
Proceedings of the American Control Conference 
San Diego, California June 1999 

STOCHASTIC RESONANCE IN AFM’S1 
M. Basso l ,  M. Dahleh 2,  I. MeziC and M. V. Salapaka 

Dip. di Sistemi e Informatica, Universitii di Firenze, Italy. 
basso@dsi.unifi.it 

Dept. of Mechanical and Environmental Engineering, 
University of California Santa Barbara, CA 93106. 

dahleh@engineering.ucsb.edu, mezic@engineering.ucsb.edu 
Dept. of Electrical Engineering, 

Iowa State University, Ames, Iowa 50011. 
murtiaiastate. edu 

Abstract 

Stochastic resonance (SR) is an interesting phe- 
nomenon which can occur in bistable systems subject 
to both periodic and random forcing. This effect pro- 
duces an improvement of the output signal-to-noise ra- 
tio when the input noise increases. In this paper we 
derive an expression for the power spectral density of a 
general class of systems revealing SR phenomena. This 
result may find useful applications in many technolog- 
ical contexts as, for example, in the analysis of the ef- 
fects of thermal noise in Atomic Force microscopy, in 
order to  optimize the achievable resolution for imag- 
ing. 

1 Introduction 

In recent years, stochastic resonance (SR) has attracted 
considerable attention in many areas of science such as 
physics, electronics, biology, climatology, etc. (see [l] 
and references therein). The term is given to a phe- 
nomenon which occurs under certain conditions in non- 
linear systems where a weak periodic input signal is am- 
plified by the presence of noise. The basic mechanism 
of SR can be illustrated using the simple mechanical 
analogy depicted in Figure 1, showing a heavily damped 
particle moving in a double-well potential. The follow- 
ing assumptions are also needed: 

1. a weak periodic signal modulates the potential 
function, alternatively raising and lowering the 
wells; 

2. the weak signal is not sufficient itself to cause any 
transition of the particle between the two wells; 
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3. the particle is subjected to  large fluctuations gen- 
erated by an external force F (noise) which in- 
duces an (irregular) switching between the wells. 

I 

Figure 1: Sketch of a doublewell potential function. 

It has been proved (both experimentally and theo- 
retically [2, 31) that there exists an optimal level of 
noise which statistically enhance the regularity of the 
above transitions, that is, a strong frequency compo- 
nent arises in the power spectral density (PSD) of the 
particle position. A very common way to  measure the 
SR phenomenon is through the Signal-to-Noise Ratio 
(SNR) of the system output (particle position in Fig- 
ure 1) at the frequency of the periodic input signal. 
This ratio is governed by the following law [3] 

where E is the amplitude of the weak periodic input 
signal, U’ is the noise intensity and AV is the height 
of the potential barrier separating the wells. Indeed, 
the plot of the SNR as a function of the noise intensity 
shows the presence of a maximum. In other words, the 
cooperative effect induces a “non-natural” resonance 
phenomenon characterized by an improvement of the 
SNR as more noise is added to  the system up to a criti- 
cal value. After this value the SNR decreases when the 
noise level increases as it is common in most systems. 
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In this paper, the expression of the signal-tenoise ra- 
tio for the case of a bistable asymmetric potential is 
derived. This result generalizes the one previously in- 
troduced in [3] for the symmetric case and greatly ex- 
tends the field of applicability of the theory. In fact, the 
derived expression allows one to  analyse SR in a wider 
class of dynamical systems as the model of cantilever- 
sample interactions in Atomic Force Microscopy (AFM) 
presented in the paper. 
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Figure 2: A schematic of an atomic force microscope. 

Atomic force microscopes have revolutionized mi- 
croscopy. Using this method images with sub-angstrom 
resolution in topography imaging have been achieved. 
Variants of the operating principle of the AFM have 
been utilized to  image thermal, magnetic and electri- 
cal properties of material with resolution not available 
prior to the AFM [4]. Apart from its many uses, the 
atomic force microscope provides a system for perform- 
ing experiments where interesting dynamics can be ex- 
plored and studied. 

