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Nonlinear Koopman Modes and Power System
Stability Assessment without Models

Yoshihiko Susuki and Igor Mezi¢

Abstract—The loss of stability—an instability—can become a
critical cause of emergent cascading outages leading to wide-
spread blackouts. Penetration of renewable energy sources makes
the problem of instability more urgent because of the highly
fluctuating nature of such sources. Here we show a data-
based approach to stability assessment of power systems without
models. This approach is enabled by Koopman mode analysis
for nonlinear dynamical systems, which detects an instability
based on the properties of the point spectrum of the Koopman
operator. We apply the technique to data on physical power
flows sampled from the two major accidents, the 2011 Arizona-
Southern California grid outage and the 2006 system disturbance
of the European interconnected grid, and successfully detect
unstable power flow patterns that govern the complex dynamics
occurring during the accidents.

Index Terms—power system, stability assessment, Koopman
mode, cascading outage

I. INTRODUCTION

ASCADING outages leading to wide-spread blackouts in
large-scale interconnected power systems are repeatedly
emerging in the world. Examples of this include the 1965
Northeast America blackout, the 1996 West North America
blackouts, and the 2003 blackouts in North America and
Europe [1]. Cascading outage is a sequence of correlated
outages of individual components that successively weaken
the power system, leading to its collapse. Many groups of re-
searchers have investigated the complex dynamics occurring in
power systems: see [2]-[8] and [9] as a comprehensive review.
Understanding the dynamics and maintaining the system-wide
stability are great challenges of science and engineering.
Wider penetration of renewable energy sources has become
a potential cause of power system instability. Renewable
sources include solar and wind power generations, and their
outputs normally fluctuate due to the uncertainty in weather. In
the modern power system with a large number of distributed
renewable sources, the fluctuating power sources lead to more
instability. Many studies on this topics have been reported: see
e.g. [10]. In the final report of the 2006 System Disturbance in
the European Grid [11], it was suggested that the uncontrolled
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operation of distributed sources (mainly wind and combined-
heat-and-power) during the disturbance complicated the pro-
cess of re-establishing normal system conditions. Thus, the
penetration of renewable sources makes it urgent to develop
methods for instability detection.

Many methods for stability assessment of power sys-
tems have been developed [12]-[14]. Traditional methods are
mainly model-based, that is, the stability assessment is per-
formed by investigating a mathematical model that represents
the target dynamics of a power system. It is widely recognized
that cascading outages are fairly complicated emergent phe-
nomena in the high-dimensional nonlinear dynamical systems.
Therefore, it is difficult to obtain a mathematical model that
explains all events and time evolution of a cascading outage.
Even if we could obtain such a model, it would be not
easy to gain a dynamical insight to the cascading outages
from the model, because of its complexity. Also, the large
increase of renewable sources makes it hard to obtain a
relevant deterministic model because of their uncertain nature.
Thus, in contrast to the model-based approach, it is necessary
to develop methods that indicate spatio-temporal structure of
instability phenomena and their precursors from data. Standard
SCADA (Supervisory Control And Data Acquisition) systems
continuously collect information of the system’s state and
distribute it to system operators. Recent advance of real-time
PMUs (Phasor Measurement Units) offers an advanced data
collection method using phases of AC voltages: see e.g. [15]-
[17]. Several reports exist on this line of research [18]-[20].
In this paper, we present an approach to stability assessment
based on measured physical power flow data. In contrast to
the existing methods, our approach provides not only dynamic
patterns of power flows, which we refer to as the base flow
patterns below, but also stability information. Our approach is
conducive to development of new methods for monitoring and
control of large-scale, emergent events in power systems and
enables operational techniques such as situational awareness.
This is catalyzed by developments in theory of nonlinear
dynamical systems using Koopman Mode Analysis (KMA),
based on analysis of properties of the point spectrum of the
Koopman operator [21]-[25].

