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Nonlinear Koopman Modes and Coherency
Identification of Coupled Swing Dynamics

Yoshihiko Susuki, Member, IEEE and Igor Mezić, Member, IEEE

Abstract—We perform modal analysis of short-term swing
dynamics in multi-machine power systems. The analysis is based
on the so-called Koopman operator, a linear, infinite-dimensional
operator that is defined for any nonlinear dynamical system and
captures full information of the system. Modes derived through
spectral analysis of the Koopman operator, called Koopman
modes, provide a nonlinear extension of linear oscillatory modes.
Computation of the Koopman modes extracts single-frequency,
spatial modes embedded in non-stationary data of short-term,
nonlinear swing dynamics, and it provides a novel technique for
identification of coherent swings and machines.

Index Terms—power system, nonlinear oscillation, Koopman
mode, transient stability, coherency, Koopman operator

I. INTRODUCTION

POWER SYSTEMS exhibit complex phenomena that oc-
cur on a wide range of scales in both space and time.

Examples of such phenomena contain synchronization of
individual rotating machines, voltage dynamics and collapse,
and cascading failures leading to widespread blackouts. Di-
rect numerical simulations of nonlinear mathematical models
have demonstrated such complex phenomena, for example,
sustained oscillation [1], interarea oscillation [2], chaotic oscil-
lation [3], and cascading failures [4]. Due to high-dimensional,
spatiotemporal nature of such phenomena, it is of basic
interest for practitioners to identify a small number of domi-
nant components or modes that approximates the phenomena
observed practically and numerically. One notion of mode
developed in power system analysis is based on small-signal
dynamics in which we investigate linearized equations around
equilibria. However, since the phenomena listed above do not
happen in the neighborhood of equilibria, it is questionable
whether global modes for a linearized system are effective
for describing such phenomena. Thus, there is a need to
develop an alternative approach to identification of modes
that does not rely on linearization. In [5] the authors used
the Hilbert spectral analysis to identify a finite number of
time-varying modes from a scalar data obtained with transient
stability analysis. In [6] the authors used the Proper Or-
thonormal Decomposition (POD) to identify a set of dominant
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components, called PO Modes (POMs), from spatiotemporal
dynamics arising in cascading failures, and in [7] the authors
extracted POMs from a set of data obtained with wide-area
measurement.

One of the important applications of mode identification
is coherency identification in which for transient stability
analysis one finds a group of synchronous generators swinging
together with the in-phase motion. Objectives of coherency
identification include development of reduced-order models
and external equivalents, traditionally used to reduce compu-
tational effort and currently employ on-line dynamic security
assessment, and dynamical system analysis of power system
instabilities (see [8], [9]). Many groups of researchers have
developed methods for coherency identification. In [10] the
author used time domain simulation of linearized power sys-
tem models for coherent analysis of generators subject to a
disturbance. In [2], [11], [12], the authors applied time-scale
separation, which was used for singular perturbation studies,
to power system models and introduced the notion of slow
coherency that was not dependent on any disturbances. In
[12]–[15] the authors developed grouping algorithms using the
slow coherency, that is, algorithms for partitioning a power
system into groups of coherent generators. In [16]–[18] the
authors studied the coherency using linear systems theory
and decentralized systems theory such as the idea of weak
coupling. In [19], [20], the authors used the energy function
to identify coherent generators. In [21] the authors applied the
principal component analysis to the identification of coherent
generators.

In this paper, we develop an alternative method for iden-
tification of modes and coherency, by analysis of short-term
swing dynamics in multi-machine power systems. Koopman
pioneered the use of linear transformations on Hilbert space
to analyze (nonlinear) Hamiltonian systems by introducing
the so-called Koopman operator and studying its spectrum
[22]: see [23], [24] for details. This linear, infinite-dimensional
operator is defined for any nonlinear dynamical systems [23],
[24]. Even if the governing dynamics of a system are finite-
dimensional, the Koopman operator is infinite-dimensional and
does not rely on linearization: indeed, it captures the full
information of the nonlinear dynamical system. In [25] the
authors identified a relationship between generalized Fourier
analysis [26] and eigenfunctions of the Koopman operator. In
[27] the author showed via spectral analysis of the Koopman
operator that single-frequency modes can be embedded in
highly nonlinear, spatiotemporal dynamics. These modes are
later named the Koopman Modes (KMs) [28]. In [28] the
authors presented a technique for characterizing the global
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behavior of complex fluid flows by decomposing a flow profile
into KMs. In this paper, we apply the technique developed in
[27], [28] to short-term swing dynamics in the New England
39-bus test system (NE system) [29] and the IEEE Relia-
bility Test System-1996 (RTS-96) [30]. The NE system has
10 synchronous generators (one of which is assumed to be
the infinite bus) and exhibits coupled swing dynamics. The
RTS-96 includes 73 buses and 99 synchronous machines (33
generation buses, one of which is assumed to be the infinite
bus). The contributions of this paper are two. We show that
(i) the KM analysis identifies single-frequency, spatial modes
embedded in coupled swing dynamics, and that (ii) the KM
analysis can be used for identification of coherent swings and
machines. The identification is performed on finite-time data
of the dynamics and does not require the direct check of
spatiotemporal patterns. Computation of the KMs is applicable
to dynamics of any power system and can be performed purely
on finite-time data of the dynamics. Thus, the identification
of modes and coherency based on the KM is suitable for
analysis of not only simulation outputs but also data measured
in practice, for example, by wide-area measurement [31]. This
paper is a substantially-enhanced version of the conference
paper [32].

