25, 24] that
considered the case of Aj being a singleton, i.e., Aj = {θj}, in which case PAj is the projection
on the eigenspace associated to θj provided that θj is an eigenvalue of U ; otherwise PAj = 0.
Here we treat the fully general case of projections on eigenspaces as well as subsets of the
continuous spectrum.

6.1 Convergence of UK to U

Given a set A ⊂ [0, 1] we define its diameter as diam(A) = sup(A) − inf(A) and we note
that diam(A) ∈ [0, 1]. The following result shows that if the diameter of the sets comprising
the disjoint partition in (38) tends to zero, then UK converges to U in the strong operator
topology.

Theorem 5 Let (Aj,K)Kj=1 be a sequence of disjoint partitions of [0, 1] (i.e., Aj,K ∩Al,K = ∅
if j 6= l and ∪Kj=1Aj,K = [0, 1]) satisfying

lim
K→∞

max
j=1,...,K

diam(Aj,K) = 0 (39)
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and let θj,K ∈ Aj,K. Then the operators UK defined by (38) with Aj and θj replaced by Aj,K
and θj,K convergence to U in the strong operator topology, i.e.,

lim
K→∞

‖UKf − Uf‖L2(ν) = 0 (40)

for all f ∈ L2(ν).

Proof: Writing PAj,K =
∫

[0,1]
IAj,K (θ) dE(θ) with IAj,K being the indicator function of the

set Aj,K , we get

UK =
K∑
j=1

ei2πθjPAj,K =

∫
[0,1]

K∑
j=1

ei2πθj,KIAj,K (θ) dE(θ) =

∫
[0,1]

gK(θ) dE(θ),

where

gK(θ) =
K∑
j=1

ei2πθj,KIAj,K (θ).

Now we observe that gK(θ) converges pointwise to the function ei2πθ. To see this, fix θ ∈ [0, 1]
and ε > 0. By (39) there exists a K ∈ N such that maxj=1,...,K diam(Aj,K) < ε. Since the
partition is disjoint there exists one and only one Aj,K such that θ ∈ Aj,K . Therefore

|gK(θ)− ei2πθ| = |IAj,K (θ)ei2πθj,K − ei2πθ| = |ei2πθj,K − ei2πθ| ≤ 2π|θ − θj,K | ≤ 2πε.

Hence indeed limK→∞ gK(θ) = ei2πθ. The proof of the theorem is finished by observing that
|gK(θ)| ≤ 1 (since AK,j are disjoint) and invoking [16, Corollary 3.27]. �

6.2 Computation of spectral projections PAj,K from data

In this section we show how the spectral projections PAj,Kf of a given observable f can be
computed from data in the form of samples of f on a single trajectory of the dynamical sys-
tem (1). Throughout this section we assume that the setAj,K ⊂ [0, 1] is given and we drop the
subscripts. The goal is therefore to compute PAf from data, with A ⊂ [0, 1]. The idea is to
approximate the indicator function IA of the set A using trigonometric polynomials and apply
the spectral theorem. Indeed, if the trigonometric polynomials pN(θ) =

∑N
k=−N αk,Ne

i2πθk,
αk,N ∈ C, satisfy

lim
N→∞

pN(θ) = IA(θ),

then

PA =

∫
[0,1]

IA(θ) dE(θ) =

∫
[0,1]

lim
N→∞

pN(θ) dE(θ) = lim
N→∞

∫
[0,1]

pN(θ) dE(θ)

= lim
N→∞

N∑
k=−N

αk,N

∫
[0,1]

ei2πθk dE(θ) = lim
N→∞

N∑
k=−N

αk,NU
k, (41)

where the first limit is understood pointwise and the remaining limits in the sense of con-
vergence in the strong operator topology. The exchange of limit and integration is justified
by [16, Corollary 3.27]. The fact that Uk =

∫
[0,1]

ei2πθk dE(θ) is a direct consequence of the

spectral theorem. The following theorem summarizes these developments.
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Theorem 6 Let αk,N be such that limN→∞
∑N

k=−N αk,Ne
i2πθk = IA(θ) for all θ ∈ [0, 1]. Then

lim
N→∞

∥∥∥PAg − N∑
k=−N

αk,NU
kg
∥∥∥
L2(ν)

= 0 (42)

for all g ∈ L2(ν).