The rest of this paper is organized as follows. In Section II
we describe the KMA for analysis of finite-time data on
dynamics of physical power flows and propose a KMA-
based approach to stability assessment of power systems. In
Sections III and IV we apply the technique to data sampled in
the two major accidents, the 2011 Arizona-Southern California
grid outage and the 2006 system disturbance of the European
interconnected grid. Conclusions of this paper are presented
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in Section V.

II. STABILITY ASSESSMENT VIA NONLINEAR KOOPMAN
MODE ANALYSIS

Consider the finite-time data on dynamics of physical power
flows (more precisely, active power flows) under uniform
sampling, given by

{Po,Py,...,PNn_1}, (D

where P € R™ is the snapshot of power flows at the discrete
time k, m the number of measurement sites (for example,
generation plants, transmission lines, and substations), and N
the number of available snapshots. Generally speaking, the
power flows are determined by the internal states of a system
such as rotating frequencies and voltages of AC generators in
power plants, bus voltages in substations, power consumptions
in loads, and states of controllers in plants and substations [13].
Here we use x to represent all the internal states belonging to a
space X and assume that the time evolution of x is represented
by the deterministic, nonlinear dynamical system as follows:

xpr1 =T (xx), k=0,1,... 2)

where T : X — X is a nonlinear vector-valued map. The map
describes the rule of how « evolves in time. If the map is
constructed via power system modeling techniques (see e.g.
[13]), then the dimension of the map is possibly very large.
Now, in order to associate the finite-time data with the internal
dynamics, we define a vector-valued map defined on X, which
we refer to as an observable. For the current analysis, it is
reasonable to define the observable as a map fp : X — R™
such that the snapshot Py, of power flows at time £ is written
as

Py = fp(xr). 3)

Mathematically, the time evolution of an observable is mod-
eled by the so-called Koopman operator [26] that is defined for
the underlying dynamical system (2). The Koopman operator
is a linear operator ¢/ acting on scalar-valued functions on X:
for a function f : X — C, i maps f into a new function U f,
given by

Uf)(x) = f(T(x)). O]

Although the dynamical system (2) is nonlinear and evolves on
a finite-dimensional space, the Koopman operator I/ is linear
but infinite-dimensional. Such a linear operator defined for
arbitrary nonlinear dynamical systems [27], [28] captures the
full information of the nonlinear dynamics of the system (2),
that is, the internal dynamics of a system. The eigenfunctions
and eigenvalues of I/ are defined as follows: for ¢; : X — C
and constants \; € C, such that

Upj(x) = Njpj(),

the functions ¢; are referred to as Koopman eigenfunctions,
and the constants A; as the associated Koopman eigenvalues.
The set of all Koopman eigenvalues is called the point spec-
trum of the Koopman operator [22]. See [21], [22], [24], [25]
for examples that explain the essence of the mathematical
background.

i=1,2,... (5)

The idea which we now propose for power system stability
assessment is to investigate the finite-time data on power
flows in terms of the Koopman eigenfunctions and Koopman
eigenvalues. Here we develop the analysis for the case when
there are unstable eigenvalues of the Koopman operator, but
we have access to data for only a short period of time. We
call the analysis based on the point spectrum of the Koopman
operator the Koopman Mode Analysis (KMA). The outline of
the KMA is as follows. If each of the m components of fp lies
within the span of eigenfunctions ¢;, then the vector-valued
function fp is expanded in terms of these eigenfuntions as

fe(@) =Y 0@V, (6)
j=1

where V; € C™ are regarded as the vector coefficients in
the expansion. Thus, the time evolution fp(xy) starting at
Fp(xo) is represented as

Fo(@y) = ¢j@)V;=> Meoj(@)V;, @
=1 j=1

ie.,

Py =Y MooV, (8)

Jj=1

Thus, we refer to V'; as the Koopman Mode (KM) associated
with A;. If the dynamics have only a finite number of discrete
spectra (peaks) in complex plane, then the expansion (8)
gives a good approximation of the dynamics. The Koopman
eigenvalue \; characterizes the temporal behavior of the cor-
responding KM V;: the phase of )\; determines its frequency,
and its modulus determines the growth rate. An unstable
Koopman eigenvalue is an eigenvalue whose modulus is larger
than one, corresponding to a KM that grows exponentially as
time increases. We propose the following method for detection
of power system instability: if for a given set of data on power
flows obtained over a time interval, there exists no unstable
Koopman eigenvalue, then we conclude that the associated
power system is stable. If not, the power system behaves in
an unstable manner.