This paper is organized as follows. Sec. II reviews the theory
of the Koopman operator, and gives the definition of KM
and an algorithm for computing it from finite-time data. The
definition of coherency in the context of KM is also given.
Secs. III and IV analyze short-term swing dynamics of the NE
system and the RTS-96, and we illustrate the effectiveness
of KM analysis in identifying swings and machines. Sec. V
concludes this paper with a summary and remarks.

II. SPECTRAL ANALYSIS BASED ON THE KOOPMAN
OPERATOR

We provide an introduction to the theory of the Koopman
operator for nonlinear dynamical systems. The contents in
Secs. II-A and II-B are based on [25], [27], [28]. The defini-
tions of the Koopman operator and the Koopman Mode (KM)
are presented. An algorithm for computation of the KM based
on finite data is also presented. Finally we give the definition
of coherency in the context of KM.

A. The Koopman Operator, Eigenvalue, and Mode

Consider a discrete-time, nonlinear dynamical system given
by

xk+1 = F (xk), (1)

where x ∈ M is the state variable belonging to state space
M , and F : M → M is a nonlinear, vector-valued function.
The Koopman operator is a linear operator U that acts on
scalar-valued functions on M in the following manner: for
g : M → R, U maps g into a new function Ug given by

Ug(x) = g(F (x)).

Although the dynamical system is nonlinear and evolves on
a finite-dimensional space, the Koopman operator U is linear,
but infinite-dimensional. The eigenfunctions and eigenvalues

of U are defined as follows: for functions ϕj : M → C and
constants λj ∈ C,

Uϕj(x) = λjϕj(x), j = 1, 2, . . .

We refer to ϕj as Koopman eigenfunctions and to λj as the
associated Koopman eigenvalues (KEs).

The idea in [27] is to analyze nonlinear dynamics governed
by (1), using the (linear) Koopman operator U , the Koopman
eigenfunctions and eigenvalues. To this end, consider a vector-
valued observable g : M → Rp. For example, if x ∈ M
contains the full information about system dynamics at a
particular time, g(x) is a vector of any measured quantities of
interest, such as frequencies and voltages measured at various
points in a power system. In [27] the author shows that if the
dynamical system (1) possesses a smooth invariant measure,
or the initial condition x0 of (1) is on any attractor, then
g(xk) = (g1(xk), . . . , gp(xk))T is exactly represented as
follows:

g(xk) =
∞∑

j=1

λk
j ϕj(x0)vj +



∫ 2π

0

eikθdE(θ)g1(x0)

...∫ 2π

0

eikθdE(θ)gp(x0)

, (2)

where E(θ) is a continuous, complex spectral measure. The
modulus of KEs λi is identically one, because U is a unitary
operator in the above situation. In (2) we refer to the vectors
vj as Koopman Modes (KMs) of the system (1), corresponding
to g. On the right-hand side of (2), the first term represents
the contribution of KEs (namely, discrete spectra of U) to
the time evolution {g(xk)} and describes the average and
quasi-periodic parts of {g(xk)}. On the other hand, the last
term represents the contribution of continuous spectrum of U
and describes the aperiodic part of {g(xk)}. Hence, if the
dynamics observed in (1) have no continuous spectrum in
frequency domain (practical experience suggests this situation
in power system analysis), then the dynamics are exactly
represented as

g(xk) =
∞∑

j=1

λk
j ϕj(x0)vj . (3)

In [25], [27], the authors show that the terms ϕj(x0)vj are
defined and computed with a projection operation associated
with U applied to the observable g. Define a family of
operators Pν : for g : M → R,

Pνg(x0) = lim
n→∞

1
n

n−1∑
k=0

e−i2πkνg(xk),

where ν ∈ [−1/2, 1/2). When the initial condition x0 is on
an attractor of (1), a nonzero Pν is the orthogonal projection
operator onto the eigenspace of U associated with the KE
λ = ei2πν . The projections of the p components g1, . . . , gp of
g on the j-th eigenspace are obtained: Pνj g1(x0)

...
Pνj gp(x0)

 = ϕj(x0)vj , (4)
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where νj = Im[lnλj ]/2π. This formula (4) associates
ϕj(x0)vj with the projection operation based on the operator
Pν . The left-hand sides of (4) are just the Fourier transforms
of observations {g(x0), g(x1), . . .}, and the terms ϕj(x0)vj

can be easily computed.
Here we have assumed that the dynamics of (1) are on an

attractor. Even if this is not the case, that is, we consider
dynamics off attractors of (1), the KM modes oscillate with a
single frequency. If each of the p components of g lies within
the span of eigenfunctions ϕj , then, as in [28], we may expand
the vector-valued g in terms of these eigenfunctions as

g(x) =
∞∑

j=1

ϕj(x)wj ,

where wj are regarded as the (vector) coefficients in the
expansion. The time evolution {g(xk)} starting at g(x0) is
identically given by (3):

g(xk) =
∞∑

j=1

ϕj(xk)wj =
∞∑

j=1

Ukϕj(x0)wj

=
∞∑

j=1

λk
j ϕj(x0)wj .