In what follows we discuss how to choose the coefficients αk,N such that
∑N

k=−N αk,Ne
i2πθk →

IA(θ) for all θ ∈ [0, 1] and how to approximate the sum in (42) from data. We start with
the latter.

6.2.1 Numerical computation of PAf

According to Theorem 6, given coefficients αk,N such that
∑N

k=−N αk,Ne
i2πθk → IA(θ) for all

θ ∈ [0, 1], we can approximate the projection PAf by

PAf ≈ ΠNf :=
N∑

k=−N

αk,NU
kf =

N∑
k=−N

αk,N · f ◦ T k

with ΠNf converging to PA in the L2(ν) norm. Given data in the form of samples of f

yj = f(xj), j = 1, . . .M (43)

evaluated on a single trajectory of the dynamical system (1), i.e., xj+1 = T (xj), we can eval-
uate the approximate projection ΠNf along the points on this trajectory. Indeed, provided
that 2N < M , we can evaluate (ΠNf)(xj) for j ∈ {N, . . .M −N} using

(ΠNf)(xj) =
N∑

k=−N

αk,Nf(xj+k) =
N∑

k=−N

αk,N yj+k. (44)

Equation (44) is readily implementable given the data (43) and the sequence of complex
numbers αk,N . Two natural questions arise about this numerical scheme.

Remark 3 (Density of a single trajectory) The first question asks whether a single tra-
jectory is sufficient to represent ΠNf . Provided that that the state-space X is topological, the
sigma algebra M is the Borel sigma algebra and the measure ν is ergodic with the property
that ν(G) > 0 for every open set G ⊂ X, then for ν almost all initial conditions the trajec-
tory of the dynamical system (1) will be dense in X. Therefore, under these conditions, we
can evaluate the approximate projections ΠN on a dense set of points from a single trajectory
of (1). If, on the other hand, the measure ν is not ergodic, then the set of points on which
ΠN is evaluated will be confined to a single component of the ergodic partition of X.

Remark 4 (Pointwise convergence) Theorem 6 guarantees L2(ν) convergence of ΠNf
to PAf . The question of whether ν-almost everywhere convergence holds is more subtle and
may depend on the choice of coefficients αk,N . In Theorem 7 we prove that this convergence
holds for the coefficients proposed in Section 6.2.2.
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6.2.2 Choice of the coefficients αk,N

Now we show how to select the parameters αk,N ∈ C such that limN→∞
∑N

k=−N αk,Ne
i2πθk =

IA(θ) for all θ ∈ [0, 1]. We restrict our attention to A being either a singleton A = {θ0} or
an interval Aj = [a, b). We note that for neither of these sets the choice of the coefficients
αk,N is unique.

For the singleton {θ0}, one possible choice is

α
{θ0}
k,N =

{
1

N+1
e−i2πkθ0 k ∈ {0, . . . , N}

0 otherwise,
(45)

which was proposed in [24]. Another possible choice is the double-sided version of (45) which
is non-zero for k ∈ {−N, . . . , N} and has 1/(2N + 1) coefficients in front.