Here we discuss the notion of stability addressed in this
paper. Our analysis is based on data for only a short period
of time, in other words, is intended to describe short-term dy-
namics exhibited by a (possibly) nonlinear dynamical system.
In this sense, the current notion of stability is different from
the conventional one that is intended to long-term, asymptotic
dynamics. In a dynamical viewpoint, the current notion deals
with a portion of a trajectory and is formulated by examining
the unstable eigenvalues of the finite-time Koopman operator
corresponding to the time period over which the trajectory is
executed. The difference of notions of stability can be seen
by considering a periodic orbit that slows down as it passes
near a saddle and then speeds up. Portions of such an orbit
could be judged stable or unstable by the method of the paper
depending on which portion is chosen. In this paper, we intend
to provide a new method for detecting such a short-term trend
in dynamics from observational data, thereby obtaining an
insight to control measures for (nearly) real-time management.
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Computation of Koopman eigenvalues and modes is a
challenging problem. In [23], the Arnoldi-like algorithm for
computing the Koopman eigenvalues and modes was devel-
oped. The algorithm has been widely used for analysis of fluid
flow models (see e.g. [23], [25]), power system simulation
data [29], [30], and building system data [31]. In particular,
in [29], [30] the algorithm successfully captures nonlinear
oscillations emerging in power systems. However, in this series
of applications, it has not been used to detect instabilities
from data. In our approach, the Koopman eigenvalues \;
are approximately computed as the empirical Ritz values
Aj € C, and the terms ¢, (xo)V ; of Koopman eigenfunctions
and modes as the empirical Ritz vectors V; € C™ (see
Appendix A).

We use the above approach to detecting instabilities based
on KMA to analyze data on power flows sampled from the
two major accidents: the 2011 Arizona-Southern California
grid outage and the 2006 system disturbance of the European
interconnected grid. Our main idea of the applications is
to decompose the data on power flows into a set of KMs
that imply base flow patterns. A base flow pattern is geo-
graphically distributed over the system, exhibits power flows
that evolve coherent oscillatory or exponential (growing or
decaying) behavior, and is regarded as a coherent spatial unit
of power flows. Let V; = [Vj1, Vja, ..., Vju]T denote the j-
th empirical Ritz vector associated with the possibly complex-
valued Ritz value \; = 7; exp(i277;) for the finite-time data.
For convenience we will call the empirical Ritz vector V; the
KM, although it differs from it possibly by a constant. The
symbol T represents the transpose operation of vectors, and i
the imaginary unit. Since the original data are real-valued, if
the KM V ; is complex-valued, then there exists the conjugate
KM V Wlth the conjugate Ritz value /\C in the expansion (8),
where c represents the complex conjugate operation of scalars
and vectors. Here we suppose that the ( i + 1)-th KM VJH
corresponds to the conjugate vector V and the (j + 1)-th
Ritz value )\g+1 to )\3 In this way, the dynamlcs of base flow

pattern described by the conjugate pair of KMs, P,Ej -/ H}, are
given as

Py MVj+ (341) Vi )
|Vj1| cos{2mk; + Arg(Vj1)}
o | [Vizlcos{2mki; + Arg(Vj2)}
= 21y . ,
|Vim| cos{2mkiz; + Arg(Vim)}
©))
where k =0,1,...,N—2, |V]p| denotes the modulus of the p-

th element Vj,, of VJ, and Arg(VJP) does the argument of V,,.
The spatial shape of the dynamics is captured by the modulus
and argument of the KM. In the following, we investigate the
dynamics of power flows by directly computing the KMs from
measured data.