Thus we can refer to wj as the KM which oscillates with a
single frequency. If the dynamics observed here have only a
finite number of discrete spectra in frequency domain, then
we can expect the expansion gives a good approximation of
the dynamics. For dynamics off attractors, the KE λj there-
fore characterizes the temporal behavior of the corresponding
KM wj : the phase of λj determines its frequency, and the
magnitude determines the growth rate.

B. Computation of the Koopman Eigenvalues and Modes

While the general Fourier analysis allows us to compute
KMs on an attractor, off attractors the KMs as well as
KEs can be computed using the Arnoldi algorithm [28].
Suppose that we have a sequence of N + 1 observations
{g(x0), . . . , g(xN )}. Let us define the empirical Ritz values
λ̃j and empirical Ritz vectors ṽj of this sequence by using the
following algorithm:

(i) Define constants cj such that for vector r satisfying
r⊥ span{g(x0), . . . , g(xN−1)},

r = g(xN ) −
N−1∑
j=0

cjg(xj). (5)

(ii) Define the companion matrix C as

C =


0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2

...
...

. . .
...

...
0 0 · · · 1 cN−1

 .

and find its N eigenvalues λ̃1, . . . , λ̃N .

(iii) Define the Vandermonde matrix T using λ̃j as

T =


1 λ̃1 λ̃2

1 · · · λ̃N−1
1

1 λ̃2 λ̃2
2 · · · λ̃N−1

2
...

...
...

. . .
...

1 λ̃N λ̃2
N · · · λ̃N−1

N

 .

(iv) Define ṽj to be the columns of V = [g(x0) g(x1)
· · · g(xN−1)]T−1.

Then, we have the following equations that are originally
derived in [28]:

g(xk) =
N∑

j=1

λ̃k
j ṽj , g(xN ) =

N∑
j=1

λ̃N
j ṽj + r, (6)

where k = 0, . . . , N − 1. Comparing with (3), the empirical
Ritz values λ̃j and vectors ṽj behave precisely in the same
manner as the KEs λi and the terms ϕi(x0)vi of Koopman
eigenfunctions and KMs, but for the finite sum (6) instead of
the infinite sum (3).

C. Coherency in the Koopman Mode
Finally, we define the notion of coherency in the context

of KM. The case of oscillatory KM, in which the KE has an
imaginary part, is addressed, because the study on coherency
identification in power systems normally deals with oscillatory
responses following a disturbance. For an oscillatory KM vj ,
called Mode j, with the KE λj = rjei2πνj and its complex
conjugate λc

j = rje−i2πνj , the corresponding modal dynamics,
denoted by gj(xk), are given by

gj(xk) = λk
j ϕj(x0)vj + (λc

j)
k{ϕj(x0)vj}c

= 2rk
j

 Aj1 cos(2πkνj + αj1)
...

Ajp cos(2πkνj + αjp)

 , (7)

where
Aji =

√
(Re[ϕj(x0)vj ]i)2 + (Im[ϕj(x0)vj ]i)2,

tanαji =
Im[ϕj(x0)vj ]i
Re[ϕj(x0)vj ]i

.


The notation Re[ϕj(x0)vj ]i stands for the i-th component of
vector Re[ϕj(x0)vj ]. The real part of ϕj(x0)vj determines
the initial amplitude of modal dynamics, and the imaginary
part affects their initial phase. Thus, we can say that a set
of oscillatory components I ⊆ {1, . . . , p} is coherent with
respect to Mode j if the amplitude coefficients Aji are the
same for all i ∈ I, and the initial phases αji are also the same1.
Then, for coherent identification for Mode j, it is sufficient to
check both the amplitude coefficients Aji and initial phases
αji. Numerically, it is enough to group oscillatory components
with similar amplitude coefficient Aji and initial phase αji as
a set of coherent components. When the observations {g(xk)}
contain swing dynamics of synchronous machines in a power
system, we can find a coherent group of the machines in which
they swing together in frequency and phase.

1The definition is strict compared with the definitions of slow-coherency [2],
[11] and near-coherency [16], because it does not admit any finite, constant
phase difference of swings. It is easily relaxed and can match the definitions
of coherency proposed previously.
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Fig. 1. The New England 39-bus test system (NE system) [29]

III. APPLICATION TO THE NEW ENGLAND TEST SYSTEM

We apply the above-described computation of Koopman
mode to analyze short-term swing dynamics in the New Eng-
land 39-bus test system (NE system). The NE system is shown
in Fig. 1 and contains the 10 generation units (equivalent 10
synchronous generators, circled numbers in the figure), the
39 buses, and AC transmission lines. Most of the buses have
constant active and reactive power loads. The details of the
system, such as unit rating, line data, and loading conditions,
are given in [29]. The purpose of the application is to show
that the KM analysis can be used for identification of coherent
swings and generators in a test system.