For the interval [a, b), one possible choice is

α
[a,b)
k,N =

1

2
α
{a}
k,N + β

[a,b)
k,N −

1

2
α
{b}
k,N , (46)

where

β
[a,b)
k,N =

{
N−|k|
N

i
2πk

(e−i2πbk − e−i2πak) k 6= 0,

b− a k = 0
(47)

are the coefficients of the Cesàro sum of the degree-N Fourier series approximation to the in-
dicator function of [a, b) (i.e., the coefficients of the convolution of the Fejér kernel (31) with
the indicator function of [a, b)). These coefficients have the advantage of the indicator func-
tion approximation being nonnegative and less oscillatory than Fourier series approximation.
The coefficients β

[a,b)
k,N satisfy

lim
N→∞

N∑
k=−N

β
[a,b)
k,N e

i2πθk =
1

2
I{a}(θ) + I(a,b)(θ) +

1

2
I{b}(θ)

and hence the need for the corrective terms 1
2
α
{a}
k,N and −1

2
α
{b}
k,N in (46) so that

lim
N→∞

N∑
k=−N

α
[a,b)
k,N e

i2πθk = I[a,b)(θ).

We remark that, any finite union of intervals and singletons can be obtained by combin-
ing (45) and (46).

The following theorem establishes ν-almost everywhere convergence of the spectral projection
approximations of Section 6.2.1 with the choice of coefficients proposed in this section (see
Remark 4).

Theorem 7 Let α
{θ0}
k,N and α

[a,b)
k,N be given by (45), respectively (46) and let g ∈ L2(ν) be

given. Then for ν-almost all x ∈ X

lim
N→∞

N∑
k=−N

α
{θ0}
k,N g(T k(x)) = (P{θ0}g)(x) (48)
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and

lim
N→∞

N∑
k=−N

α
[a,b)
k,N g(T k(x)) = (P[a,b)g)(x) (49)

Proof: The relation (48) follows immediately from Theorem 6 and the Wiener-Wintner
ergodic theorem [40]. In order to prove (49), we first remark that it suffices to prove that
the limit

lim
N→∞

N∑
k=−N

β
[a,b)
k,N g(T k(x)) (50)

exists for ν-almost all x ∈ X; this follows immediately from Theorem 6 and from the fact
that the coefficients α

[a,b)
k,N are of the form (46) with ν-almost everywhere convergence of the

projections onto the singletons {a} and {b} guaranteed by (48).

In order to prove the existence of the limit (50) we use the recent generalization of the
Wiener-Wintner theorem [17, Corollary 7.2] establishing the existence of the limit

lim
N→∞

∑
0<|k|≤N

ei2πθk

k
g(T k(x)) (51)

for ν-almost all x ∈ X and all θ ∈ [0, 1]. In order to apply this result we observe that for
k 6= 0 we have

βk,N =
i

2π

(N − |k|
N

e−i2πbk

k
− N − |k|

N

e−i2πak

k

)
with a, b ∈ [0, 1]. Therefore it suffices to prove the ν-almost everywhere existence of

lim
N→∞

∑
0<|k|≤N

N − |k|
N

ei2πθk

k
g(T k(x))

for θ ∈ [0, 1]. We have

lim
N→∞

∑
0<|k|≤N

N − |k|
N

ei2πθk

k
g(T k(x)) = lim

N→∞

1

N

N−1∑
n=0

∑
0<|k|≤n

ei2πθk

k
g(T k(x)),

which is nothing but the Cesàro sum of (51) and hence it exists (and is equal to (51)). �

Remark 5 We remark that the null-set at which the limits in (48) and (49) do not exist
can be chosen independent of θ0 and a and b.

6.3 Choice of the partition (Aj)
K
j=1

In this section we discuss how to choose the partition (Aj)
K
j=1 based on spectral properties

of U . In order to obtain convergence in strong topology the only assumptions we need to
satisfy is that of disjointness of the partition (Aj)

K
j=1 and of the diameter of Aj tending

to zero (Theorem 6). Therefore, we get the following immediate corollary pertaining to a
generic partition of [0, 1] to intervals:
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Corollary 1 Let 0 = a1,K < a2,K . . . < aK,K < aK+1,K = 1 satisfy

lim
K→∞

max
j∈{1,...,K}

|aj+1,K − aj,K | = 0.