Here note that an exponential approximation of data similar
to (9) is obtained with the well-known Prony analysis [32],
[33]. The technique is thought of as a fit, but in fact the
Koopman operator theory shows that many dynamical systems
can be analyzed exactly in those terms. The difference of

the two methods is in our case of computational methods
developed specifically for KMA and in their justification by
dynamical systems theory.

III. 2011 ARIZONA-SOUTHERN CALIFORNIA GRID
OUTAGE

The outage occurred in the afternoon of September 8,
2011, affected parts of Arizona, Southern California, and Baja
California (in Mexico), and left approximately 2.7 million
customers without power [34]. The grid includes the four
areas of main power consumption, which are denoted by
San Diego, IID (Imperial Irrigation Distinct) north/south, and
Yuma Pocket, and their interconnection via substations and
AC transmission lines with different voltage levels. These four
areas were ultimately islanded (no import of electricity and
consequently no electricity inside of them).

The data on power flows recorded with SCADA and PMU
systems are available in the official report [34], and the
following analysis depends on the report. One-line diagram
of the San Diego area power system given in Appendix B
shows the location where data were collected.

Figure 1A shows the dynamics of power flows recorded
at one interface and seven lines via SCADA, except for the
Miguel-IV 500 kV line for which the data were obtained via
PMU. The data were obtained by sampling values from the
original figures in Appendix D of [34] and applying to them
the cubic interpolation under the uniform sampling (period
T = 35s). The value of power flow on the Path 44 500 kV
line (solid blue line) is divided by 10 in order to plot all
the data in the same scale. Since the electric transients are
sufficiently fast, the dynamics of power flows are relatively
static and change slowly with time. In Fig. 1A, several flows go
down to zero. This implies that the corresponding facilities are
tripped. Other flows increased gradually because of the heavy
loading conditions caused by the trip. These flow dynamics
drove the grid’s state to a severe situation, and finally at
15:38:02.4 just one line (Path 44 500 kV line) kept the power
transfer to the central load in San Diego area. After 15:38:21.2
(immediately after the last time shown in Fig. 1A), the entire
San Diego/IID/Yuma Pocket area power grid collapsed. No
dominant power flow appeared in the aftermath.

We now apply the KMA to analyze the Arizona-Southern
California grid outage using the data on power flows presented
in Fig. 1A. The data correspond to the nine (N = 9) samples
{Py, P1,..., Pg} at eight different (m = 8) lines. In this
setting, we computed the eight empirical Ritz values A; and
vectors V; for the data and show the results in Figs. B and
1C. The corresponding values are summarized in Tab.I. The
color of empirical Ritz values in Fig. 1B varies smoothly from
red to white, depending on the norm of the corresponding
vector, %
Mode 4 is the average power flow associated with the Koop-
man eigenvalue Ay ~ 1. In Fig. 1B, the three conjugate pairs
of \;, labeled {1,2}, {5,6} and {7,8}, exist outside of the unit
circle. The magnitude of the associated dynamical components
grows over time, and thus they represent unstable dynamics.
Mode {1,2} has the fastest oscillation frequency of those.
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Fig. 1. Koopman mode analysis of power flow in the 2011 Arizona-Southern California grid outage: (A) power flow data; (B) Koopman eigenvalues ;\],

(C) modulus and argument vectors of Koopman modes V (see the main text for definitions); and (D) dynamics of base flow patterns (9). In the figures (A)
and (D), the value of power flow on the Path 44 500 kV lme is divided by 10 to plot all the data in one figure. Figure C shows V1 and V5, and Figure D

shows the two unstable modes {1,2} and {5,6}.