A. The Classical Model

First, we introduce the equations of motion of generators in
the NE system. Assume that bus 39 is the infinite bus. The
short-term swing dynamics of generators 2–10 are represented
by the following nonlinear differential equations, the so-called
classical model [33]:

dδi

dt
= ωi,

Hi

πfb

dωi

dt
= −Diωi + Pmi − GiiE

2
i

−
10∑

j=1,j 6=i

EiEj {Gij cos(δi − δj) + Bij sin(δi − δj)} ,


(8)

where the integer label i = 2, . . . , 10 denotes generator i. The
variable δi is the angular position of rotor in generator i with
respect to bus 1 and is in radians [rad]. The variable ωi is the
deviation of rotor speed in generator i relative to that of bus 1
and is in radians per second [rad/s]. We set the variable δ1 to a
constant, because bus 39 is assumed to be the infinite bus. The
parameters fb, Hi, Di, Pmi, Ei, Gii, Gij , and Bij are in per
unit system except for Hi and Di in seconds [s], and for fb

in Hertz [Hz]. The mechanical input power Pmi to generator i
and the internal voltage Ei of generator i are normally constant
in the short-term regime [33]. The parameter Hi is the per
unit time inertia constant of generator i, and Di its damping
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Fig. 2. Coupled swing dynamics of generators 2–10 in the New England
test system. These are the trajectories of (8) for the initial condition (9).

coefficient. The parameter Gii is the internal conductance, and
Gij +jBij is the transfer impedance between generators i and
j. Electrical loads are modeled as passive impedances. Note
that any model of exciter is not included in the current model.
We have a simulation output of dynamics in the NE system
using a detailed model with exciter. In the simulation output,
electromechanical dynamics and modes are dominant which
we study in this paper.

B. Numerical Simulation of the Classical Model

The setting of numerical simulation is as follows. The
voltage Ei and a stable equilibrium (δ∗i , ω∗

i = 0) for generator
i are fixed using power flow computation [33]. The constants
Hi, Pmi, and power loads are the same as in [29]. The
parameter Di is fixed at 0.005 s, and fb at 50 Hz. The elements
Gii, Gij , and Bij are calculated using the data in [29] and the
power flow computation. All numerical simulations discussed
in this paper were performed using MATLAB: the function
ode45 is adopted for numerical integration of (8).

We present an example of short-term swing dynamics in
the NE system. Fig. 2 shows the time responses of rotor speed
deviations ωi under the initial condition:

(δi(0), ωi(0)) =
{

(δ∗i + 1.5 rad, 3 rad/s) i = 8,
(δ∗i , 0 rad/s) else. (9)

The initial condition physically corresponds to a local distur-
bance at generator 8. A more natural disturbance is used in
Sec. IV for analysis of the IEEE Reliability Test System-1996.
The generators do not show any stepping-out in the figure,
that is, they do not show any loss of transient stability for
the selected disturbance. Generators 2, 3, 6, and 7 show a
coherent swing excited by the local disturbance. Note that the
current way of selecting coherent generators is heuristic, i.e.,
by checking their swing forms. We call these generators the
coherent group. The other generators show incoherent swings
in the figure. Generator 9 shows a swing similar in frequency
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Fig. 3. Numerical discrete Fourier transform of time responses shown in Fig. 2

and phase to the coherent group, but the swing amplitude is
a little larger. Generators 8 and 10 have swings of larger
amplitudes than the others, because the initial condition is
localized at generator 8, and the two generators are electrically
close. Fig. 3 shows the Discrete Fourier Transform (DFT) of
the time responses shown in Fig. 2. The computation is done
by the function fft in MATLAB, and the sampling frequency
is 50 Hz. The DFT results on generators 8 and 10 have larger
magnitudes than the others and have the same shape with two
peaks (1.10 Hz and 1.30 Hz). The coherent group—generators
2, 3, 6, and 7—has the same shape with two peaks (0.35 Hz
and 1.10 Hz). Since DFT does not consider phase information,
we cannot conclude from the DFT results that generators
2, 3, 6, and 7 swing coherently. The shape for generator 9
has three peaks (0.35 Hz, 0.80 Hz, and 1.10 Hz) and hence
produces a swing similar to that of the coherent group. The
other generators, 4 and 5, have shapes different from those
mentioned previously.

C. Koopman Modes and Eigenvalues for the Simulation Out-
put

We compute the Koopman Modes (KMs) and Koopman
eigenvalues (KEs) for the coupled swing dynamics shown in
Fig. 2. The computation is done with the two different algo-
rithms. One is based on the Fourier-based formula (4), and the
other is the Arnoldi-based algorithm introduced in Sec. II-B.
For computation we need to choose the observable g(δ,ω)
where δ = (δ2, . . . , δ10)T and ω = (ω2, . . . , ω10)T. The
symbol T indicates (complex conjugate) transpose in vectors.
In this paper we use the variables of rotor speed deviations,
ω, as the observable: g(δ,ω) = ω. This observable has a
clear physical meaning in power systems: one measures rotor
speeds or frequencies for every generation plant. We use the
simulation output shown in Fig. 2 that extracts {ω(nT )}N

n=0,
where the uniform sampling period T = 1/(50Hz) and the
number of samples N + 1 = 1001.

Recall from Fig. 3 that generators 2, 3, 6, and 7 have
the similar shape of spectrum with peak frequencies 0.35 Hz
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Fig. 4. Numerical results of terms ϕi(x0)vi using the Fourier-based formula
(4) under ν = (0.35Hz)T , (1.10Hz)T , and (1.30Hz)T . The amplitude
coefficients Aji and initial phases αji, defined in (7), are shown.

and 1.10 Hz, and that generators 8 and 10 have the peak
frequencies 1.10 Hz and 1.30 Hz. Hence we compute the terms
including KMs, ϕi(x0)vi, using the projection operator Pν

with ν = (0.35Hz)T , (1.10Hz)T , and (1.30 Hz)T . We use
the finite-time approximation of (4) from k = 0 to N , where
N + 1 is the number of samples. The numerical results are
shown in Fig. 4. The amplitude coefficients and initial phases,
which are defined in (7), are also shown. For 0.35 Hz, the
values of amplitude coefficients are close for each of the
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TABLE I
NUMERICAL RESULTS ON THE KOOPMAN MODES OBTAINED WITH THE