Then, for α
[aj,K ,aj+1,K)
k,N defined by (46) and θj,K = (aj,K + aj+1,K)/2, it holds

lim
K→∞

lim
N→∞

∥∥∥ K∑
j=1

ei2πθj,K
N∑

k=−N

α
[aj,K ,aj+1,K)
k,N Ukg − Ug

∥∥∥
L2(ν)

= 0 (52)

for all g ∈ L2(ν).

The question we want to address is on how to choose the interval endpoints aj,K in an
informed way based on the spectral analysis of U from Sections 5.1 and 5.2. In particular,
under what conditions one should consider a more general partition (Aj,K)Kj=1 with some of
the Aj,K being singleton and how to choose θj,K better than the interval midpoints. The
information available to us is (an approximation of) the measure µf and the goal is to
construct a partition such that the approximation UK is accurate on the cyclic subspace Hf

associated to f (defined in (9)). In general, fixing the value of K, the partition should be
chosen fine in the regions where µf is large and coarse where µf is small. This is automatically
achieved if the masses µf (Aj,K) of the partition elements are the same. However, if the
measure µf has a non-zero atomic part, a partition with all masses being equal may not
exist. Therefore we suggest the following procedure, where we let

µf =
∞∑
k=1

wkδθk + µac + µsc.

1. (Singletons) Define the singletons of the partition to be the locations θkj of those atoms
of µf for which the weight wkj satisfies wkj ≥ µf ([0, 1])/K = m0/K. Assume there is

Kat of such atoms and define µ̄f = µf −
∑Kat

j=1 wkjδkj . This step can be carried using
the CD kernel approximation to the atomic part of µf (Theorem 1).

2. (Intervals) If Kat < K, define K −Kat + 1 interval endpoints such that

max
j
µ̄f ([aj, aj+1))−min

j
µ̄f ([aj, aj+1))

is minimized. The idea is that the intervals of the partition should have the same
µ̄f -measure. However, achieving exactly the same measure is not possible in general
if atoms are still present in µ̄f , hence the minimization of the variation. If µ̄f is
atomless, then simply aj = F−1

µ̄f (bj), where (bj)
K−Kat+1
j=1 constitutes a uniform partition

of [0, µ̄f ([0, 1])] to K −Kat intervals and Fµ̄f (t) = µ̄f ([0, t]) is the distribution function
of µ̄f . Finally, we subtract the atom locations from the intervals to which they belong
(to prevent double counting). This step can be carried out by first subtracting from mk

the moments of the atoms extracted in the first step, thereby obtaining the moments
of µ̄f . Subsequently an approximation to Fµ̄f can be constructed using the methods
of Section 5.2.
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3. (Choice of θj,K) The frequencies θj,K ∈ Aj,K representing each element of the partition
Aj,K are chosen to be the conditional expectations 1

µf (Aj,K)

∫
Aj,K

θ dµf (θ). The con-

ditional expectation can be approximated using the weak approximations to µf from
Section 5.2. Note that, of course, if Aj,K is a singleton {θ0}, then θj,K = θ0.

7 Relation to Dynamic mode decomposition

In this section we briefly describe an interesting relation of the proposed method to the
so-called Hankel Dynamic Mode Decomposition (Hankel DMD) [1], which is a variation of
the classical DMD algorithm for spectral analysis of dynamical systems [29]. The crucial
fact for the argument presented is the following consequence of the spectral theorem7: the
operators (sometimes called the finite central truncations of the respective infinite matrices)

UN = PNUPN and ŨN = πNMzπN

have the same spectrum. Here, PN and πN denote the L2(ν) respectively L2(µf ) orthogonal
projections onto