TABLE I
EMPIRICAL RITZ VALUES AND VECTORS FOR POWER FLOW IN THE 2011
ARIZONA-SOUTHERN CALIFORNIA GRID OUTAGE

Jj Vil Aj X1 Period [s]
1 35 —8.7x10"T+il5 1.7 1.0 x 102
2 35 —-8.7x 10"t —i1.5 1.7 1.0 x 102
3 16x10 —4.2x 1071t 4.2 x 1071 7.0 x 10!
4 29x103 9.98 x 10~1 9.98 x 10~1 —

5 1.5x10 1.54i5.6 x 10~1 1.6 6.0 x 102
6 15x10 1.5 —i5.6 x 10~ 1 1.6 6.0 x 102
7 1.1x1073 1.7 4+i5.7 5.9 1.7 x 102
8 1.1x1073 1.7 —i5.7 5.9 1.7 x 102

Mode {5,6} is of the biggest magnitude (norm of the KM)
among the unstable modes, while mode {7,8} has a small KM
magnitude and we will neglect it from this point on. Mode 3 in
Fig. 1B is inside of the unit circle and represents stable dynam-
ics. Some of the KMs V' are shown in Fig. 1C: the modulus
vector for V; is defined as 1Vl |‘:/:7‘2|, ey |I~/jg|]f and the
argument vector as [Arg(V;1), Arg(Vj2), ..., Arg(V;s)]*. In
Fig. 1C, the name of transmission lines is stated along the
horizontal axis for clarity. The dynamics of base flow patterns
for the two unstable modes are shown in Fig. 1D.

Now, we discuss the dynamics of mode {1,2} with reference
to power grid dynamics described in [34]. The period of
oscillation of mode {1,2} is 100sec, and the spatial shape

of |V'1 2| has two peaks on the Pilot Knob-Knob line and
the Pilot Knob-Yucca “AX” line. This mode is relatively fast
compared with the other modes except for the stable one (see
Tab.I). In the official report [34], the events of disturbances
and trips of the two lines are categorized in Phase 5 “Yuma
Load Pocket Separates from IID and WALC (Western Area
Power Administration—-Lower Colorado)” from 15:35:40 to
15:37:55. The Yuma area is connected to the IID south area
via the 92kV/161kV Pilot Knob substation. The Yuma area is
also connected to the WALC’s Gila 161kV/69kV substation.
In the beginning of Phase 5 at 15:35:40, the Gila 161kV/69kV
transformers were tripped. This caused temporal heavy flows
on the Pilot Knob-Knob line and the Pilot Knob-Yucca “AX”
line in order to keep the transmission of power to Yuma: we
see this temporal trend in Fig.1A. The power went from the
Knob substation, through the Pilot Knob substation, to the
Yucca 161kV/69kV substation. After this, the “AX” line was
tripped at about 15:36:40, and one minute later (all or some
of) Pilot Knob transformers were tripped. The occurrence of
temporal heavy flows is captured well by the modulus and
argument of mode {1,2} in Fig. 1C and by the dynamics of
base flow patterns in Fig. 1D, where the flows on the two lines
oscillate in an anti-phase manner. This anti-phase in the base
flow implies that it oscillates between Knob and Yucca via
Pilot Knob. Thus, we conclude the fast unstable mode {1,2}
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is associated with the destructive event observed in Phase 5.

Next, we investigate the dynamical meaning of mode {5,6}.
The spatial shape of |‘~/5,6| implies that this mode involves all
the lines in the slow-growing instability with the period of
600 sec. As in the official report [34], the instability emerges
in the phenomenon observed in Phase 6 “High-Speed Cascade,
Operation of the SONGS (Sa Onofre Nuclear Generating
Station) Separation Scheme and Islanding of San Diego, IID,
CFE, and Yuma” from 15:37:55 to 15:38:21.2. During Phase 6,
the coarse power flow in the San Diego area power grid
rotated in a counter-clockwise manner. The flow motion is
captured well by dominant modulus and argument of mode
{5,6}, in which the Path 44, Miguel-IV (Imperial Valley), and
J. Hinds-Mirage lines have almost the same value of argument.
The flows on the three lines increase coherently as shown in
Figs. 1A and 1D. This excess loading, in particular, on the
Path 44 line initiated the SONGS Separation Scheme that
led to the loss of SONGS nuclear plants. The loss of the
SONGS nuclear plants resulted in the complete blackout of
the San Diego area power grid. Thus, the slow mode {5,6} is
associated with the slow-growing instability of the entire grid.
From the analysis above, it is clear that the two unstable KMs,
{1,2} and {5,6}, which are extracted from data using KMA,
are closely connected to major phases of the Arizona-Southern
California grid outage.