A typical setup of an AFM is shown in Figure 2. It 
consists of a microcantilever, a sample-positioning sys- 
tem, a detection system and a control system. The 
photodiode signal is used to  monitor the cantilever dis- 
placement whereas the piezo-ceramic tube is used to  
position the sample. A dither piezo can be used to  force 
the cantilever. In many applications of the AFM tech- 
nique the cantilever is forced sinusoidally by the dither 
piezo. The sample properties are inferred by monitor- 
ing the changes in the cantilever oscillations due to the 
sample. It will be seen later that the AFM provides a 
system where all the conditions mentioned earlier for 
the presence of stochastic resonance can be realized. 
Furthermore, it needs to be stressed that for such sys- 
tems the assumption of a symmetric potential would be 
unrealistic. Noise (thermal noise) inherent in the sys- 
tem affects the dynamics in a significant manner and 
can be the limiting factor in the achievable resolution 
in many AFM applications (see for e.g. [5]). A study 
of the effect of thermal noise on the AFM dynamics is 
presented in [6]. Stochastic resonance can indicate a 
noise level so that the optimum signal-to-noise ratio is 
achieved, thereby optimizing the achievable resolution 
for imaging. 

The paper is organized as follows. In Section 2 we 
develop the theory of stochastic resonance for a dou- 
ble well potential which can be asymmetric. We also 
find the signal-to-noise ratio of the associated stochas- 
tic process. In Section 3 we give a brief description of 
the cantilever-sample interaction potential and a model 
of the cantilever for the tapping mode dynamics of an 
AFM. It is shown that the model can be viewed as a 
particle in an asymmetric double well potential and the 
signal-tenoise ratio of the cantilever tip displacement 
is evaluated. Finally we conclude in Section 4. 

2 Stochastic Resonance in a double-well 
potential 

Consider the motion of a randomly forced particle in a 
bistable double-well potential modulated by an external 
sinusoidal signal. Its dynamics can be described by the 
following second order stochastic process 

where the random variables x and v denote position 
and velocity of a particle of unitary mass, V ( x )  is the 
potential function, q is the damping factor, D < ( t )  is 
a white noise with variance D' and E the amplitude 
of a sinusoidal modulation of the force. We assume 
the double-well potential function V ( x )  to have local 
minima at x = XL and x = XR and a local maximum 
at x = X M ,  such that XL < X M  < XR. In the sequel, 
we will denote the variables related to the left and right 
well with L and R, respectively. 

2.1 Power Spectral Density of x ( t )  
Let us first consider the unmodulated system ( E  = 0) 
and suppose the particle is situated in x = xo at t = to .  
The "exact" solution of the stochastic process (2), i.e. 
the autocorrelation of the random variable x ( t ) ,  can 
only be computed numerically, except for trivial cases. 
This problem can be greatly simplified exploiting suit- 
able approximated techniques developed in [7, 8,9] and 
based on the computation of the conditional probability 
density p ( x , t )  = p(x,t lxo,to).  To this aim, we define 
the unmodulated transition rate a ( x 0 )  as the inverse of 
the mean time for the particle to  cross the potential 
barrier at x = XM. Although the transition rate de- 
pends on the initial condition 20, it results t o  be quite 
insensitive to  it. It has been proved in [9, Sec. 6.41 that 
up to errors of order q-2 (large damping), the transi- 
tion rates are approximately 

(3) 
and 

3775 



where 

We now define the time-varying potential function 

Q ( x , ~ )  V ( X )  - V ( X M )  - E ( X  - X L  - C )  C O S W O ~  , (6) 

where 
(7)  

As it can be easily verified, the modulation of the force 
can be equivalently interpreted as a modulation of the 
potential generating the force, since this is given by 