FN = span{f, Uf, . . . , UN−1} and ZN = span{1, z, . . . , zN−1},

respectively, and Mz : L2(µf )→ L2(µf ) denotes the multiplication-by-z operator, i.e., Mzξ =
zξ for any function ξ ∈ L2(µf ). In fact, more is true: the finite-dimensional operators
UN and ŨN (restricted to FN and ZN) have identical matrix representations in the bases
(f, Uf, . . . , UN0−1f), respectively (1, z, . . . , zN0−1), where N0 ∈ {1, . . . , N} is the largest
power such that (f, Uf, . . . , UN0−1f) is linearly independent. We would like to emphasize
here that the operator UN acts on the space L2(ν), where ν is a measure on the abstract
state space X whereas ŨN acts on L2(µf ), where µf is a measure defined on C. Therefore,
remarkably, the operator ŨN , acting on a concrete, well-understood, space L2(µf ), contains
all information about UN , which acts on an abstract, intangible, space L2(ν).

In order to use this fact to understand DMD in terms of the scope of the current work, we use
two known facts. First, the operator UN (restricted to FN) is precisely the Hankel dynamic
mode decomposition operator, in the limit as the number of samples used in the Hankel
DMD goes to infinity (see [1, 15]). Second, the monic degree-N orthogonal polynomial ΦN

with respect to µf is equal to the characteristic polynomial of ŨN (and hence of UN); see [34,
Theorem 1.2.6].

This leads to the following theorem

Theorem 8 Suppose that orthogonal polynomials up to degree N associated to µf exist8.
Then the monic orthogonal polynomial for µf , ΦN , is equal to the characteristic polynomial

7The consequence of the spectral theorem we are referring to here is the isomorphism between Hf ⊂ L2(ν)
and L2(µf ) where Ukf ∈ Hf is identified with zk ∈ L2(µf ), and the unitary equivalence of U : Hf → Hf

and Mz : L2(µf )→ L2(µf ).
8The existence and uniqueness (up to scaling) of orthogonal polynomials up to degree N for µf is assured

if the support of µf contains at least N + 1 distinct points. In particular if the support of µf contains
infinitely many points, a full set of orthogonal polynomials exists.
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of the Hankel DMD operator UN . In particular, the zeros of ΦN are equal to the eigenvalues
of UN , including multiplicities.

We remark that the monic orthogonal polynomial ΦN can be readily obtained by normal-
izing the leading coefficients of the orthonormal polynomials ϕN for µf obtainable using
the Cholesky decomposition of the moment matrix of µf defined in (18) as in (26) with µ̃
replaced by µ = µf .

7.1 Properties of Hankel DMD eigenvalues

Theorem 8 allows us to study the behavior of the eigenvalues of the Hankel DMD operator
UN by studying the zeros of ΦN whose behavior is well understood. For example, we have
the following slightly surprising corollary:

Corollary 2 If the subspace {f, Uf, U2f, . . .} is infinite-dimensional, then all eigenvalues of
the Hankel DMD operator UN lie strictly inside the unit circle; in particular, no eigenvalue
of UN lies on the boundary of the unit circle (where all the eigenvalues of U lie).

Proof: The assumption of {f, Uf, U2f, . . .} implies that {1, z, z2, . . .} is a linearly indepen-
dent sequence in L2(µf ) and hence a full sequence of orthogonal polynomials for µf exists.
By Theorem [34, Theorem 1.8.4], the zeros of these orthogonal polynomials, and hence (by
Theorem 8) the eigenvalues of UN , all lie strictly inside the unit circle. �

Another interesting corollary concerns the asymptotics of the distribution of eigenvalues
as N tends to infinity. The corollary works under the assumption of µf being regular in the
sense of [34, p. 121]; a sufficient condition for regularity is for the density ρ of the absolutely
continuous part of µf to satisfy ∫ 1

0

log(ρ(θ)) dθ > −∞. (53)

This is implied for instance by ρ being strictly positive and bounded away from zero.