IV. 2006 SYSTEM DISTURBANCE IN THE EUROPEAN GRID

This disturbance was recorded in the night of November 4,
2006 and affected the UCTE’s (Union for the Co-ordination
of the Transmission of Electricity’s) synchronously European
interconnected grid [11]. It begun in the North German trans-
mission grid, led to a splitting of the UCTE grid into three
areas, and caused an interruption of power supply for more
than 15 millions European households. This splitting is due to
the tripping of interconnected AC lines and implies that the
three areas were asynchronously operated. In each of the areas
a significant imbalance of power emerged.

The data on dynamics of power flows in the UCTE grid are
introduced in Fig.2A, where we show the dynamics of power
exchange deviations from 21:50 till 22:10. A power exchange
deviation is defined as the difference between the actual
power exchanges and the scheduled power exchanges with
other countries. The areas focused in this figure are Belgium,
Switzerland, D-RWE, Spain, France, Italy, Netherland, and
Portugal. In this sense, the current application is slightly
different from that to the 2011 Arizona-Southern California
grid outage, in which the direct power flow data were used.
Below, we will demonstrate that our approach is capable of
obtaining instability information from such different dynamic
data sets. The data in Fig.2A were obtained by sampling
values from the original figure in Appendix 7 of [11] under
the uniform sampling (period 1" = 305s). The final report [11]
states, “These transient deviations are the result of a global
shift in physical power flows within the UCTE synchronous
grid area to changes in generation programs and exchange
programs around 22:00. These curves show a situation which
is rather normal and typical at that time.” However, the next

single operation (coupling of busbars in the Landesbergen
substation in Germany at 22:10) after the transient deviations
in Fig.2A initiated the widespread disturbance in the entire
European grid. The operation of coupling the busbars was
intended to resolve the heavy power flow on the Landesbergen-
Wehrendorf 380kV line in Germany, but it resulted in its
immediate trip and initiated a cascade of line trips, starting
with the 220kV Bielefeld/Ost-Spexard line and continuing
within the E.ON Netz grid [11]. Therefore, the N-1 criterion!
of secure operation of the grid was not fulfilled before the
busbar coupling [11].

We performed the KMA of the data on power exchange
deviations presented in Fig.2A. The data are the forty-one
(N =41) samples { Py, P, ..., P4} at eight different (m =
8) countries. By the similar method as in the Arizona-Southern
California case, the forty pairs of Koopman eigenvalues and
modes )\; and V; were computed and shown in Figs.2B
and 2C2%. In Fig.2B, we see that one conjugate pair of S\j
is located outside of the unit circle, and the corresponding
vector represents the unstable mode. The other )\;’s are located
inside of the unit circle, that is, they are associated with the
stable modes. The modulus vectors [|Vj1],|Vjal,-- -, |Vis|]T
and argument vectors [Arg(Vj1), Arg(Via), . . ., Arg(Vis)]T of
the unstable mode are shown in Fig.2C. Also, the dynamics
of the unstable base flow pattern are presented in Fig. 2D. The
period of the unstable mode is 37 min, and thus its oscillation
is relatively slow. The spatial shape of the mode indicates
that there are four large magnitude countries involved. The
computation shown in Fig.2B reflects the Koopman eigen-
values obtained during the computation over all 41 samples.
It is of interest to consider the evolution of the eigenvalue
computation over time, to understand the persistence of the
unstable KM in relatively noisy data. We computed the Koop-
man eigenvalues (and the associated KMs) starting from the
Ist sample and computing until N = 8,9, ...,40, namely, for
many sets of samples with different final number V. The result
is shown in Fig. 3 as the number density plot, where the color
changes from blue to red and depicts the number density of
unstable Koopman eigenvalues in each cell: see Appendix C
for details. In this figure, the red cells are close to the unstable
Koopman eigenvalues shown in Fig. 2. Therefore, the unstable
KM persists under a change of the sample length. As reviewed
above, the dynamics of power exchange deviations are closely
related to the initiation of the system disturbance. The base
flow pattern of the unstable KM presented in Fig. 2D vividly
shows how the large-scale unstable dynamics can be extracted
from the noisy data—the signature of the instability, in other
words, the breaking of the N-1 criterion is clearly present in