ARNOLDI-BASED ALGORITHM

Mode Growth Rate Argument [rad] Frequency [Hz] Norm
j |λ̃j | θ̃j = Im[ln λ̃j ] f̃j = |θ̃j |/(2πT ) ||ṽj ||
1 0.9986 ±0.1701 1.3533 3.0021
2 0.9986 ±0.1438 1.1447 2.3930
3 0.9985 ±0.1009 0.8028 0.7039
4 0.9985 ±0.1300 1.0343 0.9753
5 0.9984 ±0.0931 0.7405 0.4507
6 0.9984 ±0.1130 0.8990 0.8162
7 0.9983 ±0.1643 1.3078 6.6147
8 0.9983 ±0.1378 1.0962 7.1941
9 0.9983 ±0.0468 0.3727 2.1006
10 0.9982 ±0.1836 1.4612 1.2238

generators, and their initial phases are also close except for
generator 8. Hence the generators except for 8 show in-phase
swings with 0.35 Hz. For 1.10 Hz, the values of amplitude
coefficients and initial phases are close for generators 2, 3, 6,
7, and 9, and hence they show in-phase swings with 1.10 Hz.
The two KMs with 0.35 Hz and 1.10 Hz capture the coherent
motion of generators 2, 3, 6, 7, and 9. For 1.10 Hz and 1.30 Hz,
the amplitude coefficients for generators 8 and 10 are larger
than the others. These two KMs capture the large swings of
generators 8 and 10 observed in Fig. 2. Thus, we can extract
spatial modes oscillating with a single frequency from the
simulation output of the NE system.

Next we compute the KEs and KMs (the empirical Ritz
values λ̃j and associated vectors ṽj) using the Arnoldi-based
algorithm. The implementation of Step (i) in the algorithm
is explained in Appendix A. Fig. 5 shows the empirical Ritz
values λ̃j . The norm of r in Steps (i) and (iii) is of order
10−12. Many KMs are obtained and are close to the unit
circle |λ̃j | = 1. Now let us focus on KMs that have both
large growth rates |λ̃j | and large norms of ṽj . Such modes
represent sustained swing components for the time duration
of simulation outputs and have dominant magnitudes in the
outputs. Tab. I shows numerical results on KEs and KMs,
which we call Mode 1 to Mode 10. The norm for Mode j is
defined as ||ṽj || =

√
ṽT

j ṽj . The order of KMs in Tab. I is
based on the magnitudes of growth rates. Now we pick up
Mode 7 to Mode 9 that have large norms in the table. Mode 1
and Mode 2 have large norms, too. But their frequencies are
close to Mode 7 and Mode 8, respectively. Fig. 6 shows the
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Fig. 6. The Koopman modes ṽj (j = 7, 8, 9) in Tab. I. They are
obtained with the Arnoldi-based algorithm. The amplitude coefficients Aji

(i = 2, . . . , 10) and initial phases αji, defined in (7), are shown.
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Fig. 7. Distribution of amplitude coefficients Aji and initial phases αji for
the Koopman modes (j = 7, 8, 9) shown in Fig. 6. The numbers inside the
figure (e.g. 8,10) denote the integer labels of generators.

KMs ṽj for Mode j (j = 7, 8, 9). The amplitude coefficients
Aji (j = 7, 8, 9, i = 2, . . . , 10) and initial phases αji, defined
in (7), are also shown. We display the results in order to make
it easy to compare this with the Fourier-based results in Fig. 4.
For example, the frequency 1.3078 Hz of Mode 7 is close to
one of the dominant frequencies for generators 8 and 10, that
is, 1.30 Hz. In fact, since the values of amplitude coefficients
A7,i in Fig. 6 are large for generators 8 and 10, the correspond-
ing modal dynamics are localized at these generators. Thus, we
can decompose the coupled swing dynamics in the NE system
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TABLE II
EIGENVALUES OF THE LINEAR GLOBAL MODES

Mode i Eigenvalue λ∗
i Frequency f∗

i [Hz]
1 −0.0128 ± j2.6558 0.4227
2 −0.0131 ± j8.8584 1.4099
3 −0.0135 ± j8.8874 1.4145
4 −0.0137 ± j8.5658 1.3633
5 −0.0128 ± j5.4512 0.8676
6 −0.0127 ± j5.9619 0.9489
7 −0.0129 ± j6.5890 1.0487
8 −0.0123 ± j7.4029 1.1782
9 −0.0119 ± j7.4457 1.1850

into a set of KMs, namely, spatial modes of oscillation with
single frequency.

The decomposition into KMs makes it possible to extract
coherent generators in the coupled swing dynamics. In fact,
the two KMs, Mode 8 and Mode 9, capture a coherent motion
related to the coherent group of generators. These frequencies,
1.0962 Hz and 0.3727 Hz, are close to the frequencies of the
coherent group, 1.10 Hz and 0.35 Hz. For Mode 8, the values
of A8,i are close for each of generators 2, 3, 6, 7, and 9, and
their initial phases α8,i are also close. The distribution of A8,i

and α8,i is plotted in Fig. 7. The points (×) for generators 2,
3, 6, 7, and 9 are clustered around the coordinate (1.2,−0.7).
Hence generators 2, 3, 6, 7, and 9 show in-phase swings with
1.0962 Hz. For Mode 9, the values of A9,i and α9,i are close
for each of the generators except for generator 8, and hence
they show in-phase swings with 0.3727 Hz. The corresponding
plots (◦) in Fig. 7 are clustered except for generator 8. The two
KMs capture the coherent motion of generators 2, 3, 6, 7, and
9. In this way, we can identify the coherent group observed
in Fig. 2 by using the decomposition into KMs. The plot of
amplitude coefficients and initial phases as Fig. 7 provides a
systematic way to identify coherent swings and generators by
using an automatic clustering algorithm.