Let now µNDMD be the normalized counting measure supported on the eigenvalues of UN ,
including multiplicities, i.e.,

µNDMD =
1

N

nλ∑
j=0

aλj,N δλj,N , (54)

where λ1,N , . . . , λnλ,N , nλ ≤ N , are the eigenvalues of UN and aλj,N denotes their algebraic
multiplicity.

Corollary 3 If µf is regular in the sense of [34, p. 121] (e.g., satisfies (53)), then the
normalized counting measures µNDMD converge weakly to the uniform distribution on the unit
circle.

Proof: Follows from Theorem 8 and from [34, Theorems 2.15.1 and 2.15.4] which prove this
asymptotic behavior of the zeros of ΦN . �
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This corollary has the following implication: Whenever the operator U has a continuous
spectrum and the observable f is such that the density of the absolutely continuous part of
µf is bounded away from zero, then the eigenvalues of UN will be, in the limit as N → ∞,
distributed uniformly on the unit circle, irrespective of the point and singular continuous
parts of the spectrum.

8 Numerical examples

8.1 Cat map

This example analyzes the spectrum of Arnold’s cat map

x+
1 = 2x1 + x2 mod 1
x+

2 = x1 + x2 mod 1.

We use two different observables

f1 = ei2π(2x1+x2) +
1

2
ei2π(5x1+3x2),

f2 = ei2π(2x1+x2) +
1

2
ei2π(5x1+3x2) +

1

4
ei2π(13x1+8x2)

for which the associated measure µf is known analytically (see [11]) to be µf1 = ρf1dθ and
µf2 = ρf2dθ with

ρf1 =
5

4
+ cos(2πθ)

ρf2 =
21

16
+ (5/4) cos(2πθ) +

1

2
cos(4πθ).

We use (13) with M = 105 to approximately compute the first N = 100 moments. Figure 7
shows the approximations ζN(θ), defined in (24), of the densities. We observe a very good
match for both observables. In order to numerically verify the absence of the singular
parts of the spectra we also plot in Figure 8 the distribution function approximations and
the singularity measure. In particular we observe that FζN matches very closely the other
distribution function approximations (as well as the true distribution function), indicating
the absence of the singular part of the spectrum. This is confirmed by the singularity
indicator ∆N , defined in (37), being almost identically zero. For space reasons we show these
plots only for the first observable, the results being almost identical for the second. Next, in
Figure 9 we show the approximation of the spectral projection P[a,b]f for the observable f =
ei2π(2x1+x2) and interval [a, b] = [0.125, 0.375]. At present, no analytical expression is known
for this projection but the results seem to be in accordance9 with numerical approximations
obtained in [11] using a very different method. We note that the prominent diagonal pattern
in Figure 9 is aligned with the eigenvector [1,−(1+

√
5)/2] associated to the stable eigenvalue

of the matrix

[
2 1
1 1

]
defining the dynamics; this direction corresponds to the stable foliation

9Due to a different scaling, the corresponding interval [a, b] in [11] is [π/4, 3π/4].
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of the hyperbolic dynamical system. Finally, in Figure 10 we compare the eigenvalues of
the Hankel DMD operator with the zeros of the N th orthogonal polynomial associated to
µf with f = f2. In accordance with the results of Section 7, the eigenvalues and the zeros
almost coincide, the discrepancy being due to a finite number of samples (M = 105) taken.
In addition, as predicted by Corollary 2 and 3, the eigenvalues lie strictly inside the unit
circle and become uniformly distributed on the unit circle in the limit as N →∞.
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Figure 7: Cat map – Approximation of the densities by the CD kernel. Left: observable f1.
Right: observable f2.
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Figure 8: Cat map – Left: Approximation of the distribution function of µf1 . Right: Singu-
larity indicator ∆N defined in (37). Both plots pertain to the observable f1.

8.2 Lorenz system

Our second example investigates the Lorenz system.