X R  - X L  c =  - 
2 -  

F ( z , t )  = -P'(x,~) = -V'(X) + E C O S W O ~  . (8)  

Assuming the period of the potential modulation small 
with respect to  the time constants of the system dy- 
:ami-, we can consider the time t as a parameter in 
V(x,t) and compute the time-varying transition rates 
WL(t) and W R ( ~ )  similarly to  (3) and (4). Now, since 

(9)  

and assuming EC << min(VL, VR), we can still think of 
x = XL and X R  as the locations of the minima of the 
timevarying potential. Thus, we obtain the modulated 
transition rates 

V ( X L , t )  = - v L  + ECCOSWOt , 
V(xa,t) = -vR - EccoswOt , 

which, up to  errors of order o(p2), can be rewritten as 

( 1 1 )  
WL(t) = aL [ 1 +  2p coswot + 2p2 cos2 wot] 
WR(t) = (YR ' [1 - 2p COS wOt + 2p2 COS2 wet] . 

The probability n R  for a particle to  be located within 
the right well is governed by the rate equation 

!??! = wL(t)nL - WR(t)nR = WL(t) - [WR(t) + W L ( t ) ] n R  dt 
(12) 

which is a first-order linear periodic differential equa- 
tion. Using (11) and dropping the higher order terms, 
it can be rewritten as 

(13) 
% =aL(l+2/3coswot +2pzCOS2wOt)- 

- (2a + 2yp cos wot + 4 a p  cos2 w0t)nR , 

where 
(14) a=---- , y = ( Y L - ( Y R .  

The solution of the ODE (13) is the conditional prob- 
ability of a particle to be in the right well and is given 
by eq. (15) (see next page) where 

Q L  + a ~  

st: 2a+27P cos w 0 r + 4 a D 2  COS' w o r d 7  - 
d t )  = e - 
= e 2 a ( 1 + ~ ' ) ( t - t o )  [ I  + %(sin wot - sin woto)+ 

+ w ( s i n w o t  -sinwoto)2 + s ( s i n 2 w o t  - sin2woto)l . 
(16) 

WO 

Moreover, the initial condition n ~ ( ~ 0 , t o )  is equal to 
1 or 0, depending whether the particle is in the right 
(xo > X M )  or left well ( 2 0  < X M )  at t = t o ,  respectively. 

Now, in order to  compute in closed form the autocor- 
relation of the random variable x ( t )  in (2), we need to  
generate a new stochastic variable y(t) defined as 

whose probability density is given by 

p(Y,t) = nR(t)S(y - 2c) + nL(t)S(Y) . (18) 

Notice that, the density functions (and the autocorre- 
lations as a consequence) of the random variables x and 
y + XL get closer if the distribution p(x,t) is strongly 
peaked at x = XL and x = X R .  If the latter assumption 
holds, the autocorrelation of y ( t )  can be used instead. 

Using expression (18), we can now derive the autocor- 
relation function as 

E[Y(t + T)Y(t)lYO,tO] = (2c)'nR(t T12c,t)nR(tlyO,tO) . 
(19) 

As t o  + --oo , n ~ ( t  yo,to) in (15) and the autocorre- 

state yo. Substituting (15) into (19) and averaging on 
the time interval [ O , ~ T / W O ] ,  we get expression (20 . 
Now, the PSD Svy(w) of the random variable y ( t  1 , 
defined as the Fourier transform of the autocorrelation 
function R(T) ,  is computed in (21). Such expression 
reveals the presence of a &function at the signal 
frequency, whereas the spectrum provided by the input 
white noise at the system output is broadband continu- 
ous. It makes sense now to compute the signal-to-noise 
ratio of the random variable y ( t )  as the relative incre- 
ment of the PSD at the frequency WO of the signal input 

S N R  = ( 2 2 )  

lation function (19) b ecome independent of the initial 

s,, (WO) - ;Limo s,, (U) 

lim S,,(w) 
w+wo 

which can be reduced to  the expression 

As expected, stochastic resonance is characterized by 
the presence of a maximum in the SNR. For symmetric 
potential functions, this is achieved at a noise intensity 

(24) Ukax = VVL = V v R  

while it can be computed numerically in the asymmetric 
case. 