In this subsection, we used the Fourier-based formula (4)
and the Arnoldi algorithm in Sec. II-B to compute the KMs and
KEs. The results for amplitude coefficients and initial phases
between Fig. 4 and Fig. 6 with Mode 7 to Mode 9 are com-
pared. The results for amplitude coefficients are qualitatively
similar. However, the results for initial phases are somewhat
different, especially at generator 8. Also, for the amplitude
coefficients, there are quantitative differences between the
results in Figs. 4 and 6. These differences might be due to the
fact that the Fourier-based formula (4) presumes the dynamics
are on an attractor. Indeed, the current analysis is performed
for transient dynamics. However, identification of coherent
swings and generators is possible using both the algorithms.
In fact, the coherent swings of generators 2, 3, 6, 7, and 9 are
captured well.

D. Comparisons with Linear Global Modes and Proper Or-
thonormal Modes

In this section, we compare the numerical results on KMs
with conventional modes that have been used in power system
analysis: Linear Global Modes (LGMs) and Proper Orthonor-
mal Modes (POMs).
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Fig. 8. The real parts of the Linear Global Modes (LGMs). These results
are obtained by computing eigenvectors v∗

i of matrix A for the linearized
classical model.

First, we consider the linearized dynamics around the stable
equilibrium (δ∗i , 0) of (8). The linearized system associated
with (8) is represented by the constant coefficient matrix
A ∈ R18×18. Let v∗

i ∈ C18 be eigenvectors and λ∗
i ∈ C be

eigenvalues of A:

Av∗
i = λ∗

i v
∗
i , i = 1, . . . , 18.

Tab. II shows the eigenvalues λ∗
i and associated frequencies

f∗
i of A. They are the nine independent complex conjugate

pairs, and these eigenfrequencies range from 0.4 Hz to 1.5 Hz.
The associated eigenvectors, namely, LGMs, are the nine
independent complex conjugate pairs, and the real parts of
LGMs for ω are shown in Fig. 8.

Now we compare the LGMs with the results on KMs.
The frequencies of LGM 1, LGM 8, and LGM 2 (0.4227 Hz,
1.1782 Hz, and 1.4099 Hz) are close to the frequencies used
in Fig. 4 (0.35 Hz, 1.10 Hz, and 1.30 Hz). The shapes of real
parts of the LGMs and the KMs are also similar. These
imply that both the LGMs and the KMs can capture the
coherent group. In the current simulation, since the dynamics
are weakly dissipative and converge to the stable equilibrium
as time passes, the results on LGMs and KMs become close.
This is a natural conclusion, because KMs for a linear system
coincide with LGMs [28]. However, the frequencies of LGMs
are quantitatively different from the frequencies obtained with
DFT. The KM results using Arnoldi-based algorithm esti-
mate swing frequencies correctly: Mode 9 (0.3727 Hz), Mode 8
(1.0962 Hz), and Mode 7 (1.3078 Hz) in Tab. I. Thus the KMs
provide a nonlinear extension of LGMs and captures swing
frequencies embedded in nonlinear, coupled dynamics cor-
rectly. In particular, the KMs based on the Arnoldi algorithm
provide an effective method for transient stability analysis,
because it is associated with dynamics far from attractors of
pre- and post-fault systems.

Next we compare the KMs with POMs. The POD provides
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Fig. 9. Proper Orthonormal Modes (POMs) ej for the coupled swing
dynamics shown in Fig. 2. They are orthonormal eigenvectors of correlation
matrix for the simulation output {ω(nT )} (n = 0, . . . , N ).

a basis for the modal decomposition of an ensemble of
functions, such as data obtained in the course of experiments,
and provides, energy-wise, the most efficient, orthogonal way
of capturing the dominant components of the process [34],
[35]. Consider simulation outputs of rotor speed deviations,
{ω(nT )} (n = 0, . . . , N ). The outputs are represented by

ω(nT ) =
9∑

j=1

ejaj(nT ).

We require the time-invariant basis vectors ej (j = 1, . . . , 9),
called POMs, to be orthonormal and closest in energy norm
to the output. Every vector ej is obtained by computing
the correlation matrix R from {ω(nT )} and by finding the
orthonormal eigenvectors of R: see [35] for details. The time-
varying coefficients aj (j = 1, . . . , 9) hold the following cor-
relation property: 〈ajak〉 = 〈a2

j 〉 (if j = k) or 0 (otherwise),
where 〈•〉 denotes a time average of {•}. POMs are ordered
by 〈a2

j 〉 ≥ 〈a2
j+1〉.