ẋ1 = 10(x2 − x1)
ẋ2 = x1(28− x3)− x2

ẋ3 = x1x2 − 8
3
x3.
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x1 x1
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Real part Imaginary part

Figure 9: Cat map – Approximation of the projection P[a,b]f with f = ei2π(2x1+x2) and
[a, b] = [0.125, 0.375] and N = 100, M = 105.

This is a continuous time system for which we define the Koopman semigroup (Utf)(x) =
(f ◦ ϕt)(x), where ϕt is the flow of the dynamical system. The data is collected in the
following way: We simulate one trajectory of length MTs, where Ts = 0.2 is the sampling
period and M is the number of samples to be taken. Given an observable f , the data (11)
used for approximate moment computation using (13) is then given by equidistant sampling,
i.e., yj = f(jTs). Therefore, our results on spectrum approximation pertain to UTs (i.e., to
one element of the Koopman semigroup). Figure 11 shows the results for three different
observables, f1 = x1, f2 = x2 and f3 = x3. For the first two observables we see purely
absolutely continuous spectrum, as testified by the agreement of FζN with the remaining
two estimates of the distribution function as well as by the singularity indicator ∆N being
very small. The observable f = x3, on the other hand, has an atom at θ = 0 as well as
a peak of the density estimate at approximately θ = 0.26, corresponding to the continuous
time frequency ω = 2πθ/Ts ≈ 8.17 rad/s. The singularity indicator ∆N suggests there
may be a small singularity around this location. To investigate this further we compare in
Figure 12 the plots of the estimates of the atomic part ζN/(N + 1) as well as the density
estimate ζN and the singularity indicator ∆N for N = 100 and 1000. First we notice that
the estimate of the atomic part decreases around θ = 0.26 as N increases, which suggests
that the peak around this point is not an atom. We also observe a decrease of the singularity
indicator ∆N expect for a very small neighborhood of the peak. This suggests that the peak
is either purely absolutely continuous or that there may be a very small singular continuous
contribution. This is in agreement with the fact that the Lorenz system is mixing (see, [20])
and hence there are no non-trivial eigenvalues of the Koopman operator. We believe that the
peak is associated with an almost-periodic motion of the x3 component during the time that
the state resides in either of the two lobes, with switches between the lobes occurring in a
chaotic manner. In Figure 13 we depict the approximation of the spectral projection P[a,b)f
(see Section 6.2) with [a, b) = [0.24, 0.28] and f(x) = x3, i.e., we are projecting on a small
interval around the peak in the spectrum of x3. This function will evolve almost linearly
with frequency of the peak, i.e., (P[a,b)f)(x(t+ τ)) ≈ eiωτ (P[a,b)f)(x(t)) with ω ≈ 8.17 rad/s.
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Figure 10: Cat map – Eigenvalues of the Hankel DMD operator and zeros of the N th orthog-
onal polynomial of µf . As predicted by Section 7, the two sets of zeros almost coincide, the
discrepancy being due to a finite number of samples taken, and lie strictly inside the unit
circle T, approaching a uniform distribution on T as N increases. Both plots pertain to the
observable f2.