I'The N-1 criterion is a basic principle in power system operation [11]. This
rule is that any single loss of transmission or generation element should not
jeopardize the secure operation of the interconnected network, that is, trigger
a cascade of line trippings or the loss of a significant amount of consumption.

2Since the number of samples (N = 41) is larger than the number of
measurement site (m = 8), it is not possible to determine the unique
KM decomposition: see [29] and Appendix A for details. To avoid this,
here the decomposition by using the Moore-Penrose pseudo-inverse matrix
is performed. In [29] it is demonstrated that the above technique of KM
decomposition offers a result similar to that obtained via another technique
based on Fourier-like formula [22].
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Fig. 2.

Koopman mode analysis of power exchange deviations leading to the 2006 system disturbance in the European grid: (A) data on power exchange

deviations; (B) Koopman eigenvalues S\j; (C) modulus and argument vectors of unstable Koopman mode; and (D) dynamics of base flow patterns (9) for the
unstable mode. A power exchange deviation is the difference between the actual power exchanges and the scheduled power exchanges with other countries.

the dynamics even before time 22:00. Recall that the UCTE
report argues that the situation is rather normal and typical at
that time.

V. CONCLUSIONS

It is often difficult to unravel large trends in complex
cascading instability events in power systems. In this paper, we
have developed a data-based approach to stability assessment
of power systems that does not require any development of
models. This approach was applied to analyze the data on
physical power flows recorded in two major accidents: the
2011 Arizona-Southern California grid outage and the 2006
system disturbance in the European grid. We showed that
Koopman modes associated with unstable Koopman eigenval-
ues account for the spatial dynamics of coherent power flows
that are involved in these accidents. The KMA enables the
assessment of stability without models, in a fully nonlinear
and—one could argue—chaotic situation, where many opera-
tor actions are taken in response to the unraveling cascading
failure. It is important to note that these actions, evidenced
in the reports [11] and [34], would be extremely difficult to
model due to their discrete and/or stochastic nature. Yet, the
KMA seems to capture the main coherent, global, unstable
trends accurately, starting from a simple dataset. We speculate
that, based on recent developments of PMU’s and thus a qual-
itative and quantitative improvement of available data, control
mechanisms accounting for global KM features deduced from
data can serve as a basis for system-wide stabilization.

Another use of these sorts of data analysis is in situational
awareness. Two main causes of the 2011 Arizona-Southern
California grid outage are stated in the official report [34]: lack
of adequate situational awareness and lack of coordination of
protection systems. Also, in the 2006 system disturbance of
the European grid [11], the lack of online security computation
(analysis of N-1 criterion) based on real-time data on the grid’s
state is indicated. System-level indicators based on KMA
could provide system operators with coarse-grained informa-
tion on global unstable trends. This would enable preventive
global measures for containment of cascading outages and
reduction of the incidence of wide-area blackouts.

As mentioned above and in [8], the detailed dynamics in
cascading failures are modeled by a hybrid dynamical system
with both continuous- and discrete-valued variables. This is
based on the so-called microscopic description of the power
system dynamics that uses detailed mathematical models of
circuits and apparatuses. On the other hand, macroscopic
description of the dynamics is expected to describe large trends
of power systems and a signature of system-wide instabilities.
Here, active power flows are regarded as one of macroscopic
variables for power systems and are expected to exhibit
relatively-continuous and slow changes (see Section III). That
is why in this paper the time evolution of the active power
flows is well captured by the Koopman operator theory.
Applying the theory to non-smooth dynamics of phases and
voltages in cascading failures is an interesting direction that
we hope to pursue in the future. Also, extending the theory to
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Fig. 3. Number density of unstable Koopman eigenvalues for power exchange
deviations leading to the 2006 system disturbance in the European grid

non-smooth and hybrid cases is one of our future directions. It
is interesting to note that Koopman operator theory often does
not require smoothness (or even continuity) of the underlying
dynamics.
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APPENDIX A
COMPUTATION OF KOOPMAN MODES