The POMs for our problem are presented in Figs. 9 and 10.
Fig. 9 shows the POMs ej . The 1st POM has the dominant
peak at generator 8, and the 2nd POM has the peak at generator
10. These modes are uniform at the coherent group, i.e.
generators 2, 3, 6, and 7. For the 1st and 2nd POMs, the
coefficients a1 and a2 are quasi-periodic. This is confirmed
in Fig. 10 that shows the result on DFT of aj . Because the
peaks (1.10 Hz and 1.30 Hz) in the DFT of a1 and a2 are
consistent with those on ω8 and ω10 in Fig. 3, the 1st and
2nd POMs identify the two-frequency swings in generators 8
and 10, respectively. On the other hand, the 3rd POM has the
peak at 0.35 Hz in Fig. 10. Note that the peak at 1.10 Hz does
not appear in Fig. 10 except for a1 and a2. Since the coherent
group of generators has the dominant frequencies 0.35 Hz and
1.10 Hz, the group can be captured by the combination of the
1st, 2nd, and 3rd POMs.

Now let us summarize the difference between the obtained
results with the POMs and the KMs. The POMs can have time-
dependent coefficients with multiple frequencies (see Fig. 10).
On the other hand, the KMs contain single frequencies by
construction. Thus the KMs can capture the coherent group
of generators as a superposition of distinct, single-frequency
modes. Here the POD is based on energy contained in the
swings. In this simulation, since the energy of the coherent
group is not dominant in the swings, the POMs are not
effective for directly identifying the coherent group. On the
other hand, the KMs can identify the coherent group not
depending on its containing energy.

IV. APPLICATION TO THE IEEE RELIABILITY TEST
SYSTEM-1996

We apply the computation of KM to analyze short-term
swing dynamics in the IEEE Reliability Test System-1996
(RTS-96). The topology for RTS-96 is presented in Fig. 4 of
[30]. The test system consists of three areas (Area 1 to 3) and
contains the 33 generation buses (99 synchronous machines),
the 40 load buses, and AC transmission lines. The original
RTS-96 can include one DC transmission line, but here we
do not use it for simplicity of the current analysis. Most
of the buses have constant active and reactive power loads.
The details of the test system, such as bus data, generator
data, branch data, and system dynamic data, are available in
[30]. The purpose of the application is to demonstrate that
the KM analysis can identify coherent swings of synchronous
machines in a large test system.

We simulate coupled swing dynamics of 96 synchronous
machines following the sequence of one three-phase fault and
line trip in Area 1. The details of simulation setting are given
in Appendix B. Fig. 11 shows one example of time responses
of rotor speed deviations ωi for the 96 machines. The notation
in the figure, e.g. U020(101), describes rotor speed deviation
for Unit No. 20 connected to bus 101. Since the fault happens
in Area 1, swings in Area 1 (on the top of FIg. 11) become
larger than those in Area 2 and 3. In this duration all the
machines swing with finite amplitudes and do not show the
loss of transient stability.

Now we compute the KMs for the coupled swing dy-
namics shown in Fig. 11. The computation is done with the
Fourier-based formula (4). For computation we need to choose
frequencies that are dominant in the coupled swings. DFT
analysis suggests three clean peaks appear at 0.45 Hz, 1.00 Hz,
and 1.75 Hz. Fig. 12 shows the distribution of amplitude co-
efficients A and initial phases α for KMs with the three
frequencies. The plots of A and α for 0.45 Hz are clustered
around the coordinate (0.2, 0.4). This clearly indicates that
the coherent swing with 0.45 Hz is embedded in the coupled
swing dynamics shown in Fig 11. Such a coherent mode is
a dynamical key for understanding global (coherent) swing
instability of the whole system (see [8], [9]). Thus, by the KM
analysis, we can identify coherent swings from data obtained
in a large power system.
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Fig. 10. Numerical discrete Fourier transform of time-varying coefficients aj .
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Fig. 11. Coupled swing dynamics of 96 synchronous machines in the IEEE
Reliability Test System-1996. These are obtained with numerical simulation
of the classical model like (8).

V. CONCLUDING REMARKS

We performed modal analysis of short-term swing dynamics
in the New England 39-bus test system and the IEEE Reliabil-
ity Test System-1996, based on the so-called Koopman Modes
(KM). Since the analysis based on the so-called Koopman
operator and KM can be done on data, it does not need
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Fig. 12. Distribution of amplitude coefficients Aji and initial phases αji

for Koopman modes obtained from Fig. 11. These modes are computed with
the Fourier-based formula (4) under ν = (0.45Hz)T , (1.00Hz)T , and
(1.75Hz)T .

the access to mathematical models. We demonstrate that the
KM analysis identifies single-frequency swings from transient
data far from an attractor, and that the KM analysis can be
used to identify coherent swings and machines accurately.
Several standard techniques, which as introduced in Sec. I are
the linearization [10], the time-scale separation [12]–[15], the
weak coupling [18], the user-supplied grouping (described in
Sec. 3.1 of [36]), have been applied to large scale power system
models. All of these methods include either linear or weakly
nonlinear system theory. The KM analysis is a fully nonlinear,
exact technique that does not require linearization, assump-
tions of scale-separation, and user input. Also the KM analysis
takes into account the inherent dynamics hidden in simulation
outputs and data, and any clustering algorithm does not. This
is explained in detail in terms of the underlying attractors in
[27]. We suggest that the KM analysis provides an effective
method for modal identification of transient dynamics, when
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compared with the existing techniques, linearization and the
Proper Orthonormal Decomposition (POD).