8.3 Cavity flow

In this example we study the 2-D model of a lid-driven cavity flow; see [2] for a detailed
description of the example and the data generating process. As in [2], the goal is to document
the changes in the spectrum of the Koopman operator with increasing Reynolds number
which are manifestations of the underlying bifurcations, going from periodic through quasi-
periodic to fully chaotic behavior. For each Reynolds number, the data available to us is in
the form of the so called stream function of the flow evaluated on a uniform grid of points in
the 2-D domain with equidistant temporal sampling. This leaves us with a very large choice
of observables since the value of the stream function at any of the grid points (as well as
any nonlinear function of the values of the stream function) is a candidate observable. In
general, one wishes to choose the observable f such that its spectral content is as rich as
possible, preferably such that f is ∗-cyclic (see Eq (9)), which is, however difficult to test
numerically. For example, for Re = 13 · 103, exhibit periodic behavior with a single (or
very dominant) harmonic component and hence might not contain the full spectral content
of the operator (i.e., f is not ∗-cyclic). Therefore, for each value of the Reynolds number
we chose as the observable the stream function at a grid point where the time evolution
is complex and hence the spectral content of this observable is likley to be rich. A more
careful numerical study, such as the one carried out in [2], should analyze a whole range
of observables (perhaps the values of the stream function at all grid points). However,
here, already one suitably chosen observable allows us to draw interesting conclusions on the
behavior of the spectrum of the operator as a function of the Reynolds number. The point
spectrum approximation results ζN/(N + 1) are depicted in Figure 14. Since the observable
f is real, the spectrum is symmetric around the point θ = 0.5 and hence we depict it only
for θ ∈ [0, 0.5]; in addition, we change coordinates from θ to ω = 2πθ/Ts, where Ts = 0.5 s is
the sampling period. Finally, in order to better discern very small atoms, we also show the
point spectrum approximation on a logarithmic scale. Based on Theorem 1, whether or not
there is an atom at a given frequency ω, can be assessed based on the proximity of the values
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Figure 11: Lorenz system – N = 100. Left: density approximation with the CD kernel. Mid-
dle: distribution function approximation. Right: Singularity indicator ∆N defined in (37).

of ζN/(N + 1) for two different N : When there is an atom, we expect the two values to be
closed to each other; otherwise we expect the value of ζN/(N + 1) to be significantly smaller
since in that case ζN/(N + 1) → 0. Figure 14 suggests that there is a very strong atomic
component of the spectrum for Re = 13 · 103 and Re = 16 · 103 and even for Re = 19 · 103 as
the atomic part accounts for at least 80 % of the energy of the given observable (i.e., 80 % of
the mass of µf ). This is confirmed by the approximations of the distribution function which
are piecewise constant for these values of the Reynolds number. For Re = 30 · 103, on the
other hand, the spectrum appears to be purely continuous. In order to assess whether the
spectrum is purely absolutely continuous or has a singular continuous part, we also plot the
FζN which does not entirely coincide with FQ

N and hence there may be a singular continuous
component of the spectrum present. However, a larger data set and more observables would
have to be investigated in order to ascertain that.
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Figure 12: Lorenz system – Observable f(x) = x3. Left: approximation of the atomic part
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Figure 13: Lorenz system – Approximation of the spectral projection P[a,b)f with f(x) = x3

and [a, b] = [0.24, 0.28] and N = 100, M = 105.
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Figure 14: Cavity flow – Point spectrum approximation ζN/(N + 1) for N = 100 and
N = 1000 (left: ordinary scaling; middle: logarithmic scaling). Right: approximation to the
distribution function for N = 100. An atom is likely to be located where ζN/(N + 1) shows
convergence to a positive value, i.e., where the blue and red curves are close to each other.
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9 Conclusion

This work presented a method for data-driven approximation of the spectrum of the Koop-
man operator with the main contribution being the separation of the atomic and continuous
parts of the spectra and their approximation with rigorous convergence guarantees. The
approach is simple and readily applicable to large-scale systems. The only limitation of the
approach is, we believe, the class of the systems addressed, i.e., measure-preserving ergodic
systems (or measure-preserving systems for which the preserved measure is known). One di-
rection of future research is a generalization beyond this class of systems, e.g., to dissipative
or unstable systems.
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[1] H. Arbabi and I. Mezić. Ergodic theory, dynamic mode decomposition and computation
of spectral properties of the Koopman operator. arXiv preprint arXiv:1611.06664, 2016.
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[22] A. Mauroy and I. Mezić. Global stability analysis using the eigenfunctions of the Koop-
man operator. IEEE Transactions on Automatic Control, 61(11):3356–3369, 2016.
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