3 Tapping mode dynamics in an AFM 

Consider the AFM system depicted in Figure 2, where 
the cantilever is subjected to  a small sinusoidal force 
and random white noise through a dither piezo. The 
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Figure 3: Model of the cantilever 

dynamical equation for the displacement z of the can- 
tilever (see Figure 3) is given by 

mx + ci + kz = F( t )  + kb(t) ,  (25) 
where b ( t )  is the base motion of the cantilever and 

md m d P  F = - -  
(z + Z)2  30(z + 2 ) s  ' 

indicates long range attractive forces and short range 
strong repulsive forces acting on the cantilever due to  
a sample at  distance 2. C and d are parameter that 
depend on the nature of the tip and the sample. This 
system can be recast in the form (2) using the bistable 
potential energy 

where kl = represents the natural frequency of the 
cantilever and Q = 6. For example, setting the follow- 
ing parameters 

(28) 
ki  = 40 , d = 0.26 , E = 0.05 , T,I = 30 , 
E = 1 , WO = 0 . 1 ~  , Z = 0.5 , 

yields the potential function reported in Figure 4. No- 
tice that the above described potential is double-welled, 
hence the theory developed in Section 2 can be applied 
to the cantilever-sample interaction dynamics. 

3 -21 v 
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Figure 4: Potential function of eq.(27). 

The analysis of the signal-to-noise ratio of the position 
z of the tip using expression (23) yields the diagram 
shown in Figure 5, where the SNR is reported as a 
function of the noise intensity u2 and the parameter 
2. The theoretical PSD and SNR computed via (21) 
and (23) are in good agreement with the results given 
by integrating system (2) with (27) and reported in 
Figures 6 and 7. As can be seen in Figure 5, the SNR 
has maximum at a nonzero value of the noise variance 
for any fixed 2. This indicates that adding noise can be 
beneficial in achieving a higher SNR, thereby leading 
to  improvements in achievable resolution. Also, the 
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Figure 5: Signal-to-noise ratio of the AFM system as a 
function of u2 and 2. 

plot indicates that the SNR for a k e d  variance of the 
noise has a maximum at a k e d  value of the parameter 
2. This suggests that there is an optimal separation 
between the cantilever and the sample that needs to  be 
maintained for a k e d  noise source (which could be the 
thermal noise). These conclusions suggest experiments 
to evaluate the benefits of stochastic resonance. The 
parameter 2 can be changed by using the positioning 
piezo (see Figure 2), whereas the noise can be added by 
using the dither piezo in the AFM setup. The output 
of the cantilever deflection can then be monitored by 
a signal analyzer. These experiments are a part of the 
ongoing research. 
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Figure 6: AFM system: Comparison of the predicted PSD 
(solid line plus the ’x’ mark) with simulations 
at the SNR maximum (az = 64, 2 = 0.5). 

4 Conclusions 

The paper has analyzed stochastic resonance effects in a 
general class of (asymmetric) bistable systems affected 
by noise. The obtained results have made possible to 
compute the output power spectral density as a func- 
tion of the system parameters, thus making clear the 

Figure 7: AFM system: Comparison of the predicted SNR 
with simulations (’x’ marks) at 2 = 0.5. 

relevance of stochastic resonance in technological ap- 
plications. In this context, the model of a tapping 
mode Atomic Force microscope has been considered. 
Its analysis has proved that conditions for the presence 
of stochastic resonance can be realized. The theoreti- 
cal result has been confirmed by numerical simulations, 
while experiments will be part of the ongoing research. 
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