The coherency identified by the KM analysis is disturbance
dependent because we need to select the modes which are
excited by a given disturbance. On the other hand, the tra-
ditional analysis of linear global modal, which is a model-
based methodology, detects all linear oscillatory modes inde-
pendently of these modes being excited or not. A question now
comes up: how do we find all nonlinear oscillatory modes and
coherent swings? As mentioned in Sec. I, when the Koopman
operator is defined for a nonlinear dynamical system, it has
full information of the system, that is, all nonlinear oscillatory
modes. Different basins of attraction for separate attractors will
have different KMs. However, if initial conditions start in the
same basin of attraction, they will have the same KM.

The KM computation can be done with two different ways:
the Fourier-based formula (4) and the Arnoldi-based algorithm
in Sec. II. The Fourier-based formula gives excellent accuracy
when good time resolution and long time length of data are
available. The Arnoldi-based algorithm is that it gives good
accuracy when good special resolution and relatively short
time length are available. The advantage of the Arnoldi-based
algorithm can provide a new method for dynamic security
assessment using the KM analysis in near-real time: see our
upcoming manuscript [37].

Here, we again compare the KM decomposition with the
POD. POD is essentially a linear analysis technique. As
discussed in Sec. III-D, when POD is applied to a nonlinear
oscillation, we often find that a POM oscillates with several
frequencies. On the other hand, KM provides by definition
modes oscillating with a single frequency. Also the KM
analysis is known to decouple dynamics at different time
scales more effectively than proper orthonormal modes [38].
Recently algorithms to compute POMs in near-real time have
been discussed in literature. The Arnoldi-based algorithm to
compute KMs provides a good opportunity for near real-time
use, because it requires limited time length of data as discussed
above.

Finally, the KM analysis gives tools for analysis and control
of complex dynamics in power systems, beyond the models
we considered here. In this paper, since the dynamics of power
system have a finite number of discrete isolated spectral points,
we used the part of quasi-periodic oscillations in (2) only
for coherency identification. The remaining part of aperiodic
oscillations, which is the second term on the right-hand side
of (2), can be used for power system analysis with more
complex dynamics, including systems with complex behaviors
exhibiting chaotic behavior. Nonlinear mode interaction can be
evaluated well using the KM analysis. In fact, in [37] we will
consider exactly the question of mode interaction. Resonances
and related dynamics such as resonance-induced chaos can be
also studied using these tools.
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ERRATUM

In the published version of the paper, numerical results
on initial phase information based on the KM analysis are
inaccurate. Figures 4, 6, 7, and 12 have been corrected in the
present version of the paper, which differs in this respect from
the published one. Also, typographical errors in the published
version are removed.
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APPENDIX A
IMPLEMENTATION OF STEP (I) IN ALGORITHM

Because of r⊥ span{g(x0), . . . , g(xN−1)} we can write
(5) as follows:

0 = g(xi)Tr = g(xi)Tg(xN ) −
N−1∑
j=0

cig(xi)Tg(xj),

where i = 0, . . . , N − 1. The matrix A = {Aij} ∈ RN×N is
defined as

Aij = g(xi)Tg(xj).

Here, because A has at most rank p � N in this paper, we
cannot determine a unique minimizer c = {ci} ∈ RN of the

norm ||Ac − b|| where

b = {g(xi)Tg(xN )}.

In this paper we obtain one solution to minimize the norm
using the Moore-Penrose pseudo-inverse matrix A† of A. The
matrix is computed with the function pinv in MATLAB. The
solution corresponds to A†b.

APPENDIX B
SIMULATION SETTING FOR THE IEEE RELIABILITY

TEST SYSTEM-1996

In the same way as the New England test system, we use
the classical model for simulation of the IEEE Reliability Test
System-1996 (RTS-96). Assume that bus 113 is the infinite bus
in order to explicitly represent the outside of the system. Then
the three generators connected to bus 113 are ignored in the
simulation. The classical model for 96 synchronous machines
in the RTS-96 is

dδi

dt
= ωi,

Hi

πfb

dωi

dt
= Pmi − GiiE

2
i

−
96∑

j=0,j 6=i

EiEj {Gij cos(δi − δj) + Bij sin(δi − δj)} ,


(10)

where the integer label i = 1, . . . , 96 denotes machine i. The
variable δi is the angular position of rotor in machine i with
respect to the infinite bus and is in radians [rad]. The variable
ωi is the deviation of rotor speed in generator i relative to
system angular frequency 2πfb = 2π × (60Hz) and is in
radians per second [rad/s]. We set the variable δ0 to a constant
for the infinite bus. The parameters fb, Hi, Pmi, Ei, Gii, Gij ,
and Bij are the same as in (8).

The setting of numerical simulation to obtain the simulation
output in Fig. 11 is as follows. The voltage Ei and the initial
condition (δi(0), ωi(0) = 0) for generator i are fixed using
power flow computation. The inertia constant Hi is the same
as in [30]. For synchronous condensers we use H = 5 s and
xd = 0 for simplicity of the current analysis. The elements
Gii, Gij , and Bij are calculated using the data in [30] and
the result of power flow computation. We use the following
fault condition: each generator operates at a steady condition
at t = 0 s. Then a three-phase fault happens at bus 123 (in
Area 1) at t = 1 s − 5/(60Hz) = 11/12 s, and line A21 trips
at t = 1 s. The fault duration is 5 cycles of a 60-Hz sine wave.
The fault is simulated by adding a small impedance (10−7j)
between bus 123 and the ground.