Here, the Arnoldi-like algorithm for computation of Koop-
man eigenvalues and Koopman modes [23] is introduced. For
a given set of finite-time data described by (1), the empirical
Ritz values S\j and empirical Ritz vectors f/j of this data are
defined with the following algorithm:

(i) Define constants c¢; such that for vector r satisfying
r J_span{Po, Pl, ey PN_Q},

N-2
r=Py.1- > ¢Pj (10)
§=0
(i1) Define the companion matrix C as
00 --- 0 ¢
10 -+ 0 ¢
C=[01 0 o (11)
0 0 -+ 1 cny—2o
and find its NV — 1 eigenvalues 5\1, R 5\1\[,1.
(iii) Define the Vandermonde matrix T using A; as
T V-2
1 X A N2
T:= _ ° ? (12)
1 Avaa My - AV

(iv) Define Vj to be

[P() P1 o PN_Q]Til.
Then, we have the following equations that are originally
derived in [23]:

the columns of V =

N-—1 N—1
Pp=) MV,  Pya=> A"'W+r, (13)
j=1 j=1

where £k = 0,1,..., N — 2. Comparing with (8), the empir-
ical Ritz values \; and vectors V; behave precisely in the
same manner as the Koopman eigenvalues \; and the terms
©i(2p)V; containing Koopman eigenfunctions and KMs, but
for the finite sum (13) instead of the infinite sum (8).

Here, it is valuable to discuss how to compute the constant

vector ¢ = (cg,c1,...,cny_2)T € RVN=L from the data (1).
Because of r Lspan{Pg, Pi,...,Pn_2}, by multiplying
P;F (¢=0,1,..., N — 2) on both sides of (10) we have
N—2
0=P Py, — Z Pl P;. (14)
§=0

Now let us define the matrix A = {4;;} € RWV=DXV=1) 54
A;j = PIP; and the vector b € RV"! as b; = P/ Pn_;.
Then, we have

0=">b-Ac. (15)

If A is full-rank, then there exists the unique solution ¢ for
(15). This case appears in analysis of the 2011 Arizona-
Southern California grid outage, where the number of samples
N is equal to 9 and the dimension m of Py is equal to 8,
namely N —1 = m. If A is not full-rank, there exists no
unique solution of (15). This case appears in analysis of the
2006 system disturbance in the UCTE grid, where N —1 > m
and the rank of A is at most m. In this case, we used a solution
to minimize the norm ||b — Ac|| using the Moore-Penrose
pseudo-inverse matrix of A, denoted by Af. This matrix is
computed with the function pinv in MATLAB. The solution
corresponds to Atb,

APPENDIX B
ONE-LINE DIAGRAM OF THE SAN DIEGO AREA POWER
SYSTEM

A schematic one-line diagram of the San Diego area power
system is presented in Fig.4 to show the location where the
data were collected.

APPENDIX C
COMPUTATION OF EIGENVALUE DENSITY

For the analysis of the 2006 system disturbance in the UCTE
grid, the number density of unstable Koopman eigenvalues
for many sets of samples with different final number N was
shown. Here we describe how to plot the number density of
unstable eigenvalues. For each N = 8,9, ..., 40, the Koopman
eigenvalues and associated KMs are computed. We select a
domain of complex plane around the origin, defined as [—2 —
h/2,2 + h/2] x [-2 — h/2,2 + h/2] with h = 1/10, and
divide it to a union of (square) cells with length h. Then, for
each unstable Koopman eigenvalue we choose a single cell
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Fig. 4.
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containing it and count the number of eigenvalues in each
cell. By repeating this process for all N, the number density
of unstable Koopman eigenvalues is computed.
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